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Abstract

Horizontal expansion through an expanding product portfolio lies at the core
of modern endogenous growth literature. However, evidence remains lim-
ited on how diversification across industries influences a firm’s trade-off be-
tween generating social surplus and maximizing private returns. To investi-
gate this, I categorize intangible assets by their spillovers: transferable intan-
gibles (patents, software) generate social surplus, whereas embedded intan-
gibles (organizational capital, brand value) primarily yield private returns. I
document that diversified firms reallocate investment toward embedded in-
tangibles, while at the same time having lower markups and productivity, as
well as less competitive threats. Motivated by this evidence, I extend a canon-
ical endogenous-growth framework to endogenize firms’ allocations between
transferable and embedded intangibles, allowing for both horizontal and ver-
tical expansion. A key prediction of the model is that embedded intangibles
are freelymobile across a firm’s production lines; therefore, thismobility gen-
erates increasing returns to scale as the firm diversifies, which also raises en-
try barriers for competitors and decreases the social surplus, rather than pro-
moting long-run growth. Thus, a shift in innovative effort ultimately sacrifices
economy-wide growth forfirm-levelmarket advantages, andquantitative anal-
ysis indicates that size-dependent taxes can substantially improve welfare.
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1 Introduction

Horizontal and vertical innovation are two essential strategies firms use to expand

their size (Klette and Kortum, 2004; Aghion, Harris, Howitt, and Vickers, 2001).

The literature mainly assumes that horizontal expansion does not negatively af-

fect the profitability of a firm’s existing operations.1 Consequently, there has been

limited attention to how diversification across industries influences the allocation

of investment in intangible assets and associated trade-offs between social and pri-

vate returns.

Expanding a firm’s business across segments2 requires organizational divisions,

which naturally influence the attention of its managers and its innovation strate-

gies. For instance, Colgate-Palmolive operates with a narrow focus on Personal

& Home Care and Pet Nutrition, whereas Procter-Gamble manages a wide array

of segments, including Beauty, Grooming, Health Care, Fabric & Home Care, and

Feminine & Family Care. This divergence raises two critical questions: (i) How

does diversification shape a firm’s efficiency, market power, and allocation of in-

tangible investment? (ii) What are the corresponding implications for social wel-

fare?

To address these questions, I develop a unified framework to analyze how firm

diversification shapes innovation incentives and social welfare. First, I document

that firm productivity, markups, and the ratio of R&D to firm-specific intangible

investment (net SG&A)3 vary systematically with the numbers of segments of a

firm. Guidedby this empirical finding, I construct an endogenous-growthmodel in

1There are two common approaches to modeling horizontal expansion: one assumes diminish-
ing returns to scale, while the other assumes constant returns to scale and relies on Gibrat’s Law,
which states that innovation is independent of firm size.

2Firm segments, scope, and production lines are used interchangeably to indicate how broadly
diversified a firm is across industries. This diversification depends on how the firm defines its own
business. It may involve closely related industries or more widely diversified operations.

3SG&A also includes R&D expenditures; net SG&A is calculated by subtracting R&D, leaving
only expenses for employee compensation, advertising, and other operational costs of the firm.
See Section 2.2 for details.
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whichfirms’ expansiondecisions determine their strategic allocationof innovative

effort. In themodel, firms offset the profitability costs of diversification by shifting

resources away from R&D and toward firm-specific intangible investments. This

reallocation raises entry barriers and tilts innovation incentives toward private re-

turns, at the expense of the broader social gains typically associated with R&D.

To formalize thismechanism, I classify intangible assets according to their trans-

ferability betweenfirms. In this framework, transferable intangibles includepatents

and software,with the associatedR&D investments emphasizing their non-rivalrous

nature and limited excludability (Romer, 1990; Aghion and Howitt, 1992; Gross-

man and Helpman, 1991). These investments can be transferred between firms

and generate spillover effects, with each successful R&D project building on pre-

vious product improvements. Their benefits persist even if the firm exits the mar-

ket. In contrast, embedded intangibles like brand value and organizational capi-

tal are inherently firm-specific and inseparable from the firm that created them.

They primarily provide a firm-specific comparative advantage and do not gener-

ate spillovers. Consequently, when a firm exits the market, the economic value of

embedded intangibles becomes a sunk cost4.

I further subdivide embedded intangibles into two categories based on their ef-

fects on demand and supply (Table 1). Brand value 5 acts as a demand shifter, pos-

itively influencing the perceived quality of a firm’s output (Cavenaile and Roldan-

Blanco, 2021; Cavenaile, Celik, Roldan-Blanco, and Tian, 2025). Evidence also sug-

gests that brandvalue targetedmarketingby increasing consumer awareness, thereby

incentivizing substantial firm investment in advertising (Cavenaile, Celik, Perla,

and Roldan-Blanco, 2025; Baslandze, Greenwood, Marto, and Moreira, 2023). On

the supply side, I conceptualize organizational capital as managerial productiv-

4Investment in transferable intangibles corresponds directly to R&D investments. By contrast,
embedded intangibles include advertising and organizational expenditures, which accumulate as
brand value and organizational capital.

5Alternatively, Pearce and Wu (2025) suggests that brand value is transferable between firms.
However, in the framework of this project, brand value is considered non-transferable, as its only
channel of transfer—throughmergers and acquisitions (M&A)—lies outside the scope of this paper.
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ity, including the firm’s embodied managerial talent and its contribution to future

production profitability (Carlin, Chowdhry, and Garmaise, 2012; Eisfeldt and Pa-

panikolaou, 2013; Prescott and Visscher, 1980)

Table 1. Taxonomy of Intangibles

Supply Side Demand Side

Embedded Organizational Capital Brand Value

Transferable Software, Patents

Imerge Compustat Fundamentals with Compustat Segment data and document

a key empirical finding: as firms diversify across segments, their markups, pro-

ductivity, growth rates, and the ratio of transferable to embedded intangible in-

vestment all decline. To quantify competitive pressures, I use the product mar-

ket fluidity dataset from Hoberg, Phillips, and Prabhala (2014), which shows that

more diversified firms face lower competitive threats and operate in less fluid sec-

tors. I further refine the analysis using granular, within-industry product-scope

measures fromHoberg and Phillips (2025) to disentangle sector-level fromwithin-

sector expansioneffects onfirmdynamics. I use thedataset fromKogan, Papaniko-

laou, Seru, and Stoffman (2017) to obtain forward citations and value per patent,

which serve as proxies for the social benefits and private value of innovation.

Building on the empirical evidence, I extend the canonical endogenous growth

framework along two dimensions. The first dimension introduces vertical and

horizontal firm growth, with span-of-control frictions6 (Lucas, 1978) arising from

horizontal expansion. The second dimension endogenizes firms’ choices between

transferable and embedded intangible investments. The economy consists of a

final-good sector and a continuum of intermediate-good sectors, each featuring

a single superstar firm alongside a continuum of fringe firms. Superstar firms

6See also Jovanovic (2025). Alternatively, Acemoglu, Akcigit, Alp, Bloom, and Kerr (2018) use
skilled labor in operational activities as a fixed cost, creating a trade-off between its allocation to
R&D and operations. While an increase in firm scale raises operational demands, this does not
directly reduce firms’ efficiency or pricing power with size.
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can invest either in embedded intangibles, which enhance managerial productiv-

ity and the perceived quality of their products through brand value and organiza-

tional capital, or in transferable intangibles, which improve product quality in two

ways: (i) by upgrading existing product lines, and (ii) by enhancing new product

lines. Importantly, internal quality improvements do not create span-of-control

constraints, whereas expansion into new product lines does. Moreover, brand

value and organizational capital transfer freely across a firm’s existing lines, while

quality improvement requires separate investments for each line. This asymmetry

generates increasing returns to scale for embedded investments as firms expand

their product portfolios.

Fringe firms cannot invest in embedded intangibles; their only path to becom-

ing a superstar is through radical innovation. When a superstar exits the market,

its transferable intangibles in that product line—existing quality—become freely

available to fringe firms. Under oligopolistic Bertrand competition, a superstar’s

markup in each production line is determined endogenously by the levels of its

transferable and embedded intangibles, as well as by the number of product lines

it operates. Superstars from other industries can enter a sector by improving the

quality of a production line and displacing the incumbent. Such entry, however,

is only feasible if their brand value and organizational capital are at least as high

as the incumbent superstar’s. Consequently, substantial investment in embedded

intangibles allows a superstar to strengthen itsmarket position and reducemarket

fluidity.

The model predicts that horizontal expansion decreases managerial productiv-

ity and competitiveness due to span-of-control constraints. To offset these inef-

ficiencies, multiproduct firms exploit cross-product synergies and reallocate in-

vestment toward embedded intangibles, which deliver increasing returns to scale

but simultaneously reduce market fluidity. This strategic shift extends the life cy-

cle of superstar firms in existing markets but generates three adverse aggregate

consequences: (i) reducedmarkups and productivity formultiproduct firms as op-
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erational fragmentation intensifies; (ii) contraction of the innovation possibilities

for new entrants; and (iii) depressed long-run quality improvements due to lower

investment in transferable intangibles.

I discipline the key parameters of themodel using the simulatedmethod ofmo-

ments (SMM). Based on the calibrated model, I examine how the relative shares

of brand value (demand-side) and organizational capital (supply-side) shape firm

dynamics. An increase in the share of brand value relative to organizational capital

induces firms to concentrate production within a single line, as brand value alone

cannot offset the managerial frictions associated with expansion. Consequently,

markups decline: the reduction in organizational capital lowers managerial pro-

ductivity and outweighs demand-side gains frombrand value. This shift also raises

entry barriers for potential entrants, thereby reducing market fluidity and aggre-

gate growth. In contrast, when organizational capital constitutes a larger share,

firms are more likely to expand, as organizational capital directly enhances man-

agerial efficiency. This fosters higher markups and increases market fluidity and

economic growth.

Next, I run two counterfactuals: I remove the span-of-control constraint and

eliminate embedded intangibles to isolate their effects onmarkups, firm size,mar-

ket fluidity, and aggregate growth. Without span-of-control constraints, a firms to

operate more product lines, raise average markups, increase investment in em-

bedded intangibles (thereby reducingmarket fluidity), and raise aggregate growth.

Eliminating embedded intangibles concentrates production on a single line, low-

ers markups modestly (0.5–1.5%), and raises aggregate growth via a large increase

in creative-destruction-driven fluidity.

In the last part of the quantitative analysis, I examine how misallocation oper-

ates through two channels: (i) markup dispersion and (ii) entry barriers created by

embedded intangibles. Pure markup dispersion accounts for only 0.5% of output

loss. In contrast, removing entry barriers more than triples aggregate output; this

is driven primarily by substantial quality-improvement gains, during which the
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contribution of embedded capital falls slightly. Motivated by these results, I evalu-

ate three tax experiments: a size-dependent profit tax (10%→12.5%), aflat 11.3% tax

on embedded and expansion investment, and joint application of all three taxes. In

consumption-equivalent welfare, the size tax delivers the largest gain (+10.915%);

the embedded-investment taxes yieldmodest gains (+1.745% and +2.176%); and the

joint policy produces the most significant complementary benefit (+16.237%).

Related Literature. First, this paper contributes to the growing literature on in-

tangibles and their effects on firm dynamics. The literature suggests that intangi-

bles increase market concentration, markups, and reduce investment in tangible

capital (Chiavari and Goraya, 2025; Crouzet and Eberly, 2019; Weiss, 2020). Build-

ing on this, De Ridder (2024) conceptualizes software intangibles as firm-specific

fixed costs and shows how incumbents’ strategic investments lower marginal pro-

duction costs, creating asymmetric barriers to innovation that favor incumbents.

Similarly, Aghion, Bergeaud, Boppart, Klenow, and Li (2023) distinguishes product

and process (firm-specific) innovation and highlights the roles of information and

communication technologies in driving concentration. In related work, Cavenaile

and Roldan-Blanco (2021) and Cavenaile, Celik, Roldan-Blanco, and Tian (2025)

show that advertising can substitute for R&D and dampen innovation intensity,

while Pearce and Wu (2025) examines brand-value transfer between firms in the

context ofmarket concentration. My paper contributes to the literature by propos-

ing a unified, generalizable taxonomy of intangibles and by modeling their accu-

mulation as an endogenous outcome of firm optimization, rather than treating

them solely as expenses or fixed costs. This framework provides the microfoun-

dations for firms’ investment and accumulation decisions across different types

of intangibles. It thereby produces novel insights into how those choices shape

markups, firm size, market fluidity, and the nature of firm productivity.

Second, this paper contributes to the literature on horizontal and vertical inno-

vation. Akcigit and Kerr (2018) develop an endogenous growth model in which

incumbents engage in internal and external innovation with heterogeneous re-
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turns. Garcia-Macia, Hsieh, and Klenow (2019) show that most innovation arises

from incumbents improving existing products. In contrast, Berlingieri, De Rid-

der, Lashkari, and Rigo (2025) document that firms often expand through sequen-

tial product diversification rather than by improving existing products. My model

introduces the cost of diversification: beyond diminishing returns, diversification

reduces productivity and markups by straining managerial capacity. This mech-

anism highlights why strategic innovation portfolios are essential for sustaining

firms over the life cycle.

Third, this paper offers a complementary explanation for several documented

trends: reduced knowledge spillovers (Akcigit and Ates, 2021; Akcigit and Ates,

2023), decliningpatent quality (Olmstead-Rumsey, 2019), production lock-in (Casal,

2024), and strategic patenting (Jo and Kim, 2024). The mechanism centers on the

strategic reallocation of investment from transferable to embedded intangibles by

multiproduct firms. This reallocation depresses spillovers due to the firm-specific

nature of embedded intangibles. The shift subsequently replaces economy-wide

product quality improvements with firm-specific productivity gains, which in turn

reduces market fluidity. This illustrates a mechanism through which firms exer-

cise broader control over their competitive environment, ultimately limiting the

innovation potential of rivals and broader diffusion of knowledge.

Fourth, this paper contributes to the literature on resourcemisallocation (Hsieh

and Klenow, 2009; Restuccia and Rogerson, 2008) by identifying two distinct chan-

nels. First, misallocation can arise from markup dispersion (Peters, 2020; Ed-

mond, Midrigan, and Xu, 2023), driven by the accumulation of both transferable

and embedded intangibles. Second, embedded intangibles create entry barriers,

which amplify distortions and reduce allocative efficiency.

Fifth, the empirical and theoretical literature on the span of control constraint

hasprimarily focusedonhierarchical organization, knowledgeflow frictions,man-

agerial ability, and associated premiums (Smeets, Waldman, andWarzynski, 2019;

Bandiera, Prat, Sadun, and Wulf, 2014; Garicano, 2000; Bloom and Van Reenen,
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2007). This paper extends the literature by adopting a macro perspective, exam-

ining how span of control constraints shape firm dynamics and growth, and high-

lighting their broader implications for innovation.

Outline. The remainder of the paper is organized as follows: Section 2 presents the

datasets and empirical facts; Section 3 introduces the theoretical model and char-

acterizes its equilibrium; Section 4 discusses the calibration; Section 5 examines

counterfactual analysis; Section 6 analyzes misallocation and policy implications;

Section 7 discusses model extension and Section 8 concludes.

2 Datasets and Empirical Facts

In this section, I first describe the data sources andmeasurement details, and then

present empirical evidence on how the investment ratio, productivity, markups,

and market fluidity vary with firmmultiproductness.

2.1 Data Description

Compustat Fundementals and Segment. Compustat Fundamentals provides com-

prehensive firm-level financial information for publicly listed companies in North

America7 and offers extensive longitudinal coverage. It includes detailed balance

sheet items, income statement components, cash flow data, and key financial ra-

tios. An additional advantage is that it enables data to be merged with external

datasets through a unique firm identifier.

Compustat also offers two distinct segment datasets: (i) the Historical Segment

dataset, which contains buyer–supplier relationships and firm segmentation with

long-term coverage8, and (ii) the Compustat Segment dataset, introduced in 2016,

7Foreign firms such as Toyota and Unilever are included in Compustat North America due to
their U.S. listings via AmericanDepositary Receipts (ADRs). Although they adhere to home-country
governance, these firms comply with SEC reporting requirements. Excluding them does not affect
the paper’s main conclusions but reduces the sample size by roughly 25%. For this reason, they are
retained in the main analysis. See Figure A3

8Under Regulation SFAS No. 131—codified as ASC 280 after 2009—U.S. public firms are required
to disclose the identity of any one customer that accounts for more than 10% of its total revenue,
along with the nature of the products or services provided to that customer. These mandated dis-
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which provides more detailed segment-level information but with limited histori-

cal depth. 9 To maximize both coverage and detail, I combine these two segment

datasets.10 To estimatemarkups, productivity, and the investment ratio across pro-

duction lines, I merge the Compustat Fundamentals and Segment datasets.11

Fludity and Firm Scope Dataset. The product market fluidity metric from Hoberg,

Phillips, andPrabhala (2014)(HPP)measures the rate atwhichfirms in similarmar-

kets change their product or service offerings annually. It is calculated using natu-

ral language processing (NLP) on the product descriptions from firms’ annual 10-

K reports filed with the U.S. Securities and Exchange Commission. This method

tracks year-over-year changes in how companies describe their business. A high

fluidity score indicates that competitors are adapting rapidly by launching new

products, shifting strategies, and entering new markets. Consequently, firms in

high-fluidity markets face heightened competitive threats from rivals reconfigur-

ing their offerings and positions.

Hoberg and Phillips (2025)(HP) construct their firm scope dataset using a sim-

ilar text-based methodology as their fluidity metric. By applying NLP to product

descriptions in firms’ annual 10-K reports, they calculate pairwise similarity scores

between all public firms. This methodology allows them to identify a firm’s num-

ber of distinct productmarkets based on the uniqueness of its product descriptions

relative to others. The key advantage of this dataset lies in its granular, text-based

measurement of firm scope, which offers amore nuanced and dynamic alternative

closures constitute the foundation of the Historical Segment datasets.
9In this project, for the Compustat Historical Segment dataset, geographic and operational seg-

ments are excluded; only business segments are retained. For the Compustat Segment dataset,
only non-missing entries from the Product–Service (PD-SRVC) category are included.

10Whensegment information for afirm is available in theCompustat Segment dataset, I prioritize
that source. Otherwise, I use data from the Historical Segment dataset.

11Themerged Compustat dataset contains fewer firms than the Fundamentals database because
segment information is unavailable for some firms. In addition, I restrict the sample to firms with
positive R&D and SG&A expenditures. This cleaning andmerging process does not affect the repre-
sentativeness of themerged dataset relative to the full Compustat Fundamentals sample; see Figure
A6.
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to static industrial classification codes.12

Forward Citation and Patent Value Dataset. The Kogan, Papanikolaou, Seru, and

Stoffman (2017) dataset contains patent-level information, including patent ID, fil-

ing and issue dates, firm identifiers, forward citations, and patent value. Forward

citations are calculated as the total number of subsequent citations each patent

receives, including citations from the firm that owns the patent. The private value

of each patent is estimated using stock market reactions around the patent grant

date, which captures investors’ expectations regarding future profits.

2.2 Measurement

ProductivityandMarkupEstimation. I estimatefirm-level total factor productivity

using the approach developed by Gandhi, Navarro, and Rivers (2020)13. They pro-

pose a nonparametric identification strategy that uses a transformation of the first-

order condition for intermediate inputs to isolate flexible-input effects and identify

the production function and input elasticities without relying solely on proxy in-

version. To estimate firm-level markups, I follow the methodology of De Loecker,

Eeckhout, and Unger (2020) and define markups as the ratio of sales to the cost of

goods sold (cogs) multiplied by the output elasticity of the variable input, which

I obtain from the first-stage production function estimation using Levinsohn and

Petrin, 2003.

Investment Ratio. Following Peters and Taylor (2017), I measure two categories of

intangible investment. I treat total R&D expenditures as investment in transfer-

able intangibles.14 On the other hand, 30% of Selling, General, and Administrative

(SG&A) expenses, net of R&D, is treated as investment in embedded intangibles.

12For a comparative illustration of firm segment classification between the Compustat Segment
and HP Firm Scope datasets, see Tables A1 and A2.

13The productivity estimation results are robust to alternative production function estimation
methods, including those proposed by Ackerberg, Caves, and Frazer (2015) and Levinsohn and
Petrin (2003); see Figure A5. For methodological details, see Appendix A.1

14Peters and Taylor (2017) refer to this as knowledge capital, which is termed transferable intan-
gibles in this paper.
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Net SG&A primarily includes employee compensation, advertising, and other ex-

penditures necessary to sustain firm operations. Only a fraction of these expenses

are considered investments, as the remainder reflects routine operating costs.

2.3 Empirical Facts

Figure 1(A) and Figure 2(A) document an inverse relationship between a firm’s

numberof production lines and its productivity, productivity growth, andmarkups15.

This pattern is consistent with a span of control constraint: on average, as firms

expand their scope, managerial attention is weakened on each line, reducing effi-

ciency and pricing power.
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Figure 1. Productivity, Growth & Forward Citation / Value per Patent by Production Line

Note: The sample excludes firms in the utilities and finance sectors, and those with missing or
non-positive R&D or SG&A. For forward citations and patent values, observations with missing or
non-positive patent values are also excluded. The growth rate is defined as the two-year log change
in productivity,∆2 ln(prod)i,t = ln(prodi,t)−ln(prodi,t−2), averaged over 2005–2019 andwinsorized
at the 10th and 90th percentiles. Log productivity is measured from the 2019 cross-section and
winsorized at the 95th percentile. Forward citations and value per patent are averaged over 2015–
2019 and winsorized at the 5th and 95th percentiles.

Figure 1(B) suggests that, on average, forward citations per patent decline as the

numbers of production lines increase. This pattern implies a reduction in the so-

cial value of patents as firms diversify. In contrast, the private value of innovation

15This finding aligns with the pattern in Autor, Dorn, Katz, Patterson, and Van Reenen (2020) in
which higher-productivity firms charge higher markups.
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per patent appears to rise with additional production lines, moving in the opposite

direction from forward citations. The growing divergence between these twomea-

sures highlights amisalignment between the private surplus captured byfirms and

the social value generated by their patent output. Further, Figure 2(B) indicates

that the composition of intangible investments is non-uniform and varies system-

atically with firm scope. Firms with fewer lines tend to prioritize transferable in-

tangibles, whereas firms that expand into multiple products increasingly allocate

investment toward embedded intangibles to reinforce competitive advantages in

existing lines. Moreover, Figure 2(C) shows that markets dominated bymultiprod-

uct firms are less fluid than those dominated by firms with fewer products.16 A

strong negative correlation between market fluidity and the investment ratio sug-

gests that larger embedded intangible investments strengthen incumbency, mak-

ing market entry and displacement more difficult for rivals. These relationships

are formally confirmed by the regression estimates in appendix Table A4, which

control for two-way fixed effects. The results show a significant negative relation-

ship between the number of production lines and both productivity andmarkups,

with even stronger negative coefficients for investment ratios and market fluidity.

Crucially, appendix Figure A4 demonstrates that these patterns are not explained

solely byfirmsize or age, underscoring their unique link to afirm’s expansion strat-

egy.

Further, I apply the local projection method by Jordà (2005) to investigate how

single- and multi-segment firms systematically differ in their responses to inno-

vation shocks across productivity, markup, investment ratio, and fluidity.17 The

16See Table A3 for summary statistics.
17The innovation shock measure from Kogan, Papanikolaou, Seru, and Stoffman (2017) captures

the market reaction to the date a firm’s patent was granted.
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econometric specification is as follows:

∆hYi,t = αh + βMulti SitDit + βSingle Sit

(
1−Dit

)
+ Γ⊤

hXit−1 + δhYi,t + θj + λt + εijt. (1)

Here, ∆hYi,t denotes the h-period change in the outcome Y for firm i, Sit is the

sum of all innovation shocks to firm i in year t, andDit is an indicator that equals

one formulti-segment firms according to Compustat classification (and zero other-

wise). The vectorXit−1 contains time-varying firm controls, including sales, R&D,

and general administrative expenses (SG&A), while Yit controls for the pre-shock

level of the outcome. The terms θj and λt are industry (2-digit NAICS) and year

fixed effects, respectively, and εijt is the error term. The coefficients βMulti and

βSingle capture the responses of multi- and single-segment firms, respectively, to

the innovation shock.
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Note: The sample excludes utilities and finance sectors, and firms with missing or non-positive
R&D and SG&A. Markups, the investment ratio, and market fluidity are measured for the 2019
cross-section. The investment ratio is transferable over embedded investment, which is described
in Section 2.2. The investment ratio is winsorized at the 95th percentile, the markup at the 90th
percentile, and labor market fluidity at the top and bottom 5th percentiles. For calibration pur-
poses, fluidity is normalized using min-max scaling. Each value x was transformed according to
xscaled = (x−min(x))/(max(x)−min(x)), mapping all values linearly into the range [0, 1].

Figure 3 shows that after an innovation shock, single-segment firms indicate
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statistically significant higher investment in transferable intangibles and higher

markups. Although the confidence intervals for productivity and fluidity overlap,

the point estimates are consistently higher for single-segment firms. This suggests

that single-segment firms are more efficient and that their innovations makemar-

kets more fluid compared to multi-segment firms.
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(D) Competitive Threat
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Figure 3. Innovation Shock to Single and Multi-Segment Firms

Note: The sample excludes utilities and finance sectors, as well as firms with missing or non-
positive R&D and SG&A. All variables are in logarithmic form and cover the period 1990–2019.

To investigate why diversification affects margins, I compute firm-level vari-

ables using the HP firm-scope dataset. In the Appendix, Figure A1 and Table A5

show that thesemeasures risewith firm scope, in contrast to the patterns observed

using Compustat segment data. Moreover, local projection estimates in Figure A2
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indicate that higher-scope firms consistently outperform lower-scope firms. This

stark divergence suggests that the effects of diversification are not uniform but in-

stead critically depend on the type of expansion: diversification raises margins

when firms enter closely related markets, but undermines them when firms ex-

pand into less related sectors.

3 Theoretical Model

This section develops an endogenous growth model to characterize the equilib-

rium relationship between innovation, intangible heterogeneity, and firm scope.

Unifying the vertical innovation framework of Aghion, Harris, Howitt, and Vick-

ers (2001) with the horizontal expansion mechanism of Klette and Kortum (2004),

the model introduces two key elements: heterogeneity in intangible investment

and a span of control constraint. These features jointly determine firms’ invest-

ment decisions, markups, and output based on their competitive positions and the

composition of their intangibles.

3.1 Economic Environment

Preferences. In this economy, continuous time is represented by t, and household

preferences are described by a logarithmic utility function:

∫ ∞

0

e−ρt ln(Ct) dt, (2)

whereCt represents household consumption, and ρ > 0 denotes the time discount

rate. The budget constraint is expressed as

Ȧt = rtAt + wt − Ct. (3)

The termAt represents the total assets in the economy at time t, and the labor sup-

ply is normalized to 1. I normalize the price of the consumption good; therefore,

wt and rt show the relative prices of wage and the interest rate, respectively. Be-
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cause households own firms, total assets in the economy can be expressed as the

sum of the firm values

At =

∫ 1

0

(
Vsjt + Vfjt

)
dj,

where Vsjt and Vfjt denote the values of superstar and fringe firms in the interme-

diate good sector j at time t.

Final Good Technology and Market Structure. The final good sector used for con-

sumption is produced according to the following technology:

ln(Yt) =

∫ 1

0

ln(yjt) dj. (4)

It is produced using a continuum of intermediate varieties j ∈ [0, 1] in a perfectly

competitive market. In each intermediate goods sector, one superstar firm, ysjt,

and a continuum of homogeneous small firms, yfjt, compete à la Bertrand to sup-

ply the final good producer. Their output is aggregated by a constant elasticity of

substitution:

yjt =
(
χ(est) y

ε
sjt + yεfjt

) 1
ε , (5)

where ε ∈ (0, 1). In each production line j, a superstar firm s may own multiple

lines. It is characterized by the countable set of lines for which it owns the leading

technology, Js ⊆ [0, 1]. The number of leading product lines owned by superstar

firm s is given by ns = |Js| ∈ Z+.

Because the superstar firm has a differentiated product, the term χ(ξest) is an

endogenous and concave demand shifter, defined as χ(ξest) = (ξest)
β. Here, est

represents the embedded intangibles of firm s while ξest denotes the portion of

embedded intangibles associated with brand value, with ξ ∈ (0, 1). The parame-

ter β ∈ (0, 1) captures the curvature of the demand shifter. If the relative brand

value of a superstar firm increases, the perceived benefit (quality) of its product in

the final good sector will be higher than that of the products of fringe firms. For

simplicity, the embedded intangible level and brand value of fringe firms are nor-
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malized to one. Finally, fringe firms are homogeneous within each intermediate

sector and can be represented as:

yfjt =

∫ 1

0

yijt di, (6)

where each fringe firm i ∈ (0, 1).

Superstar Firm Production. The production function for superstar firm s in line j

at time t is given by

ysjt = qsjt · ψ(est, nst) · lsjt, (7)

with ψ(est, nst) =

(
(1− ξ) est

)α
γ nαs

st

.

The term qsjt · ψ(·) represents the total productivity of firm s in production line j,

where qsjt denotes product quality and ψ(·) captures the firm’s managerial produc-

tivity. The input lsjt is the quantity of labor employed by superstar firm s in line j.

The component (1− ξ)est represents the fraction (1− ξ) of embedded intangibles

interpreted as organizational capital, which improves managerial efficiency. The

variable ns denotes the number of product lines owned by firm s. As ns increases,

managerial productivity per line declines due to the span of control—expansion re-

duces the firm’s ability to effectively oversee each individual line18. Furthermore,

the curvature of organizational capital and the span of control constraint are gov-

erned by α and αs, respectively, while the value of γ determines whether it repre-

sents a cost (γ > 1) or a benefit (0 < γ < 1) scale for managerial quality.

Fringe Firm Production. Fringe firms produce output according to a linear tech-

nology:

yfjt = qfjt · lfjt, (8)

where qfjt denotes productivity and lfjt is labor input. Unlike superstar firms, a

fringe firm operates in only one sector and has a managerial quality normalized

to 1. Its productivity is inherited: when a superstar firm exits, its transferable in-

18The span of control constraint imposes a natural upper bound n̄ on horizontal firm expansion.
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tangible assets, such as patents, become publicly available, allowing a fringe firm

to adopt the previous leader’s productivity level. Finally, as fringe firms produce a

homogeneous good, they are price takers.

Investment Functions and Innovation. A key assumption of the model is that qual-

ity improvements in each production line require separate investments, whereas

embedded intangibles are freely mobile across a firm’s production lines. Thus, a

successful investment in embedded intangibles simultaneously improves thebrand

value and the organizational capital of all production lines. Under this framework,

superstar firms face three investment decisions: they can expand their portfolio

with new production lines, improve the quality of existing lines through transfer-

able intangibles, or improve brand value and organizational capital of all lines via

embedded intangible investments. These investment scenarios are illustrated in

Figure 4.

The variables IEmbs,j,t , I Ints,j,t, and IExs,j,t represent the investment of superstar s in em-

bedded intangibles, internal transferable investment on its own production lines,

and external transferable investment on other production lines, respectively. If a

firm is a leader in at least one production line, it can engage in external innova-

tion. Each unit of investment generates a successful flow rate of innovation on

internal zInts,j,t, external zExs,j,t, or the embedded intangible level zEmbs,j,t , respectively.

Investments occur with convex costs and are represented by

I Intsjt = γInt
(
zIntsjt

)ϑInt

Yt , IExsjt = γEx
(
zEx
sjt

)ϑEx

Yt (9)

and IEmbsjt = γEmb
(
zEmb
sjt

)ϑEmb

Yt.

In the above expressions, the investment cost function scales with the size of the

economy, Yt. The parameters γInt, γEx, and γEmb determine the cost scale of the

investment functions, whereas ϑInt, ϑEmb, and ϑEx determine their curvature, re-

spectively. The total investment in transferable intangibles by a superstar firm in
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production line j at time t is equal to

ITsjt = I Intsjt + IExsjt. (10)

Figure 4. Firm Investment and Innovation Types

Fringe firms invest only in transferable intangibles within their production line,

aiming to achieve drastic innovations that could elevate them to become a new

superstar. Fringe firms invest in transferable intangibles, followed by

IFrisjt = γf
(
zFri
sjt

)ϑf

Yt. (11)

The term γf represents the fringe firms’ cost of scale, and ϑf is the curvature of

their investment.

On each production line, firms invest in transferable and embedded intangibles

to improve product quality or to increase brand value andmanagerial productivity.

The dynamics are given by

qsjt = λmsjt qsj0, and est = θkst ej0, (12)

with initial levels qsj0 = 1 and ej0 = 1. The variablesmsjt and kst denote the cumu-

lative numbers of product-quality and managerial/brand-improving innovations
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by firm s on line j up to time t, respectively. When a firm successfully innovates

between t and t+∆t, its quality increases by a factor ofλ > 1. Brandvalue andman-

agerial productivity evolve similarly; however, improvement by a factor of θ > 1 is

firm-specific and depends only on firm s.

Upon the exit of a superstar firm, its transferable technology becomes imitable,

allowing fringe firms on production line j to adopt it. Consequently, the quality

gap between a superstar firm and a fringe firm in line j at time t can be expressed

as
qsjt
qfjt

=
λmsjt

λmfjt
= λmsjt−mfjt = λmjt , (13)

where mjt ≡ msjt − mfjt denotes the technology gap in transferable intangibles.

Because the embedded level of fringe firms on each production line is normalized

to one, the gap in brand value and managerial quality is given by the superstar’s

embedded stock:
esjt
efjt

=
θksjt

1
= θkst , (14)

where kst represents the gap in embedded intangibles. To ensure a finite state

space, I impose upper bounds m̄ and k̄ on the transferable gap mjt and the em-

bedded gap kst, respectively.

Assumption 1 (Embedded Intangible Accumulation). Firms accumulate embedded

intangible capital when they achieve higher quality in a sector. This capital depreciates

if the firm loses its leadership position.19

Assumption 2 (Entry Condition). When a superstar firm s makes a successful hori-

zontal innovation at flow rate zHor
ijt , it is assigned to a randomly chosen production line

j′. The challenger s can only enter this market if its embedded intangible level meets or

exceeds the incumbent’s level es′,t. The entry probability is therefore:

pExs≥s′ ≡ P
(
es,t ≥ es′,t

)
. (15)

19This depreciation mechanism reflects the idea that firm-specific organizational capital, brand
value, and supply chain advantages are tied to market leadership and erode when that position is
lost.
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Creative Destruction

Both superstar and fringe firms engage in creative destruction via product quality

innovations. Their takeover dynamics, however, differ significantly due to asym-

metric capabilities in intangible capital accumulation and market competition.

Two-Stage Game

: Competition on each production line unfolds as a two-stage game:

1. Stage 1 (Disclosure & Exit): The challenger superstar chooses its innovation

disclosure level to fringefirms. Simultaneously, the incumbent decideswhether

to exit the market.

2. Stage 2 (Bertrand Competition): Remaining firms engage in Bertrand compe-

tition. This stage always involves the two highest-quality firms (either two su-

perstars, or one superstar and the highest-quality fringe firm) along with the

continuum of active fringe firms.20

When a fringe firm makes an innovation, it enters the two-stage game directly

without a separate entry contest, reflecting its established market presence.21

3.2 Equilibrium

This section characterizes the general equilibrium of the model, which consists

of a static and a dynamic component. The analysis begins with the static equilib-

rium, determining prices and allocations for a given set of states. Subsequently, I

define the Markov Perfect Equilibrium for the dynamic game, outlining the value

functions, optimal policy functions, and the evolution of the aggregate state distri-

bution.
20Fringe firms have identical productivity conditional on the disclosure policy, normalizing their

baseline brand value and managerial productivity to 1. When only one superstar remains among
the top two, competition reduces to a single-superstar versus continuum-of-fringe problem.

21This contrasts with the entry condition for superstar firms in Assumption 2, highlighting the
different competitive layers in the model.
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Household’s Problem. A household maximizes utility with the Euler Equation:

Ċt

Ct

= rt − ρ. (16)

Along the balanced growth path, consumption and output grow at the same rate,

g = r − ρ, and the transversality condition holds.

Final and Intermediate Good Sectors. The final-good producer’s demand for the

continuum of intermediate goods on line j satisfies

pjt =
Yt
yjt
. (17)

This implies the demand functions for the superstar and the fringe firms:22

ysjt = p
ε

1−ε

jt p
1

ε−1

sjt Yt
(
χ(es)

) 1
1−ε and yfjt = p

ε
1−ε

jt p
1

ε−1

fjt Yt, (18)

where psjt and pfjt represent the product prices of the superstar and fringe firms,

respectively. Furthermore, pjt is the ideal price index for production line j, given

by the following equation:

pjt =
((
χ(es)

) −1
ε−1p

ε
ε−1

sjt + p
ε

ε−1

fjt

) ε−1
ε . (19)

Prices andMarket Share Function. The Cobb-Douglas production function for the

final good indicates equal expenditure shares across all production lines. Themar-

ket share of superstar firm s in industry j at time t is defined as

psjtysjt
pjtyjt

=
psjtysjt
Yt

= p
ε

1−ε

jt p
ε

ε−1

sjt χ(es)
1

1−ε ≡ ϕsjt. (20)

Because the sum of market shares equals one, the fringe firms’ share is 1 − ϕsjt.

The equilibrium price of the superstar firm on production line j at time t under

22See Appendix B.2 for the full derivations
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competition à la Bertrand 23 is then given by:24

psjt =
1− ε ϕsjt

(1− ϕsjt) ε
MCsjt, (21)

where MCsjt = wt ×
γs n

αs
st

qsjt
(
(1− ξ)est

)α denotes the marginal cost of the superstar

firm, and the fringe firms’ price is equal to their marginal cost25. The superstar

firm’s price equation demonstrates that its price is positively correlated with prod-

uct quality and embedded intangible level, while it is inversely related to the num-

ber of production lines operated. The price ratio of fringe firms to superstar fol-

lows
pfjt
psjt

=
(1− ϕsjt)ε

1− εϕijt

· λmj

(
(1− ξ)est

ns

)α

. (22)

Using the definition of market share in equation (20) and substituting the ideal

price index from equation (19), the market share of the superstar firm can be ex-

pressed in terms of relative prices as

ϕsjt =
1

1 +

(
1

(ξest)
β

1−ε

(
pfjt
pijt

) ε
ε−1

) . (23)

Replacing the relative price ratio with equation (22) shows that the superstar firm’s

market share depends on the quality gapmj, embedded intangible level est, and the

number of production lines ns it operates.

Profit, Markup and Labor Demand. The static operational profit of the superstar

firm is proportional to its market share and the size of the economy:

πsjt =
(1− ε)ϕsjt

1− εϕsjt

Yt, (24)

23For the Cournot Competition version, see Appendix B.4
24See Appendix B.3 for the full derivations
25Even though fringe firms lack independent pricing power, their presence creates a competitive

constraint that disciplines superstar firms. This competitive pressure forces superstars to engage
in limit pricing strategies, preventing them from fully exercising theirmarket power and extracting
monopolistic rents.

23



with the corresponding markup given by

σsjt =
1− εϕsjt

(1− ϕsjt) ε
. (25)

Both markup and profit increase with market share. However, because market

share on a given line is inversely related to the number of lines a firm operates,

a superstar’s markup and profit decrease, reflecting the natural consequence of

diminishing managerial productivity across production lines. The optimal labor

inputs for superstar and fringe firms, respectively, are26

lsjt =
ϕsjt

σsjt
ω−1
t , (26)

lfjt = (1− ϕsjt)ω
−1
t , (27)

where ωt =
wt

Yt
denotes the wage share of the economy.

The static equilibrium provides only an implicit solution. Nevertheless, the

model yields tractable dynamics because the equilibrium outcome for a superstar

firmdepends solely on itsmarket share, which is in turn determined by the quality

gap, the level of embedded intangibles, and the number of production lines oper-

ated. This tractability makes it possible to analyze firms’ endogenous investment

decisions in different types of intangibles and to study how these choices affect

firm dynamics.

Superstar Value Function. The superstar value function Vt(m, est, ns) relevant pay-

off depends on the quality gap vectorm = {mj}ns
j=1, embedded intangible level est,

and the number of production lines the superstar firm has ns. Superstar firm s

optimizes the flow rate of innovation of zIntsjt , zEx
sjt , and zEmb

stj to maximize the value

function given by equation 28.

The left-hand side of the value function shows the return on the value function

and its gain over time. The first line on the right-hand side represents the profit

26See equation (64) in the Appendix for details.
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of the superstar firm in production line j. The second line’s first term shows that,

with an innovation flow rate of pExs≥s′ z
Ex
sjt , firm s increases its production line from

ns to ns + 1, while the subsequent terms describe how the superstar increases the

transferable intangible gap by one rung with an innovation flow rate of zIntsjt. The

third line shows that firm s can increase its embedded intangible level one rung

across all production lines, and the next term shows that superstars in other in-

dustries can innovate and firm s exit production line j. The last three terms rep-

resent the cost of investment in improving existing production quality, improving

the embedded intangible level, and taking on a new production line, respectively.

Cost function details are described in equations (9).

rtVt(m, es, ns)− V̇t(m, es, ns) = max
zInt
sjt ,z

Ex
sjt ,z

Emb
sjt

ns∑
j=1

(
πjt(mj, es, ns)

+ pExs≥s′ z
Ex
sjt

(
Vt((mj, 1), es, ns + 1)− Vt(mj, es, ns)

)︸ ︷︷ ︸
Expansion with new production line

+ zIntsjt

(
Vt(mj + 1, es, ns)− Vt(mj, es, ns)

)︸ ︷︷ ︸
Internal innovation

+ zEmb
sjt

(
Vt(mj, es + 1, ns)− Vt(mj, es, ns)

)︸ ︷︷ ︸
Innovation on embedded

+ pExs′≥sZ
Ex
jt

[
Vt(mj, es, ns − 1)− Vt(mj, es, ns)

]︸ ︷︷ ︸
Superstars in oher industries innovation

+ Zf
jt

(
Vt(mj, es, ns − 1)− Vt(mj, es, ns)

)︸ ︷︷ ︸
Fringe firms’ innovation

−γInt
(
zIntsjt

)ϑInt

Yt − γEmb
(
zEmb
sjt

)ϑEmb

Yt

− γEx
(
zEx
sjt

)ϑEx

Yt

)
(28)

Additionally,ZEx
jt andZf

jt represent, respectively, aggregate external innovation by

superstar firms and aggregate innovation by fringe firms:

ZEx
jt =

∫ 1

0

zEx
sjt dj, Zf

jt =

∫ 1

0

zijt di.

The value function of fringe firms is not explicitly described here. This is pri-

marily because fringe firms may make a drastic innovation that displaces the in-

cumbent superstar in a given production line. Consequently, regardless of the in-

cumbent’s quality or embedded intangible gap, a successful innovation by a fringe

25



firm immediately makes it the superstar in that line, with quality and embedded

gap set to 1 and operating a single production line, V (1, 1, 1). Thus, the fringe firm’s

value function depends solely on the superstar’s value at V (1, 1, 1) and is constant

for each rung distance in state space. Section 7 discusses alternative frictions and

scenarios involving fringe firms.

In thebalancedgrowthpath, aggregate outputYt, consumptionCt, and the value

function V (m, k, n) all grow at the constant rate g. Defining the stationary value

function as v(m, k, n) = V (m, k, n)/Yt, the HJB equation for a superstar firm on

the balanced growth path is given by:

ρ v(m, k, n) = max
zInt
j ,zEx

j ,zEmb
J

n∑
j=1

(
πj(mj, k, n)

+ pExs≥s′ z
Ex
j

(
v((mj, 1), k, n+ 1)− v(mj, k, n)

)
+ zIntj

(
v(mj + 1, k, n)− v(mj, k, n)

)
+ zEmb

j

(
v(mj, k + 1, n)− v(mj, k, n)

)
+ pExs′≥sZ

Ex
j

[
v(mj, k, n− 1)− v(mj, k, n)

]
+ Zj

(
v(mj, k, n− 1)− v(mj, k, n)

)
− γInt

(
zIntj

)ϑInt

− γEmb
(
zEmb
j

)ϑEmb

− γEx
(
zEx
j

)ϑEx

)
(29)

Innovation Decisions. The first-order conditions of the superstar and fringe firms’

value functionsdetermine their optimal innovation intensities. Along thebalanced

growth path, the superstar firm’s optimal rates of internal, embedded, and exter-

nal innovations are given by

zIntsjt =

(
vt(mj + 1, es, ns)− vt(mj, es, ns)

γInt · ϑInt

) 1

ϑInt−1

, (30)

zEmb
sjt =

(
vt(mj, es + 1, ns)− vt(mj, es, ns)

γzEmb · ϑEmb

) 1

ϑEmb−1

, (31)

zExsjt =

(
vt(mj + 1, es, ns + 1)− vt(mj, es, ns)

γEx · ϑEx

) 1

ϑEx−1

. (32)
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For the fringe firm, the optimal flow rate of innovation is

zfjt =

(
vt(1, 1, 1)− vft

γf · ϑf

) 1

ϑf−1

(33)

where vft shows the value function of fringe firms. The above expressions indicate

that the optimal investment in each type of innovation depends on the marginal

increase in the firm value function relative to the convex cost parameters (γ, ϑ).

Distribution Evolution. For notational simplicity, I suppress explicit indices for

firm s, industry j, and describe the evolution of the distribution based on state

variables for quality gap (m), embedded intangible level (k), and number of pro-

duction lines (n).

µt(m, k, n) = zIntt (m− 1, k, n) · µt(m− 1, k, n) + zEmb
t (m, k − 1, n) · µt(m, k − 1, n)

+ pExk≥k′ z
Ex
t (m, k, n− 1) · µt(m, k, n− 1)

+ zIntt (m− 1, k − 1, n) · zEmb
t (m− 1, k − 1, n) · µt(m− 1, k − 1, n)

+ zIntt (m− 1, k, n− 1) · pExk≥k′ z
Ex
t (m− 1, k, n− 1) · µt(m− 1, k, n− 1)

+ zEmb
t (m, k − 1, n− 1) · pExk≥k′ z

Ex
t (m, k − 1, n− 1) · µt(m, k − 1, n− 1)

+ zIntt (m− 1, k − 1, n− 1) · zEmb
t (m− 1, k − 1, n− 1)

· pExk≥k′ z
Ex
t (m− 1, k − 1, n− 1) · µt(m− 1, k − 1, n− 1)

− zIntt (m, k, n) · µt(m, k, n)− zEmb
t (m, k, n) · µt(m, k, n)

− pExk≥k′ z
Ex
t (m, k, n) · µt(m, k, n)− Zf

t (m, k, n) · µt(m, k, n)− pExk′≥k Z
Ex
t · µt(m, k, n)

(34)

The law of motion of the distribution is driven by net flows into and out of the

cohort in state (m, k, n): inflows consist of firms that, following successful inno-

vation, enter (m, k, n); outflows consist of firms that leave (m, k, n) as a result of

their own innovation or innovation elsewhere. Concretely, the first three terms on

the right-hand side capture inflows from predecessor states that are one step be-

hind in a single dimension. The next three terms capture inflows from states that

are one step behind in two dimensions (pairwise lags), while the subsequent term
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captures inflows from firms that are simultaneously one step behind in all three

dimensions. The following group of terms describes outflows from state (m, k, n)

owing to the superstar firm’s own internal, embedded, or external innovation. Fi-

nally, the last two terms account for outflows induced by innovation by fringefirms

or by leaders in other industries.

Distribution at Boundaries. The state space is bounded above and below, so spe-

cific conditions apply at its edges. If any state attains an upper bound, m = m̄,

k = k̄, or n = n̄ (including any joint combination), the outflow resulting from

a successful innovation that would advance the firm further in that dimension is

zero. This reflects the assumption that a firm’s lead in any dimension cannot ex-

ceed a technologically feasible maximum. Conversely, if any state attains a lower

bound, m = 1, k = 1, or n = 1 (or any joint combination), the outflow to a state

with a lower value in that dimension is zero. This condition functions as an absorb-

ing barrier, preventing a firm’s position from deteriorating below a fundamental

minimum.

Aggregate Variables. The joint distribution of (m, k, n) satisfies

m̄∑
m=1

k̄∑
k=1

n̄∑
n=1

µt(m, k, n) = 1. (35)

The labor market clears:

1 =

∫ 1

0

(
lsjt + lfjt

)
dj, (36)

and, using (26), (27) and (36), the normalized wage is

ωt =
m̄∑

m=1

k̄∑
k=1

n̄∑
n=1

(
ϕt(m,k,n)
σt(m,k,n)

+ 1− ϕt(m, k, n)
)
µt(m, k, n). (37)

Combining intermediate good sectors output (4), (7), (8) with the labor demand of
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superstar (26) and fringe firms (27) produces aggregate output

Yt = Qt ω
−1
t exp

(∑m̄
m=1

∑k̄
k=1

∑n̄
n=1 ln

[(
ξθkt

)β(((1− ξ)θkt)α

γnαs
t

ϕt(m, k, n)

σt(m, k, n)

)ε

+
(
λ−mt(1− ϕt(m, k, n))

)ε]1
ε

︸ ︷︷ ︸
≡Rt(m,k,n)

µt(m, k, n)

)
.

(38)

where

Qt = exp
(∫ 1

0

ln qsjt dj
)

The growth rate of the economy is27

gt = −gω,t + gQ,t + gR,t. (39)

In a state of balanced growth, the economy grows at rate g, which is given by

g = lnλ
m̄∑

m=1

k̄∑
k=1

n̄∑
n=1

(
zInt(m, k, n) + pExk≥k′ z

Ex(m, k, n) + Zf (m, k, n)
)
µ(m, k, n).

(40)

Finally, the resource constraint satisfies

Yt = Ct +

∫ 1

0

(
I Intjt + IEmb

jt + IExjt

)
dj +

∫ 1

0

Ifjt dj, (41)

with

Ifjt =

∫
Fj

Iijt di.

Equilibrium Definition. The Markov Perfect equilibrium of the economy consists

of anallocation {Ct, Yt, ysjt, yfjt}, prices {rt, wt, psjt, pfjt}, andpolicies {zInt, zEmb, zEx,

zf , z
Ent, lsjt, lfjt}, such that the final goods sector maximizes profit given prices.

The superstar firm maximizes profit given the quality gap, embedded level gap,

and number of production lines it has, (m, k, n), while the fringe firm maximizes

profit given prices. The superstar firm chooses the values of internal zInt (30), ex-

ternal zEx (32), and embedded innovation zEmb (30) whereas the fringe firm se-

27For details of the growth-rate calculation, see Appendix B.5.
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lects its optimal innovation value zf (33). The real wage clears the labor market,

aggregate consumption and output grow at the same rate, equation (40), and the

resource constraint satisfies equation (41).

4 Quantitative Analysis

In this section, I present calibration parameters to illustrate how the model re-

sponds to variations in the investment ratio of transferable to embedded intan-

gibles, and to changes in productivity, growth rate, and markup. Section 5 then

examines counterfactual scenarios, first shutting down the effects of embedded

intangibles and then considering the span-of-control problem, to assess their im-

pact on the economy. Section 6 subsequently discusses misallocation and the as-

sociated policy implications.

4.1 Empirical counterpart

For each production line n, I aggregate the joint distribution over the quality gap

and the embedded-intangible level, described as

µ(n) =
∑
m

∑
k

µ(m, k, n).

Fluidity at production line n is measured as the flow rate of incumbent replace-

ment. It is given by28

Fluidity(n) =

∑
m

∑
k′>k

(
ZEx(m, k′, n)

)
µ(m, k, n) +

∑
m

∑
k

Zf (m, k, n)µ(m, k, n)

µ(n)
.

(42)
28The first term in the numerator captures external innovations (from higher embedded levels

k′ > k) that displace incumbents in (m, k, n); the second term captures innovation coming from
the fringe.
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The average markup and the investment ratio at production line n are

σ(n) =

∑
m

∑
k

1− ε ϕ(m, k, n)
(1− ϕ(m, k, n)) ε

µ(m, k, n)

µ(n)
, (43)

IT

IEmb
(n) =

∑
m

∑
k

I Int(m, k, n) + IEx(m, k, n) + If (m, k, n)

IEmb(m, k, n)
µ(m, k, n)

µ(n)
. (44)

The growth and productivity by production line are

g(n) =

lnλ
∑
m

∑
k

(
zInt(m, k, n) + pExk≥k′ z

Ex(m, k, n) + Zf (m, k, n)
)
µ(m, k, n)

µ(n)
,

(45)

Q(n) = e g(n). (46)

4.2 Calibration andModel Performance

The model is disciplined by 36 empirical moments, comprising 18 targeted and 18

untargetedmoments. The calibration relies on 17 parameters, ofwhich 4 are set ex-

ternally. The time-discount rate is fixed at ρ = 0.05, and the quality-improvement

step size is set to λ = 1.10 following Akcigit and Ates (2023). The cost scale and cur-

vature of embedded intangibles are taken from Cavenaile, Celik, Roldan-Blanco,

and Tian (2025), with γemb = 0.0664 and ϑemb = 3.3646. The remaining 13 parame-

ters,

{ε, θ, αs, α, γ, β, ξ, γInt, γEx, γf , ϑInt, ϑEx, ϑf},

are estimated internally. These parameters govern the key structural features of

the model. All parameter values are reported in Table 2.29

Figure 5 reports the targeted moments used in the simulated method of mo-

ments (SMM) estimation, focusing onmarkup dynamics, the ratio of transferable-

to-embedded intangible investment, and the distribution of firms across produc-

29Appendix C.2 provides details of the solution algorithmand the simulatedmethod ofmoments.
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Table 2. Parameter Values

Parameter Description Value

———————External Calibration———————

ρ Discount rate 0.05
λ Transferable innovation step size 1.0100
γEmb Cost scale of embedded innovation 0.0664
ϑEmb Curvature of embedded innovation 3.3646

———————Internal Calibration———————

ε CES parameter 0.7747
θ Embedded innovation step size 1.0100
αs Curvature of span of control 0.5876
α Curvature of managerial productivity 0.5980
γ Scale of managerial productivity 0.4001
β Curvature of brand value 0.0661
ξ Share of brand value on embedded intangible 0.4351

γInt Cost scale of internal innovation 2.8571
γEx Cost scale of horizontal innovation 0.4001
γf Cost scale of fringe 5.1777
ϑInt Curvature of internal innovation 15.3154
ϑEx Curvature of horizontal innovation 5.4183
ϑf Curvature of fringe 7.9917

Note: The upper limit for the number of production lines n̄ is set to 6, and the upper bounds for m̄ and k̄ are set to 9.

tion lines. Overall, the model reproduces the principal empirical patterns: it cap-

tures both the direction and magnitude of the observed trends. Panel (A) shows

that themodel tracks the decline inmarkups as the number of production lines in-

creases, althoughmodest deviations remainat the extremesof thedistribution—the

model understates markups for single-line firms and slightly overstates them for

firmsoperatingmany lines. Panel (B) illustrates that the transferable-to-embedded

investment ratio iswellmatched across production-line categories, with simulated

moments closely following the empirical shape. Panel (C) demonstrates a strong

fit for the firm distribution, in which simulated shares align closely with observed

data. Taken together, these results suggest that the model is well disciplined by

the targetedmoments and captures keymargins of firm behavior, with onlyminor

discrepancies concentrated in the tails of the markup profile.

Further, Figure C1 evaluates the model’s performance on untargeted moments
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not used in the SMM, including productivity, aggregate growth rates, andmeasures

of fluidity across production-line categories. Panel (A) indicates that the model

captures the declining pattern of productivity as production-line count rises, with

only small departures from the data at intermediate values. Panel (B) reveals sys-

tematic differences in the aggregate growth rate: themodel tends to underestimate

actual growth for firms with one to three production lines and slightly overshoots

growth at the upper end of the distribution. These discrepancies imply that, while

the model reproduces the overall downward growth trend, it misses some non-

monotonic features present in the data. Panel (C) shows that the model generally

undershoots empirical fluidity measures across most production-line categories,

with the notable exception of the sixth line, where simulated fluidity converges

more closely to the observed value.
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(A)Markup (B) Transferable over Embedded

(C) Distribution

Figure 5. Targeted Moments: Markup, Investment Ratio, and Fluidity by Production Lines

Note: The orange line represents the dataset values, while the blue line shows the model simulation results along the bal-
anced growth path. The horizontal axis corresponds to the production line dimension.

4.3 Demand and Supply Effect of Embedded Intangibles

In the model, parameter ξ governs the share of brand value (demand side), while

1 − ξ corresponds to organizational capital (supply side). A higher ξ implies that

brandvaluedominates (green line), whereas a lower ξ (blue line) indicates a greater

role for organizational capital. Figure 6 shows that firms derive greater benefits

from organizational capital than from brand value when expanding their scope.

Theprimary reason for this is that organizational capital candirectly offset someof

the managerial difficulties associated with expansion, thereby promoting growth

across production lines.
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(A) Distribution (B)Markup

(C) Growth Rate (D) Fluidity

Figure 6. Impact of ξ on Distribution, Markup, Growth, and Fluidity

Note: The green line represents the internally calibrated optimal value of ξ, while the blue line shows an upward shift in ξ
and the orange line shows a downward shift. The horizontal axis corresponds to the production line dimension.

In contrast, brandvaluedoesnot provide this offsetting capability. Consequently,

when the share of brand value (ξ) is high, firms tend to stop expanding and pre-

dominantly operate a single production line. The associated decrease in markups

may seem counterintuitive at first. However, this decline is primarily driven by

reductions in organizational capital, which diminishes managerial productivity

gains. This negative supply-side effect outweighs any positive demand-side effects

from brand value. 30Moreover, when ξ is high, superstar firms have no incentive

30In the calibration, the curvature of brand value is relatively low comparedwith that ofmanage-
rial productivity, which causes supply-side effects to dominate demand-side effects. The parameter
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to expand horizontally; therefore, they concentrate on a single line. This accumu-

lation creates a significant barrier to entry, as new entrants must match this high

level of intangibles to compete successfully even on a single line. As a result, both

market fluidity and the aggregate growth rate decrease. All these effects are re-

versed when parameter ξ is lower. In this case, the larger share of organizational

capital provides firms a greater advantage, facilitating expansion and improving

the overall dynamics of creative destruction and growth. 31

5 Counterfactual Analysis

In this section, I conduct a series of counterfactual analyses to isolate the mecha-

nisms driving the results. First, I deactivate the span of control constraint. Second,

I shut down the accumulation of embedded intangibles. Finally, I shut down both

mechanisms jointly. This sequence allows me to quantify how each feature—and

their interaction—affects key outcomes: markups, the firm size distribution, mar-

ket fluidity, and the aggregate growth rate of the economy.

Shutting Down the Span of Control Constraint. To evaluate the impact of the span-

of-control constraint, I conduct a counterfactual analysis by setting the parameter

αs to zero32. This removes the mechanism that causes managerial productivity to

declinewith the number of production lines. The results are presented in Figure 7,

where the counterfactual scenario is plotted in green and the baseline calibration

in red.

The counterfactual generates a rightward shift in the firm size distribution, with

firms operating more product lines relative to the baseline. This expansion fol-

γ, which captures the benefit scale ofmanagerial quality, further reinforces this dominance by am-
plifying supply-side responses relative to demand.

31This increase occurs relative to the composition of brand value versus organizational capital.
By contrast, Section 6 shows that increasing embedded intangibles leads to substantial inefficiency,
regardless of brand value or organizational capital.

32The parameter αs is highly sensitive; setting it directly to zero prevents the model from con-
verging and producing results. Therefore, when αs = 0, k̄ is set to 6 rather than 9 in the baseline
calibration.
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lows directly from the removal of span-of-control constraints: in the absence of

diminishing managerial returns, firms can add product lines without increasing

marginal costs. As a result, markups now increase with the number of product

lines, reversing the baseline pattern inwhich diversification reducedmarkups due

to rising marginal costs from span-of-control frictions. Under Bertrand competi-

tion, a firm’s markup in each product line is constrained by both its own marginal

cost and the marginal costs of its competitors. In the baseline, span-of-control

limitations increase the firm’s marginal costs as it diversifies, reducing markups.

Eliminating this channel keeps marginal costs low across all lines, allowing firms

to sustain higher markups as they expand.

In contrast, relaxation of managerial constraints reduces market fluidity. As

firms grow larger andmanagemore product lines, they face stronger incentives to

invest in embedded intangibles due to increasing returns to scale. The resulting

accumulation of intangible capital raises entry barriers and lowers overall market

fluidity. Despite the decline inmarket fluidity, the aggregate growth rate rises. This

counterintuitive result stems from a shift in the source of growth: while creative

destruction diminishes, innovation by incumbent superstar firms increases. Re-

laxation of span-of-control constraints directly benefitsmultiproduct firms, which

were previously the most constrained. Consequently, their enhanced ability to ex-

pand and innovate boosts firm-level growth rates, increasing aggregate growth rel-

ative to the baseline.

ShuttingDownEmbedded Intangibles. Next, I examine the effects of shuttingdown

embedded intangibles by setting k̄ = 1. In this counterfactual, superstar firms can

no longer benefit from accumulating brand value or organizational capital.
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(A) Distribution (B) Markup

(C) Growth Rate (D) Fluidity

Figure 7. Counterfactual Analysis Under Different Cases

Note: The red line shows the baseline calibration; the green line shows the case with span-of-control constraint shut down
(αs = 0); the blue line shows the case with embedded intangibles shut down (k̄ = 1); and the orange line shows the case
with both the span-of-control constraint and embedded intangibles shut down (αs = 0 and k̄ = 1).

As shown in Figure 7 (blue line), this leads to a leftward shift in the firm size

distribution, which becomes concentrated on a single production line. The mech-

anism driving this shift is that expanding to additional lines remains costly due

to the persistent span-of-control constraint, and firms can no longer offset these
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costs by improving managerial quality through embedded intangibles. Markups

also decline, as firms lose the pricing advantage provided by embedded intangi-

bles relative to rivals. However, this reduction is modest, indicating that, while

embedded intangibles contribute to markup growth, their overall quantitative im-

pact is limited.

The aggregate growth rate rises, primarily driven by a significant increase in

market fluidity. Eliminating the accumulation of embedded intangibles removes

entry barriers for other superstar firms, allowing them to enter production lines

more easily without facing entrenched incumbents. This enhanced entry raises

the rate of creative destruction, and the resulting higher market fluidity directly

contributes to the increase in aggregate growth. These results highlight the im-

portant role of embedded intangibles in shaping market dynamics and economic

growth.

Both the removal of span-of-control constraints and the elimination of embed-

ded intangibles raise the aggregate growth rate; however, the sources and magni-

tudes of these increases differ. In the span-of-control counterfactual, the growth

boost is driven primarily by incumbents. In contrast, when embedded intangibles

are eliminated, the growth increase is driven by innovations from other superstar

firms on incumbent lines.

Shutting Down Both of Mechanisms. Shutting down both mechanisms simulta-

neously allows multiproduct firms to expand horizontally, which shifts the firm

size distribution rightward. However, the magnitude of this shift is significantly

limited compared to the scenario in which only the span-of-control constraint is

removed. The primary reason is that, in this combined counterfactual, superstar

firms can no longer leverage the increasing returns to scale afforded by embedded

intangibles to facilitate their expansion. For the same reason, markups increase

with the number of production lines, but this increase is more muted than in the

counterfactual involving only the span-of-control constraint. Without embedded

intangibles, firms lack one of the tools to amplify their pricing power as they grow.
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On the other hand, market fluidity and the aggregate growth rate are higher

in this combined counterfactual than in either single shutdown case. This ele-

vated growth stems from a dual source: intensified innovation by incumbents and

heightened innovation by potential superstar firms in other industries, who find

it easier to enter the market and to contest existing production lines due to lower

barriers arising from the absence of embedded intangibles.

To summarize, all three counterfactuals demonstrate that both span-of-control

constraints and embedded intangibles are necessary to replicate the empirical pat-

terns shown in Section 2.3. Omitting either component results in deviations from

the observed facts: markups no longer decrease with scope, firm size distribu-

tion becomes concentrated on a single production line, and the declining trends

in growth and market fluidity across production lines are not reproduced. There-

fore, these two mechanisms together provide the minimal conditions required to

capture the key empirical regularities.

6 Policy Implication andMisallocation

This section first quantifies the effects of resource misallocation on aggregate out-

put and economic growth. Based on these insights, I analyze policy tools to exam-

ine how these frictions affect welfare and how they can be mitigated.

6.1 Misallocation

Misallocation in themodel operates through two distinct channels. The first stems

from markup dispersion across firms. The second arises because a potential su-

perstar entrant cannot capture a market unless its embedded intangible level is at

least as high as the incumbent’s, creating a barrier to entry. To quantify the effect

of markup dispersion, I adapt the method by Peters (2020) and decompose aggre-

gate output Y into four components: the contribution from quality improvements

(Q), the contribution from embedded intangible capital (E), themisallocation due

40



to markup dispersion (M ), and a leftover term (S)33,

Yt = Qt × Et ×Mt × St (47)

where Et = exp

(∑
m

∑
k

∑
n

1

ε
ln
[
(ξθ)k×β

(
(1− ξ)θ)k×α

)ε]
µ(m, k, n)

)
,

Mt =
exp

(∑
m

∑
k

∑
n ln

[
ϕ(m,k,n)
σ(m,k,n)

+ (1− ϕ(m, k, n)
]
µ(m, k, n)

)
∑

m

∑
k

∑
n

(
ϕ(m,k,n)
σ(m,k,n)

+ (1− ϕ(m, k, n)
)
µ(m, k, n)

, and

St = exp

(∑
m

∑
k

∑
n

ln

[( 1
γnαs

ϕ(m,k,n)
σ(m,k,n)

)ε
+ 1

(ξθk)β

(
λ−m

((1−ξ)θk)α
(1− ϕ(m, k, n))

)ε
(

ϕ(m,k,n)
σ(m,k,n)

+ (1− ϕ(m, k, n))
)ε

] 1
ε

µ(m, k, n)

)
.

DefiningM as the ratio of the geometric mean to the arithmetic mean, the key

misallocation term endogenously evolves with markup dispersion. 34 The results,

presented in Table 3, show that although there is substantial markup dispersion

across production lines, the aggregate dispersion effect on misallocation is rela-

tively small. As a result, the misallocation arising purely frommarkup dispersion

is minimal, accounting for only about 0.5% of output.

To analyze the second type of misallocation, I conduct a counterfactual experi-

ment that eliminates entry barriers. In this scenario, any superstar firm that suc-

cessfully makes a horizontal innovation can immediately enter a new production

line andbecome the incumbentwithout facing the embedded intangible constraint.

The results are striking: aggregate output more than triples. This dramatic gain is

primarily driven by a large increase in the quality improvement component (Q).

The contribution from embedded intangibles (E) slightly decreases, a likely result

of the policy boosting investment in transferable technology (horizontal innova-

33For details see Appendix B.6
34The markup dispersion termM differs slightly from Peters (2020). Even if markups were con-

stant across superstar firms, dispersion between superstars and fringe firms would still exist, gov-
erned by the market share ϕ of superstar firms.
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tion) and making embedded investment less critical for market entry. Further-

more, the markup dispersion term (M ) approaches one, and the residual term (S)

increases. These results suggest that policy attention should focus on lowering en-

try barriers. Enabling frictionless reallocation following horizontal innovations

substantially raises aggregate output, primarily through higher quality growth,

and therefore can materially reduce misallocation in the economy.

Table 3. Misallocation

Y Q E M S g

Base Scenario 2.512 1.923 0.691 0.995 1.900 0.007
Shut Down Entry Barrier 7.148 4.588 0.673 1.000 2.314 0.017

6.2 Policy Implication

Based on the frictions discussed in Section 6.1, I analyze three distinct tax regimes.

First, I implement a size-dependent tax on profit starting at 10% and gradually

increasing to 12.5%. Second, I consider a flat tax of 11.3% specifically on invest-

ments in embedded intangibles and horizontal expansion. Third, I examine the

joint implementation of both tax policies simultaneously. In all cases, the govern-

ment collects the tax revenue and redistributes it to households through lump-sum

transfers. To evaluate thewelfare effects of thesepolicies, I employ a consumption-

equivalent measure35 This metric quantifies the permanent percentage change in

consumption that would make households indifferent between the baseline eco-

nomic path and the policy-induced path. The welfare results show substantial

variation across policies. The size-dependent tax generates a welfare increase of

10.915%, accompanied by corresponding rises in consumption and output. In con-

trast, taxes targeting embedded and expansion investments yield more modest

gains of 1.745% and 2.176%, respectively. The size-dependent tax’s superior per-

formance operates through twomain channels. First, it reducesmarket segmenta-

tion bymaking firms less exposed to diminishing returns frommanagerial span of

35See Appendix B.7 for details on the consumption-equivalence welfare calculation.
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control. Second, it attenuates incentives to over-invest in embedded intangibles by

reducing cross-product synergies, ultimately lowering barriers to entry. The joint

implementation of all taxes demonstrates significant positive synergies. The total

welfare increase of 16.237% exceeds the sum of individual contributions, indicat-

ing that the policies work together to mitigate economic distortions and enhance

aggregate efficiency relative to the baseline economy.

Table 4. Welfare and Output Effects at Varying Tax Levels

Tax Type

Size-Dependent Tax Embedded Inv Tax Expanding Inv Tax All Three
[0.1, 0.105, 0.11, 0.115, 0.12, 0.125] 0.113 0.113 Combined

∆Welfare (%) 10.915 1.745 2.176 16.237

∆C (%) 10.542 1.602 2.093 15.549

∆Y (%) 8.517 1.566 2.084 13.255

7 Model Extension and Discussion

Fringe Firm Value Function - Extension. There are several ways to introduce fric-

tions into the value function of fringe firms. I consider two examples. (i) The prob-

ability of drastic innovation may decrease with the embedded intangible gap: as

a superstar firm increases its brand value and organizational capital, it becomes

more difficult for fringe firms to innovate successfully. In this case, entry barriers

become sharper than in the baseline, intensifying downward pressure on growth

and fluidity across production lines. (ii) Alternatively, an additional cost param-

eter η ∈ (0, 1) can be introduced, such that a larger gap in quality or embedded

intangibles reduces the benefit of becoming a superstar. When a superstar firm

expands its number of production lines, the span-of-control constraint reduces its

market share in each line and thereby encourages fringe entry. Consequently, the

second friction has a smoother effect on firmdynamics than the first scenario. The

formal expression for the value function of a fringe firm is given by:
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rtV
f
t (mj, es, ns)− V̇ f

t (mj, es, ns) = max
zfjt

{ Prob of Dras. Inv.︷︸︸︷
pEx
s zfjt

[
Vt(1, 1, 1)− V f

t (mj, es, ns)−
Diff of Dras. Inv.︷ ︸︸ ︷
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]︸ ︷︷ ︸
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+ pExs≥s′ z
Ex
sjt

[
V f
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t (mj, es, ns)
]︸ ︷︷ ︸
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+ zIntsjt

[
V f
t (mj + 1, es, ns)− V f

t (mj, es, ns)
]︸ ︷︷ ︸

superstar innovation on transferable

+ zEmbsjt

[
V f
t (mj, es + 1, ns)− Vt(mj, es, ns)
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superstar innovation on embedded

+ pExs′≥sZ
Ex
j Es′≥s

[
V f
t (1, es′ , ns′)− V f

t (mj, es, ns)
]

︸ ︷︷ ︸
Superstar in other industries innovation

− γf
(
zFri
sjt

)ϑf

Yt

}
.

Fringe firms produce at a price equal to marginal cost; therefore, unlike su-

perstar firms, they cannot generate profit. The right-hand side of the equation

represents a fringe firm with a flow rate of pEx
s zfjt that successfully innovates and

becomes a new superstar with one gap level. Here, pEx
s captures the first type of

friction: as the embedded intangible level increases, the probability of success-

ful innovation by a fringe firm decreases. By contrast, the red-highlighted addi-

tional term represents the second type of friction, in which the drastic innovation

cost parameter η reduces the value of fringe firm innovation. The first term in the

second line represents the superstar firm expanding its production line, which in-

creases the marginal cost of each existing production line; the fringe firm’s value

function also increases. The next two terms represent the superstar firm improv-

ing the productivity gap on its existing production line and increasing its level of

embedded intangible assets. The third line of the second term indicates that su-

perstars in other industries successfully innovate. The last term captures the cost

of innovation required to become a new superstar.

8 Conclusion

This paper proposes that, as firms diversify across segments, their markups, pro-

ductivity, and their ratio of transferable to firm-specific intangible investment de-

cline. To explain this, I develop a unified endogenous growth model in which the

strategic allocation of innovative effort emerges directly fromfirms’ expansion de-
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cisions. Horizontal expansion introduces span-of-control frictions, which weaken

managerial attention and reduce per-segment profitability. In response, multi-

segment firms do not simply innovate less; they innovate differently. They strate-

gically reallocate investment away from transferable intangibles, which generate

social spillovers and fuel creative destruction, and toward embedded intangibles,

which provide private firm-specific advantages. This shift allows firms to exploit

cross-product synergies and higher entry barriers, thereby privatizing returns at a

significant social cost: it reducesmarket fluidity anddepresses the long-run engine

of growth, which is quality-improving innovation.

Quantitative analysis reveals that this mechanism constitutes a major source of

economic misallocation. Crucially, I find that the entry barriers created by em-

bedded intangibles are far more consequential for welfare than pure markup dis-

persion. This finding underscores the need for policies to address this specific

distortion. Counterfactual experiments suggest that well-designed interventions,

such as a size-dependent tax on profits or a targeted tax on embedded investment,

can effectively rebalance private incentives with social goals. By discouraging ex-

cessive, friction-inducing diversification and encouraging R&D, such policies can

help realign the trade-off between diversification and growth to foster a more dy-

namic and productive economy.

This framework establishes a foundation for several routes of future research.

First, the evolution of firm scope over the lifecycle would permit a richer analy-

sis of dynamic market segmentation strategies and their long-term consequences

for the direction and pace of innovation. Second, a formal welfare analysis com-

paring a decentralized equilibrium to a social planner’s solution is a critical next

step. Such a comparison would allow for the precise derivation of optimal policy

instruments to counteract the inefficiencies and knowledge-spillover frictions en-

gendered by diversification. Third, themodel generates testable empirical predic-

tions regarding how firms endogenously respond to span-of-control constraints.

Micro-econometric work could investigate the relative efficacy of adaptive strate-
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gies such as organizational redesign, investments in information technology, and

human capital accumulation. Finally, a critical question is whether embedded in-

tangible capital slows idea diffusion by limiting spillovers. Answering this with

richer microdata and dynamic structural methods will be key to guiding policies

that balance the private gains from diversification with the broader social returns

to innovation and competition.
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Appendices

A Empirical Appendix

A.1 Dataset andMeasurement Details

Table A1. Example Firms Segment in Compustat Segment Dataset

Company Segments

TOYOTAMOTOR CORP
Financial Services
Automotive
All Other

PROCTER & GAMBLE CO

Health Care
Grooming
Corporate
Beauty
Baby, Feminine & Family Care
Fabric & Home Care

TESLA INC Energy Generation & Storage
Automotive

Table A2. Example Firm Segment in HP Firm Scope Dataset

Company Segments

TESLA INC

Batteries
Automotive (Brakes, Trim, Axle, Engines, Chassis)
Automotive Safety (Airbags)
Car Dealerships
Energy / Cogeneration
Utilities / Electric Power
Smart Metering / Grid Tech
Power Electronics / Voltage
Solar / Renewable Energy
Hardware & Software Solutions
Ticketing / Scanning (Software/Systems)

Note: data source, Hoberg and Phillips, 2025

Measurement Details. The sample covers 1990–2019. The finance and utilities sec-

tors are excluded from all analyses, and estimations are conducted separately for
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each 2-digit NAICS industry. I employ the approach of Gandhi, Navarro, and Rivers

(2020)(GNR) to estimate firm-level total factor productivity. The gross-output pro-

duction function is specified as

Yit = F (Lit, Kit,Mit) + ωit + ϵit, (48)

where Yit is (log) gross output (sale), Lit is labor (emp),Kit is capital (ppegt), and

Mit denotes flexible (intermediate) inputs (cogs). The term ωit denotes an unob-

served firm productivity shock that is observed by firms when choosing inputs,

and ϵit is an iid error term.

A central identification challenge is that the presence of flexible inputs creates a

non-identification problem for nonparametric gross-output production functions

when standardproxy-variable approaches are applied, becauseflexible-input choices

reflect contemporaneous productivity. GNR resolve this by exploiting a transfor-

mation of the firm’s short-run first-order condition for intermediates to obtain

cross-equation restrictions that isolate theflexible-input contributionand thusper-

mit nonparametric identification of the production function and input elasticities.

Empirical proxy (material share): Define the intermediate share

sit ≡
COGSit

Salesit

,

with both numerator and denominator deflated by cpi. GNR show that sit is the

empiricalmoment implied by the transformed FOC and can be used to recover the

flexible-input elasticity nonparametrically36.

First stage (nonparametric share regression): I apply the GNR transformation

of the FOC for intermediates and estimate the resulting relation between sit and

the observable state variables nonparametrically. This yields an observation-level

36Estimating using methodology by Ackerberg, Caves, and Frazer (2015) and Levinsohn and
Petrin (2003) methodology, I replace the proxy variable "revenue share" with "capital expenditure"
(capx).
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flexible-input elasticity β̂m,it

Second stage (fixed-input elasticities and TFP): With β̂m,it in hand, the second

stage identifies the remaining input elasticities β̂l, β̂k using the cross-equation re-

strictions and standard Markov term ωit = g(ωit−1) + ξit. Construct firm TFP as the

residual

ω̂it = Yit − β̂lLit − β̂kKit − β̂m,itMit.

A.2 Additional Figures and Empirical Results

(A)Markup

1.2

1.4

1.6

1−3 4−6 5−9 10−15 16+
Number of Production Lines

(B) Productivity

1.6

1.8

2.0

2.2

1−3 4−6 5−9 10−15 16+
Number of Production Lines

(C) Transferable over Embedded

1.00

1.25

1.50

1.75

1−3 4−6 5−9 10−15 16+
Number of Production Lines

(D) Fluidity

3

4

5

6

7

1−3 4−6 5−9 10−15 16+
Number of Production Lines

Figure A1. Markup, Productivity, Investment Ratio and Fluidity with HP Firm Scope
Dataset

Note: The sample excludes utilities and finance sectors, and firms with missing or non-positive
R&Dand SG&A.Markups, the investment ratio, andmarket fluidity aremeasured for the 2019 cross-
section. All variables are winsorized at the 95th percentile. Firms are grouped by their number of
production lines (1–3, 4–6, 7–9, 10–15, and 16+). The plotted values are the averages within each bin.
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(A) Investment Ratio
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Figure A2. Innovation Shocks to Low and High Scope Firms

Note: The sample excludes utilities and finance sectors, as well as firms with missing or non-
positive R&D and SG&A. All variables are in logarithmic form and cover the period 1990–2019.High
scope is defined as observations at or above the median, while low scope refers to observations
below the median.
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(A) Investment Ratio
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Figure A3. US Firms; Markup, Productivity, Investment Ratio and Fluidity by Production
Lines

Note: The sample excludes utilities and finance sectors, as well as firms with missing or non-
positive R&D and SG&A. Variables are measured for the 2019 cross-section and winsorized at the
95th percentile.
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(A) Firm Age Quintile
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(B) Firm Size Quintile
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Figure A4. Firm Age and Size

Note: The sample excludes utilities and finance sectors, as well as firms with missing or non-
positive R&D and SG&A. Markups, the investment ratio, and market fluidity are measured for the
2019 cross-section. All variables arewinsorized at the 95thpercentile. Firmsize ismeasuredby total
employment (EMP), and firm age ismeasured by years since IPO. Firms are grouped into quantiles;
the plotted values represent the average within each quantile.
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(A) Productivity LP
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Figure A5. Productivity Measures with Different Methods
Note: The sample excludes utilities and finance sectors, as well as firms with missing or non-
positive R&D and SG&A. All variables are winsorized at the 95th percentile. Productivities aremea-
sured for the 2019 cross-section. LP: Levinsohn and Petrin (2003); ACF: Ackerberg, Caves, and
Frazer (2015); GNR: Gandhi, Navarro, and Rivers (2020)

Table A3. Summary Statistics

Variable Summary Statistics

Mean SD Median P10 P25 P75 P90

Investment ratio 1.300 1.310 0.873 0.129 0.317 1.760 3.290
R&D to Sales ratio 0.143 0.187 0.0715 0.006 93 0.0202 0.185 0.364
Markup 1.630 0.830 1.320 0.870 1.020 1.990 3.430
Productivity 1.910 0.972 1.730 0.754 1.010 2.770 3.300
Log sales 13.100 2.570 13.200 9.840 11.400 14.900 16.400
Log total assets 13.600 2.520 13.600 10.300 11.800 15.300 16.800
Log employees 7.490 2.310 7.530 4.380 5.820 9.130 10.500

Number of unique firms 1,711

This table reports summary statistics for firm characteristics and themain variables used in the paper. The investment ratio
of Transferable over Embedded is defined in Section 2. Investment ratio, R&D-to-sales, and productivity are winsorized at
the 95th percentile, whilemarkup iswinsorized at the 90th percentile. All other variables are presented in logarithmic form.
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Figure A6. Density Comparison Compustat and Compustat Merged

Note: Both datasets exclude utilities and finance sectors, and all variables are measured for the 2019 cross-section. The
Compustat merged dataset further excludes firms with missing or non-positive R&D, SG&A, and segment information.
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Table A4. Regression Results: Compustat Dataset
Panel A:Markup and Productivity

Pooled OLS Two-way FE

(2) (3) (6) (7)
Markup Productivity Markup Productivity

Production Lines −0.099∗∗∗ −0.056∗∗∗ −0.111∗∗∗ −0.032∗∗∗
(0.007) (0.010) (0.008) (0.004)

Num. Obs. 40,517 40,517 40,517 40,517
Adj. R2 0.042 0.025 0.111 0.808
Covariates Yes Yes Yes Yes
FE: Year No No Yes Yes
FE: Industry No No Yes Yes

Panel B: Investment Ratio and Fluidity

Pooled OLS Two-way FE

(1) (4) (5) (8)
Transferable/Embedded Fludity Transferable/Embedded Fludity

Production Lines −0.092∗∗∗ −0.449∗∗∗ −0.100∗∗∗ −0.302∗∗∗
(0.008) (0.031) (0.009) (0.033)

Num. Obs. 41,071 30,403 41,071 30,403
Adj. R2 0.085 0.043 0.127 0.169
Covariates Yes Yes Yes Yes
FE: Year No No Yes Yes
FE: Industry No No Yes Yes

Notes: Each column reports coefficients from a separate regression. Standard errors are clus-
tered by firm id in parentheses. Significance levels:∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001. Columns
1–4: Pooled OLS specifications; Columns 5–8: Two-way fixed effects (year and industry).
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Table A5. Regression Results: Hoberg - Phillips Dataset:
Panel A:Markup and Productivity

Pooled OLS Two-way FE

(2) (3) (6) (7)
Markup Productivity Markup Productivity

Production Line 0.030∗∗∗ 0.015∗∗∗ 0.020∗∗∗ 0.009∗∗∗

(0.005) (0.002) (0.005) (0.001)

Num. Obs. 55,250 55,250 55,250 55,250
Adj. R2 0.001 0.029 0.006 0.778
Covariates Yes Yes Yes Yes
FE: Year No No Yes Yes
FE: Industy No No Yes Yes

Panel B: Investment Ratio and Fluidity

Pooled OLS Two-way FE

(1) (4) (5) (8)
Transferable/Embedded Fluidity Transferable/Embedded Fluidity

Production Line 0.028∗∗∗ 0.201∗∗∗ 0.027∗∗∗ 0.247∗∗∗

(0.002) (0.006) (0.002) (0.006)

Num. Obs. 55,514 50,116 55,514 50,116
Adj. R2 0.101 0.163 0.137 0.344
Covariates Yes Yes Yes Yes
FE: Year No No Yes Yes
FE: Industry No No Yes Yes

Notes: Each column reports coefficients from a separate regression. Standard errors are clus-
tered by firm id in parentheses. Significance levels:∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001. Columns
1–4: Pooled OLS specifications; Columns 5–8: Two-way fixed effects (year and industry).
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B Model Appendix

B.1 Final Good Sector Demand

The final good sector’s profit maximization problem is:

max
yjt

exp

(∫ 1

0

ln yjtdj

)
−
∫ 1

0

pjtyjtdj. (49)

Thefirst-order condition yields the inverse demand function for each intermediate

good j:

pjt =
Yt
yjt
. (50)

B.2 Intermediate Good Sector Demand

The cost minimization problem for the intermediate sector j is:

min
ysjt,yfjt

psjtysjt + pfjtyfjt s.t. yjt =
(
χ(es)y

ε
sjt + yεfjt

) 1
ε . (51)

The first-order condition with respect to the superstar firm’s output ysjt is:

psjt = λχ(es)y
1−ε
jt yε−1

sjt , (52)

where λ is the Lagrange multiplier. Raising both sides to the power of ε
ε−1

and

simplifying allows to solve for the ideal price index pj for sector j:

λ =
(
χ(es)

−1
ε−1p

ε
ε−1

sjt + p
ε

ε−1

fjt

) ε−1
ε ≡ pj. (53)

Substituting λ = pj back into the first-order condition yields the inverse demand

function faced by the superstar firm:

psjt = pjχ(es)y
1−ε
jt yε−1

sjt . (54)
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Finally, substituting the final good producer’s demand yjt = Yt/pj and solving for

ysjt provides demand function:

ysjt = p
ε

1−ε

j χ(es)
1

1−εp
1

ε−1

sjt Yt. (55)

B.3 Superstar FirmMaximization Problem: Bertrand Competition

The superstar firm competes à la Bertrand with a continuum of fringe firms. Its

profit maximization problem in industry j is:

max
psjt

(psjt −MCsjt) ysjt s.t. ysjt = p
ε

1−ε

j χ(es)
1

1−εp
1

ε−1

sjt Yt. (56)

Substituting the expression for pj into the demand function, the objective function

can be expanded as:

max
psjt

[
p

ε
ε−1

sjt χ(es)
1

1−εYt

(
χ(es)

−1
ε−1p

ε
ε−1

sjt + p
ε

ε−1

fjt

)−1

−MCsjt

(
χ(es)

−1
ε−1p

ε
ε−1

sjt + p
ε

ε−1

fjt

)−1

p
1

ε−1

sjt χ(es)
1

1−εYt

]
.

(57)

After computing the derivative and factoring common terms, this condition can

be expressed as:

∂π

∂psjt
= Ytχ(es)

1
1−ε

(
χ(es)

−1
ε−1p

ε
ε−1

sjt + p
ε

ε−1

fjt

)−1

×

{[
ε

ε− 1
p

1
ε−1

sjt −MCsjt
1

ε− 1
p

2−ε
ε−1

sjt

]

−
(
p

ε
ε−1

sjt −MCsjtp
1

ε−1

sjt

)(
χ(es)

−1
ε−1

ε

ε− 1
p

1
ε−1

sjt

(
χ(es)

−1
ε−1p

ε
ε−1

sjt + p
ε

ε−1

fjt

)−1
)}

= 0.

(58)

0 =

[
ε

ε− 1
p

1
ε−1

sjt −MCsjt
1

ε− 1
p

2−ε
ε−1

sjt

]
−
(
p

ε
ε−1

sjt −MCsjtp
1

ε−1

sjt

)(
χ(es)

−1
ε−1

ε

ε− 1
p

1
ε−1

sjt

(
χ(es)

−1
ε−1p

ε
ε−1

sjt + p
ε

ε−1

fjt

)−1
)
.

(59)
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To simplify, multiply both sides by psjt and substitute the market share definition

ϕsjt from (20), yielding:

(
p

ε
ε−1

sjt −MCsjtp
1

ε−1

sjt

)(
ϕsjt

ε

ε− 1

)
=

[
ε

ε− 1
p

ε
ε−1

sjt −MCsjt
1

ε− 1
p

ε
ε−1

sjt

]
. (60)

First, divide both sides by p
ε

ε−1

sjt , then by ε
ε−1

. After rearranging terms, the expres-

sion simplifies to:

ε(1− ϕsjt) =
MCsjt

psjt
(1− εϕsjt). (61)

Solving for the optimal price psjt gives:

psjt =
1− εϕsjt

ε(1− ϕsjt)
·MCsjt. (62)

To determine the optimal labor demand, equating output (7) and demand (55)

yields

qsjt ψ(es, ns) lsjt = p
ε

1−ε

j χ(es)
1

1−εp
1

ε−1
sjt Yt. (63)

Multiplying both sides by psjt and dividing by wt gives

psjt
qsjt ψ(es, ns)

wt︸ ︷︷ ︸
inverse MCsjt

lsjt = p
ε

1−ε
j χ(es)

1
1−εp

ε
ε−1
sjt︸ ︷︷ ︸

ϕsjt

Yt
wt︸︷︷︸
ω−1
t

. (64)

This expression leads directly to equation (26).

B.4 Superstar FirmMaximization Problem: Cournot Competition

In the à la Cournot setup, a superstar firmanda continuumof fringefirms compete

by choosing quantities to sell rather than engaging in price competition as in the

à la Bertrand case. Its profit-maximization problem in industry j is

max
ysjt

πsjt = max
ysjt

(psjt −MCsjt) ysjt, (65)

s.t. psjt = χ(es) y
−ε
jt y

ε−1
sjt Yt, and yjt =

(
χ(es) y

ε
sjt + yεfjt

)1/ε
. (66)
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Differentiate the profit function with respect to ysjt:

dπsjt
dysjt

= (psjt −MCsjt) + ysjt
dpsjt
dysjt

= 0. (67)

Differentiate the inverse demand (66) to obtain

dpsjt
dysjt

= psjt

(
−ε 1

yjt

dyjt
dysjt

+
ε− 1

ysjt

)
. (68)

Differentiate yjt with respect to ysjt:

dyjt
dysjt

= χ(es) y
ε−1
sjt y

1−ε
jt . (69)

Substituting (69) and (66) into (67) yields

(psjt −MCsjt) + ysjt psjt

(
−εχ(es) yε−1

sjt y
−ε
jt +

ε− 1

ysjt

)
= 0. (70)

Using the market-share definition

psjt ysjt
Yt

= χ(es) y
ε
sjt y

−ε
jt ,

and dividing both sides by psjt, rearrangement gives the inverse markup condition

MCsjt

psjt
= ε(1− ϕsjt). (71)

The relative price ratio between fringe and superstar firms is therefore

pfjt
psjt

=
1− ϕsjt

ϕsjt

MCfjt

MCsjt

. (72)

Using the inverse demand expressions leads to

χ(es)

(
yfjt
ysjt

)ε−1

=
1− ϕsjt

ϕsjt

MCfjt

MCsjt

. (73)
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Substituting themarginal-cost expressions for the fringe and superstarfirmsyields

(
yfjt
ysjt

)ε−1

=
1

χ(es)

1− ϕsjt

ϕsjt

1

λmj ψ(es, ns)
. (74)

Equation (74) shows that the relative output depends on themarket share, the qual-

ity gap, the embedded intangible level, and the firm’s production-line parameter.

Rearranging the market-share definition gives

χ(es) y
ε
sjt y

−ε
jt =

χ(es) y
ε
sjt

χ(es) yεsjt + yεfjt
=

1

1 +
1

χ(es)

(
yfjt
ysjt

)ε , (75)

which shows that market share depends on the output gap and the embedded in-

tangible level. Therefore, the output gapdepends on thequality gap, the embedded

intangible level, and the number of production lines associated with superstar s.

B.5 Aggregate Output and Growth Rate

Using the superstar (7) and fringe firm (8) output equations into (4) gives

Yt = exp

(∫ 1

0

ln

[(
ξest
)β(

qsjt

(
(1− ξ)est

)α
γnαs

st

lsjt

)ε
+
(
qfjt lfst

)ε]1/ε
dj

)

Yt = exp

(∫ 1

0

ln

[(
qεsjt

((
ξest
)β(((1− ξ)est)α

γnαs
st

lsjt

)ε
+
(
λ−mjt lfst

)ε))]1/ε
dj

)

= exp

(∫ 1

0

ln qsjtdj

)
︸ ︷︷ ︸

Qt

exp

(∫ 1

0

ln

[
((ξest)

β

(
((1− ξ)est)α

γnαs
st

lsjt

)ε

+
(
λ−mjt lfst

)ε] 1
ε

dj

)
,

(76)
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and , along with the labor demands in (26) and (27), and factoring out ω−1
t , aggre-

gate output can be expressed as

Yt = Qt ω
−1
t exp

(∫ 1

0

ln

[
(ξest)

β

(
((1− ξ)est)α

γnαs
st

ϕsjt

σsjt

)ε

+
(
λ−mjt(1− ϕsjt)

)ε] 1
ε

dj

)
.

(77)

Because everything in the integrand depends only on the gaps (m, k, n), the expres-

sion can be written in discrete state space as

Yt = Qt ω
−1
t exp

(∑m̄
m=1

∑k̄
k=1

∑n̄
n=1 ln

[(
ξθk
)β(((1− ξ)θkt)α

γnαs

ϕt(m, k, n)

σt(m, k, n)

)ε

+
(
λ−mt(1− ϕt(m, k, n))

)ε]1
ε

︸ ︷︷ ︸
≡Rt(m,k,n)

µt(m, k, n)

)
.

(78)

lnYt+∆t − lnYt =
(
lnQt+∆t − lnQt

)
+ lnωt − lnωt+∆t

+
m̄∑

m=1

k̄∑
k=1

n̄∑
n=1

(
Rt+∆t(m, k, n)−Rt(m, k, n)

)(
µt+∆t(m, k, n)− µt(m, k, n)

)
+ o(∆t).

(79)

where

lnQt+∆t − lnQt = lnλ

[
m̄∑

m=1

k̄∑
k=1

n̄∑
n=1

(
zIntt (m, k, n) + pExs≥s′ z

Ex
t (m, k, n) + Zf

t (m, k, n)
)
µt(m, k, n)

]
∆t

+ o(∆t). (80)

Dividing by∆t and taking the limit∆t→ 0, the growth rate of the economy is

gt = −gω,t + gQ,t + gR,t. (81)

In the steady state, the distribution µt(m, k, n) is constant, implying that Rt is con-

stant. Wages grow at the same rate as output, so the real wage remains constant.

Therefore, in steady state the growth rate of the economy is determined solely by
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quality improvements:

g = gQ = lnλ

[
m̄∑

m=1

k̄∑
k=1

n̄∑
n=1

(
zInt(m, k, n) + pExs≥s′ z

Ex(m, k, n) + Zf (m, k, n)
)
µ(m, k, n)

]
.

(82)

B.6 Decomposition of Output

Starting from (77) and factoring out the term (ξest)
β
(

((1−ξ)est)α

γ nαs
st

)
, aggregate output

can be written as

Yt = Qt ω
−1
t exp

(∫ 1

0

ln

[(
ϕsjt

σsjt

)ε
+

1

(ξest)β

(
γ nαs

st

((1− ξ)est)α
λ−mjt(1− ϕsjt)

)ε]1/ε
dj

)
.

(83)

Define the multiplicative factor that collects the factored-out terms as

Et = exp

(∫ 1

0

ln

[(
ξest
)β( ((1−ξ)est)α

γ nαs
st

)ε]1/ε
dj

)
. (84)

Next multiply and divide the integrand by the linear weight
ϕsjt

σsjt
+ (1− ϕsjt). After

this algebraic step I obtain a decomposition that isolates a simple mean term and

a residual term:

Yt = QtEt ω
−1
t exp

(∫ 1

0

ln
[
ϕsjt

σsjt
+ (1− ϕsjt)

]
dj

)

× exp

(∫ 1

0

ln

[( 1
γnαs

st

ϕsjt

σsjt

)ε
+

1

(ξest)β

( 1

((1− ξ)est)α
λ−mjt(1− ϕsjt)

)ε
ϕsjt

σsjt
+ (1− ϕsjt)

]1/ε
dj

)
.

(85)

Finally, using (37) and defining the multiplicative mean term

Mt =
exp
( ∫ 1

0
ln
[ϕsjt

σsjt
+ (1− ϕsjt)

]
dj
)

∫ 1

0

[ϕsjt

σsjt
+ (1− ϕsjt)

]
dj

, (86)
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the output decomposition can be written as

Yt = Qt × Et ×Mt × St,

where

St = exp

∫ 1

0

ln

[( 1

γ nαs
st

ϕsjt

σsjt

)ε
+

1

(ξest)β

( 1

((1− ξ)est)α
λ−mjt(1− ϕsjt)

)ε
ϕsjt

σsjt
+ (1− ϕsjt)

]1/ε
dj

 .

(87)

B.7 Consumption EquivalenceWelfare Measure

On thebalancedgrowthpath, consumptiongrowsat rate g, so thatC(t) = C0 exp(gt).37

DefiningwelfareΩ as the present value of lifetime utility fromconsumption yields:

Ω =

∫ ∞

0

e−ρt ln(C(t))dt (89)

= ln(C0)

∫ ∞

0

e−ρtdt+ g

∫ ∞

0

te−ρtdt. (90)

Solving these integrals gives:

Ω =
ln(C0)

ρ
+

g

ρ2
(91)

=
1

ρ

(
lnC0 +

g

ρ

)
. (92)

Equivalent Welfare Changes Between Economies To compare welfare between

twoeconomies—acalibratedbenchmark economy (Cal) anda taxed economy (Tax)

on their respective balanced growth paths—I compute the percentage change δ in

37The C0 consumption level is given by:

C0 = Y0 −
∫ 1

0

(
IInt0 + IEmb

0 + IEx
0 + If0

)
dj +G0. (88)

In this equation, the subscript 0 represents calibrated optimum values on the balanced growth
path, andG is the lump-sum transfer of government taxes.
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lifetime consumption that would make households indifferent between the two.

The required compensation δ satisfies:

ΩTax =
1

ρ

(
ln
(
CCal

0 (1 + δ)
)
+
gCal

ρ

)
. (93)

Solving equation (93) for δ:

lnCTax
0

ρ
+
gTax

ρ2
=

ln[CCal
0 (1 + δ)]

ρ
+
gCal

ρ2
(94)

ln

(
CTax

0

CCal
0

)
+
gTax − gCal

ρ
= ln(1 + δ) (95)

δ =
CTax

0

CCal
0

exp

(
gTax − gCal

ρ

)
− 1. (96)

If δ > 0: households require compensation to remain in the benchmark economy

(Cal).

If δ < 0: households would pay to move to the taxed economy (Tax).

C Numerical Appendix

C.1 Additional Numerical Results

Table C1. Sensitivity Matrix

Parameter Markup Growth Rate Investment Ratio Innovation Rate

ε −1.052% −2.113% −25.815% −3.763%

α −0.010% −0.324% −3.736% −0.521%

αs 0.000% −0.027% −0.043% −0.062%

β −0.002% −0.064% −0.862% −0.106%

γ −0.013% −0.398% −4.342% −0.639%

ξ −0.004% −0.129% −1.484% −0.210%

Note: Each row reports the percentage change in variables resulting from a 1% change in the parameter value.
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(A) Productivity (B) Growth Rate

(C) Fluidity

Figure C1. Untargeted Moments: Productivity, Fluidity and Growth Rate by Production
Lines

Note: The orange line represents the dataset values, while the blue line shows the model simulation results along the bal-
anced growth path. The horizontal axis corresponds to the production line dimension.

C.2 Solution Algorithm

This algorithm computes the balanced growth path with a three dimensional state

space (m, k, n). The solution involves finding the value functions vs(m, k, n) and

vf (m, k, n), the innovation rates zInt, zEmb, zEx, zf , and the stationary distribution

µ(m, k, n) that jointly satisfy the model’s equilibrium conditions.

BGP Equilibrium Solution:

1. Compute static values: Calculate static market shares and profit values using

equations (24) and (20).
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2. Initialization: Initialize the value functions vs(m, k, n) and vf (m, k, n), and the

stationary distribution µ(m, k, n).

3. Step 1: Solve HJB Equations (Backward Iteration)

(a) Set vold(m, k, n).

(b) Repeat untilmax |vnew − vold| < tolerance:

• Compute policy functions x(m, k, n) from the FOCs using vold.

• Solve the discretized HJB equations for vnew(m, k, n).

• Update vold ← vnew.

4. Step 2: Solve the Kolmogorov Forward Equation (KFE)

(a) Set µold(m, k, n).

(b) Repeat untilmax |µnew − µold| < tolerance:

• Solve thediscretizedKFE forµnew(m, k, n)using thepolicy functions zInt, zEmb, zEx, zf .

• Update µold ← µnew.

5. Step 3: Repeat Steps Until Value Functions and Distribution Converge

Finally, to determine the optimal parameter values, search over the parameter

space to minimize the objective function,

Minimize(z) =
Z∑

z=1

∣∣model(z)− data(z)∣∣
1
2

∣∣model(z)∣∣+ 1
2

∣∣data(z)∣∣ .
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Abstrakt 

 

Horizontální expanze prostřednictvím rozšiřujícího se portfolia produktů leží v jádru moderní literatury o 

endogenním růstu. Důkazy ohledně toho, jak diverzifikace napříč odvětvími ovlivňuje kompromis mezi 

vytvářením sociálního přebytku a maximalizací soukromých výnosů, však zůstávají omezené. Pro 

zkoumání tohoto problému kategorizuji nehmotná aktiva podle jejich externalit: přenosná nehmotná aktiva 

(patenty, software) generují sociální přebytek, zatímco vázaná nehmotná aktiva (organizační kapitál, 

hodnota značky) přinášejí především soukromé výnosy. Dokumentuji, že diverzifikované firmy 

přesměrovávají investice směrem k vázaným nehmotným aktivům, přičemž zároveň vykazují nižší marže 

a produktivitu a menší konkurenční hrozby. Motivován těmito důkazy rozšiřuji kanonický rámec 

endogenního růstu tak, aby endogenizoval alokace firem mezi přenosnými a vázanými nehmotnými aktivy 

a umožňoval jak horizontální, tak vertikální expanzi. Klíčová predikce modelu je, že vázaná nehmotná 

aktiva jsou volně přenosná napříč výrobními liniemi firmy; tato mobilita tedy vytváří rostoucí výnosy z 

rozsahu při diverzifikaci firmy, což zároveň zvyšuje bariéry vstupu pro konkurenty a snižuje sociální 

přebytek, místo aby podporovala dlouhodobý růst. Posun inovačního úsilí tak nakonec obětuje hospodářský 

růst ve prospěch tržních výhod na úrovni firmy, a kvantitativní analýza naznačuje, že daně závislé na 

velikosti firmy mohou podstatně zlepšit blahobyt. 
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