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Instrumental Variable Estimation with Many Instruments

Using Elastic-Net IV∗

Alena Skolkova†

Abstract

Instrumental variables (IV) are commonly applied for identification of treatment effects and

subsequent policy evaluation. The use of many informative instruments improves the esti-

mation accuracy. However, dealing with high-dimensional sets of instrumental variables of

unknown strength may be complicated and requires model selection or regularization of the

first stage regression. Currently, lasso is established as one of the most popular regulariza-

tion techniques relying on the assumption of approximate sparsity. I investigate the relative

performance of the lasso and elastic-net estimators for fitting the first-stage as part of IV

estimation. As elastic-net includes a ridge-type penalty in addition to a lasso-type penalty,

it generally improves upon lasso in finite samples when correlations among the instrumental

variables are not negligible. I show that IV estimators based on the lasso and elastic-net first-

stage estimates can be asymptotically equivalent. Via a Monte Carlo study I demonstrate

the robustness of the sample-split elastic-net IV estimator to deviations from approximate

sparsity, and to correlation among possibly high-dimensional instruments. Finally, I provide

an empirical example that demonstrates potential improvement in estimation accuracy gained

by the use of IV estimators based on elastic-net.
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1 Introduction

The instrumental variables (IV) regression is a common tool for identification of treatment effects

under regressor endogeneity. From the theoretical perspective, researchers would like to utilize as

much exogenous variation in the explanatory variables as possible, as it increases the precision

of IV estimates: Newey (1990), Amemiya (1974) and Chamberlain (1987) motivate the use of

many instruments for the purpose of nonparametric estimation of optimal instruments. However,

conventional GMM-type estimators, such as 2SLS, tend to be substantially biased when the number

of instrumental variables is not small relative to the sample size: see Bekker (1994) and Newey

and Smith (2004).

The problem of many instruments may be circumvented in various ways. The use of statistical

methods with imbedded regularization is increasingly popular among economists. Regularization

techniques allow one to deal with ill-posed inverse problems, and date back to Tikhonov (1943).

Such methods include the ridge regression (Hoerl and Kennard, 1970), lasso (Tibshirani, 1996), the

penalized maximum likelihood estimation (Friedman, Hastie and Tibshirani, 2001), and boosting

(Buhlmann, 2006), among others. There are several alternative regularization procedures used

as part of IV estimators: ridge and James-Stein type shrinkage applied to the first stage by

Hansen and Kozbur (2014) and Spiess (2017), respectively; lasso for estimation of both the first

stage and the reduced form by Belloni, Chen, Chernozhukov and Hansen (2012, hereafter BCCH);

applications of random forests and deep neural networks by Wager and Athey (2018) and Farrell

et al (2021), respectively. In this list, BCCH stands out due to the extreme popularity of lasso

as a regularization technique that is often employed under sparsity. In sparse models, there is a

small number of variables1 that convey most of the impact of all covariates in the response variable.

Lasso represents the simplest sparse modeling approach that allows simultaneous variable selection

and coefficient estimation.

The key assumption needed for lasso to produce a meaningful solution is the sparsity of the

underlying model (see Section 2.1 for the definition of sparsity). The sparsity assumption may
1s = o (n) ,where n is the sample size.
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be justified in structural economic equations, where few variables participate in determinating an

outcome variable. However, the lasso estimator is also promoted as a universal workhorse for pure

prediction tasks. Despite the popularity of the sparse modeling framework, the adequacy of the

sparsity (or approximate sparsity) assumption is often questionable. For example, Giannone et al.

(2021) find evidence against sparsity for a collection of empirical applications from macroeconomics,

microeconomics, and finance, where sparsity is routinely assumed without pretesting.

Furthermore, the simplicity of the lasso approach has its costs even under sparsity. For example,

Zou and Hastie (2005, hereafter ZH) stress three limitations of classical lasso:

(1) if predictors are highly correlated as a whole, the prediction performance of the ridge regression

dominates that of lasso (first observed in Tibshirani, 1996), as with highly correlated predictors

the lasso solution paths tend to be unstable ; (2) in the p > n case, when the number of variables

p exceeds the number of observations n, lasso selects at most n variables; (3) if there are groups

of predictors within which pairwise correlations are high, lasso generally selects only one variable

from each group. ZH propose an alternative estimator – elastic-net (EN) – that successfully

eliminates these shortcomings of lasso.2 Through a simulation study and empirical examples they

show that elastic-net often outperforms lasso in terms of prediction accuracy. In addition, EN

essentially combines the properties of lasso and ridge , thus being able to accommodate some

DGP’s deviations from sparsity.

Of the three above-mentioned conditions under which the performance of lasso may be improved, at

least the first two directly relate to IV estimation. Economists often estimate a causal effect based

on a dataset at hand with many characteristics available for every unit (possibly p > n), where

many serve as potential instruments (including the basic instrumental variables, their interactions

and transformations). These instruments, however, tend to be moderately or highly correlated,

leading to unstable lasso solution paths.3 Thus, by using lasso to tackle the first-stage prediction

problem, one faces exactly the scenario under which the performance of lasso may be improved via

an additional ridge-type regularization, therefore justifying the use of the elastic-net technique.
2Elastic-net reduces to lasso in an orthogonal design, where lasso is optimal, see Donoho et al (1995).
3Under high dimensionality of the problem, even when the instrumental variables are independent, there might

be large sample correlations, see Fan & Lv (2008).
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This paper contributes to the literature on IV estimation with many instruments by considering

the use of the elastic-net approach for estimating the first-stage regression. While the lasso (and

post-lasso) IV estimator by BCCH and the ridge jackknife IV estimator by Hansen and Kozbur

(2014) stem from the sparsity and the density of the first-stage relationship, respectively, I propose

the elastic-net IV estimator (ENIV), which fits between those two. Similarly to lasso, elastic-net

with a properly selected penalty parameter is shown to have oracle properties4 under sparsity.

Consequently, the results of BCCH on consistency and asymptotic normality (under possible non-

Gaussianity and heteroskedasticity of the error term) of a generic sparsity-based IV estimator can

be applied to the proposed elastic-net IV estimator. At the same time, in the case of no sparsity,

elastic-net is by construction capable of acting like a ridge regression. Thus, for elastic-net with

data-driven parameters (a penalty level, and a weighting parameter reflecting the degree of DGP

sparsity), the proposed estimator should be robust to the unknown degree of sparsity of first-stage

relationships.

To address the issue of overfitting (see, for example Chernozhukov et al, 2018), I consider sample-

split and cross-fit versions of the basic elastic-net IV estimator (SS-ENIV and CF-ENIV, respec-

tively), and compare them with the lasso-based analogues. I study the relative performance of the

proposed estimators via simulations. Specifically, I compare the resulting IV estimates in terms

of the median absolute bias, median absolute deviation and rejection rate. The SS-ENIV and

CF-ENIV estimators perform well relative to the lasso-based alternatives, regardless of the signal’s

sparsity.

Additionally, I demonstrate the potential gains of the EN-based IV estimation based on the classic

empirical investigation from Angrist and Krueger (1991), who look at the causal effect of schooling

on earnings. The identification strategy and data from Angrist and Krueger (1991) provide many

available instrumental variables for schooling. While employing as many of them as possible poten-

tially leads to higher accuracy of the estimated causal effect, it also leads to biases and inferential

problems. Therefore, the use of instrument selection or regularization techniques is justified, thus
4i.e. to achieve the rate of convergence that is very close to the oracle rate

√
s/n achievable when the true model

is known.
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making the example suitable for testing the performance of the EN-based IV estimators.

The plan of this paper is as follows. In Section 2 I describe an instrumental variables setup

and overview the regularization-based methods for estimation of optimal instruments. In Section

3 I present and discuss the results of a simulation study that examines the performance of the

proposed estimator relative to its closest competitors. Section 4 provides an empirical example

to demonstrate potential improvement in estimation accuracy gained by the use of IV estimators

based on elastic-net.

2 The Instrumental Variables Model

The problem setup is similar to that from BCCH, simplified to the case of a scalar endogenous

variable. The model is yi = d′iδ0 + ei, where yi is a scalar outcome, di is a kd-vector of variables,

and δ0 denotes the true value of a vector-valued parameter δ. The first element of di is endogenous,

while the remaining elements of di constitute a vector of exogenous covariates wi. The disturbance

term ei is such that E [ei |zi ] = 0, where zi is a kz-vector of instrumental variables.

As a motivation, suppose the disturbance term is conditionally homoskedastic, E [e2i |zi ] = σ2. For

a kd-vector of instruments A (zi), the standard IV estimator of δ0 takes the form

δ̂ = (En [A (zi) d
′
i])
−1 En [A (zi) yi] ,

where {(zi, di, yi) , i = 1, ..., n} is i.i.d. sample, En [f ] := En [f (zi)] :=
∑n

i=1 fi/n. Given instru-

ments A (zi),
√
n
(
δ̂ − δ0

)
→d N

(
0, Q−10 Ω0Q

−1
0

)
,

where Q0 = E [A (zi) d
′
i] and Ω0 = σ2E

[
A (zi)A (zi)

′]. Employing the optimal instrument A (zi) =

D (zi) = E [di |zi ] achieves the semiparametric efficiency bound for estimating δ0, with the asymp-

totic variance Λ∗ = σ2
{
E
[
D (zi)D (zi)

′]}−1 (see Chamberlain, 1987).
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2.1 Regularized Estimation Methods for Optimal Instruments

In practice, the optimal instrument D (zi) is not known, and many ways to estimate it exist in the

literature. Suppose there is a large set of instruments,

fi := (fi1, ..., fip)
′ := (f1 (z1) , ..., fp (z1))

′

available for estimation of conditional expectation D (zi), and the number of instruments p is

possibly larger than the sample size n. In BCCH, the optimal instrument D (zi) is assumed to be

approximately sparse, i.e. a function D (zi) is deemed to be well-approximated by a function of

unknown 1 ≤ s� n instruments:

D (zi) = f
′

iβ0 + a (zi) ,

‖β0‖0 ≤ s = o (n) ,
[
Ena (zi)

2]1/2 ≤ cs .P

√
s/n.

The identities of s relevant instruments, i.e. T = support (β0) = {j ∈ {1, ..., p} : |β0j| > 0}, are

meant to be a priori unknown. The sparsity assumption requires that at most s instruments

approximate the conditional expectation D (zi) so that the approximation error a (zi) does not

exceed the conjectured size
√
s/n of the error of the infeasible estimator that “knows” the identity

of these s relevant instruments (the “oracle estimator”).

Lasso

The first stage regression equation is

di = D (zi) + vi, E [vi|zi] = 0.

For the sample {(zi, di) , i = 1, ..., n} , consider estimators of the optimal instrument D (zi) of the

form

D̂i := D̂ (zi) = f ′i β̂,

where β̂ is the sparse estimator based on regressors fi and di as the dependent variable. The sparse
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estimator sets all but a small fraction of the coefficient estimates β̂j to 0. Let Q (β) denote the

least squares criterion function, Q̂ (β) := En
[
(di − f ′iβ)2

]
, then the lasso estimator employed in

BCCH is defined as a solution to

β̂L ∈ arg min
β∈Rp

Q̂ (β) + λL
∥∥∥Υ̂β

∥∥∥
1
,

where λL is the penalty level and Υ̂ = diag (γ̂1, ..., γ̂p) is a diagonal matrix with data-dependent

weights, also called penalty loadings. The basic lasso estimator, with all penalty loadings set to

1, was introduced by Tibshirani (1996) as a technique for simultaneous estimation and variable

selection. Basically, lasso shrinks the coefficients toward 0 as λL increases, and some coefficient

estimates are set to 0 for large enough λL.

Lasso has been shown to be variable selection consistent, i.e. to be able to discover the correct

model specification, under suitable conditions (see Meinshausen and Bühlmann, 2004). Initially,

the weighted/adaptive version of lasso (with data-dependent penalty loadings) was proposed in

Zou (2006) in response to debates about whether the lasso estimator is an oracle procedure (Fan

and Li, 2001; Meinshausen and Bühlmann, 2004). For the data-dependent and cleverly chosen

loadings5, the adaptive lasso estimator is shown to enjoy oracle properties. Relatively recently,

BCCH have proposed novel penalty loadings that result in sharp convergence rates for the lasso

estimator under possible non-Gaussianity and heteroskedasticity.

Having estimated the optimal instrument via lasso, let D̂i be a vector of instruments that also

includes the vector of exogenous covariates wi

D̂i =
(
D̂ (zi) , w

′
i

)′
.

Then the resulting lasso-IV estimator

δ̂L = En
[
D̂id

′
i

]−1
En
[
D̂iyi

]
(1)

5Zou (2006) suggests the weight vector ŵ = 1/
∣∣∣β̂∣∣∣γ , where β̂ is a root-n consistent estimator for β, and γ > 0.
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is shown to achieve the efficiency bound asymptotically,
√
n
(
δ̂L − δ0

)
=d N (0,Λ∗) + oP (1).

The IV estimator with the lasso-based optimal instrument is root-n consistent and asymptotically

normal (see Theorem 3 of BCCH). Moreover, consistency and asymptotic normality continues to

hold for any generic sparsity-based method achieving specific near-oracle performance bounds (see

Theorem 4 of BCCH), and I exploit this result in the next section.

Elastic-Net IV Estimator

Although lasso is aimed at high-dimensional problems, its performance may be deteriorated by the

correlation among predictors, which often takes place in high-dimensional settings. Zou & Hastie

(2005, hereafter ZH) point out that the lasso solution paths are unstable (i.e. not smooth) when

predictors are highly correlated. The relevance of this issue is stressed by Fan & Lv (2007) who

show that even with the independent predictors the maximum sample correlation can be large, as

long as the dimensionality is high. In addition, ZH notice that for high-dimensional problems with

p � n, lasso is incapable of selecting more than p variables into the model. Consequently, they

propose an alternative penalized estimator, elastic-net (EN),

β̂EN = arg min
β


N∑
i=1

(
di −

p∑
j=1

fijβj

)2

+ λEN
p∑
j=1

(
α |βj|+ (1− α) β2

j

) ,

which involves an l2-penalty in addition to lasso’s l1-penalty. The first term of the penalty,

λEN
∑p

j=1 α |βj| encourages a sparse solution, as does the lasso penalty, while the second term,

λEN
∑p

j=1 (1− α) β2
j , regularizes the covariance matrix, and encourages equality of the coefficients

on highly correlated predictors. ZH shows that elastic-net may be interpreted as a stabilized6

version of lasso (p. 308, Theorem 2), and can therefore

improve upon lasso.

In the statistical literature, the performance of the elastic-net estimator is usually analyzed under a

restrictive assumption of the Gaussian and homoskedastic error term. For example, when Gaussian

and homoskedastic noise is assumed, Jia and Yu (2010) study the model selection properties of the

elastic-net estimator in the asymptotic framework where the number of variables p grows with the
6Stabilization is achieved via replacement of the sample covariance matrix Σ̂ with its shrunken (towards the

identity matrix) version.
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sample size n. They provide sufficient conditions for elastic-net to be model selection consistent7, as

well as theoretical and simulation examples demonstrating when elastic-net can consistently select

the true model, while lasso fails to do so.8 Further, Ghosh (2011) considers adaptive elastic-net

that generalizes elastic-net in the same way that adaptive lasso generalizes lasso, thus expanding

the set of conditions under which elastic-net performs consistent variable selection. The adaptive

elastic-net estimator uses a more flexible l1-penalty for consistent variable selection, while the

ridge-type penalty term stays unchanged9 and continues to regularize the solution path:

β̂ENada = arg min
β


N∑
i=1

(
di −

p∑
j=1

fijβj

)2

+ λEN1

p∑
j=1

wj |βj|+ λEN2

p∑
j=1

β2
j

 ,

where the weight estimate ŵj = 1/|β̂j|γ, j = 1, ..., p, for some γ > 0, with the ordinary least squares

estimator β̂OLS being a possible choice of β̂. Under suitable conditions, the adaptive elastic-

net estimator is shown to have oracle properties (variable selection consistency and asymptotic

normality, see Theorem 3.2).

However, the breakthrough results of Theorem 4 in BCCH on root-n consistency and asymptotic

normality apply to a wide class of sparsity-based methods that encompasses the elastic-net esti-

mator. Consequently, to get the desired asymptotic properties of the elastic-net estimator under

possible non-Gaussianity and heteroskedasticity of the error term, it is enough to establish the

near-oracle bounds that are required by BCCH’s Theorem 4. I use the result from Zou and Hastie

(2006) about transformation of the elastic-net problem into an equivalent lasso problem on aug-

mented data to show that the elastic-net estimator performs closely enough to the oracle under

sparsity, in the sense of meeting sufficient conditions of BCCH’s Theorem 4.

Proposition 1. For
(
λEN1 , λEN2

)
such that γ = λEN1 /

√
1 + λEN2 = λLopt, where λLopt denotes the

optimal penalty for the lasso-estimator, the elastic-net estimator obeys the near-oracle performance
7Jia and Yu (2010) also state a specific condition for the inconsistency of the elastic-net estimator.
8See also Yuan and Lin (2007) for a similar study for fixed p.
9In principle, adaptive weights can also be placed on an l2 penalty, but it is not necessary to guarantee the oracle

properties of the adaptive elastic-net estimator examined in Ghosh (2011).
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bounds:

∥∥∥D̂EN
i −Di

∥∥∥
2,n
≤p

√
s log (n+ p)

n+ p∥∥∥δ̂EN − δ0∥∥∥
1
≤p

√
s2 log (n+ p)

n+ p

Therefore, the elastic-net estimator can perform a variable selection and estimation similarly to the

lasso estimator. Once the sufficient conditions of Theorem 4 in BCCH continue to hold, one can rely

on the existing results regarding consistency and asymptotic normality of generic sparsity-based IV

estimators obtained in BCCH. In other words, the IV estimators based on elastic-net and lasso can

be asymptotically equivalent under sparsity and the appropriate choice of the penalty parameters(
λEN1 , λEN2

)
. At the same time, ridge regularization often leads to finite-sample improvement, so

the relative finite-sample performance of the IV estimators based on elastic-net (with a ridge-type

penalty) and lasso (without a ridge-type penalty) is of interest, and is investigated in Section 3 of

this paper.

Sample-Split and Cross-Fit Elastic-Net IV Estimator

In principle, one could employ D̂i = f ′i β̂
EN for D̂i in (2.1) to define an IV estimator with a EN-

regularized first stage. However, as noted in Hansen and Kozbur (2014), among others, this direct

approach would typically introduce a so-called regularization bias (similar to other methods involv-

ing regularization ).10 In general, the least shrunk coefficients correspond to the instruments that

are most highly correlated with the first stage noise, thus contaminating the exclusion restriction.

The use of sample-splitting or jackknifing is a common way of lowering the regularization bias. I

employ the sample-splitting technique to preserve the exclusion restriction, thus defining

β̂ENI1 = arg min
β

∑
i∈I1

(
di − β0 −

p∑
j=1

fijβj

)2

+ λEN
p∑
j=1

(
α |βj|+ (1− α) β2

j

) ,

which is the elastic-net estimate from an elastic-net regression of d on f with regularization param-

eters
(
λEN , α

)
using the random subset of observations I1 (a half of the sample, in the simplest

10See Chernozhukov et al (2018) for an extended discussion of the regularization bias and de-biased estimation.
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case). The estimator D̂i for the ith unit is then defined as D̂i = f ′i β̂
EN
I1

. Finally, I define the

sample-split ENIV estimator as

δ̂SS−ENIV =

∑
i∈Ic1

f ′i β̂
EN
I1

d′i

−1∑
i∈Ic1

f ′i β̂
EN
I1

yi,

where Ic1 ∩ I1 = ∅.

By splitting the sample into halves, I break the correlation between D̂i and ei that is not asymptoti-

cally negligible. Although the elastic-net regularization causes some loss of signal due to coefficient

shrinkage (similar to other regularization methods), a data-driven choice of
(
λEN , α

)
is expected

to result in quality signal extraction from a high-dimensional set of instruments, whether sparse

or dense. For example, for α = 0 and positive λEN , the elastic-net IV estimator reduces to the

ridge IV estimator. I suggest choosing the shrinkage parameter based on the optimization of a

first stage cross-validation criterion due to popularity and availability of cross-validation tools in

R, Python, Stata, etc.11 In general, for not very large datasets one can replace a sample-splitting

approach with a jackknifing procedure to fit the first stage, thus generalizing the sample-split ENIV

estimator to the jackknife ENIV estimator.

Another possible approach is cross-fitting. Cross-fitting estimators are also based on the idea of

sample-splitting. First, the sample is partitioned into I1 and I2, and only observations from I1 are

used to get β̂ENI1 , whereas only observations from I2 are used to produce δ̂12 =
(∑

I2
f ′i β̂

EN
I1

d′i

)−1
×
∑

i∈I2 f
′
i β̂

EN
I1

yi . Then the subsamples are swapped so that β̂ENI2 and δ̂21 =
(∑

I1
f ′i β̂

EN
I2

d′i

)−1
×
∑N

i∈I1 f
′
i β̂

EN
I2

yi are obtained in an analogous way. Consequently, the cross-fit elastic-net IV es-

timator is defined as δ̂CF−ENIV =
(
δ̂12 + δ̂21

)
/2. This way both subsamples (symmetrically)

contribute to the resulting estimate, thus increasing its efficiency. I adopt the algorithm by Ana-

tolyev and Mikusheva (2022, Section 3.2) to estimate the variance of δ̂CF−ENIV in a way that

accounts for the correlation between δ̂12 and δ̂21.12 Finally, sample-split and cross-fit lasso-based

IV estimators, which act as benchmarks in the following section, are defined analogously.
11The use of cross-validation is yet to be theoretically justified for elastic-net, despite being a widely spread

practice. See Chetverikov, Liao and Chernozhukov (2021), which justifies the practice of using cross-validation to
choose the penalty parameter for lasso.

12Anatolyev and Mikusheva (2022) propose the algorithms for constructing a four-split estimator. I use a version
simplified to a case with only two splits.

11



3 Simulation study

The design of this simulation study closely follows that of Hansen and Kozbur (2014). I demon-

strate the performance of the IV estimators employing elastic-net, and compare it with the per-

formance of lasso-based IV estimators, and the ridge jackknife IV estimator (RJIVE) by Hansen

and Kozbur (2014). Let the data generating process be

yi = xiδ0 + ei

xi = Z ′iΠ + ui

with

(ei, ui) ∼ N

0,

 σ2
e σeu

σeu σ2
u


 ,

where xi is the scalar treatment variable, and δ0 = 1 is the parameter of interest. The sample size

n = 100, σ2
e = 2, and corr (ei, ui) = 0.6. The remaining parameters are varied within the simulation

study.

I consider two instrument designs: binary and continuous (Gaussian). Real datasets typically

employ very different combinations of both binary and continuous instruments, thus motivating

examination of the two extreme cases: (i) all instruments are binary, and (ii) all instruments are

continuous. The continuous instrument design considers correlated Gaussian instruments drawn

with mean 0 and variance var (Zij) = 0.3. The correlation between Gaussian instruments is given

by corr (Zij, Zik) = 0.8|j−k|. The binary design is motivated by the presence of many categorical

variables, which often takes place in practice. In this design, all instruments are drawn from

Zij ∈ {0, 1} with Pr (Zij = 1) = 0.8 such that the pairwise correlations are close to corr (Zij, Zik) =

0.8|j−k|.13 For each design, the number of instruments is set to K = 95 or K = 190.

In addition to alternation of the instrument design, I also vary the first-stage coefficients Π to gener-

ate dense, sparse, and mixed first-stage signal structures. In the dense scenario, Π = (ι0.4K , 00.6K)′,
13First, I make draws from the standard normal distribution, and apply Cholecky’s decomposition to generate

the Gaussian instruments Z0
ij with correlations corr

(
Z0
ij , Z

0
ik

)
= 0.8|j−k|. Then I set Zij = I{Z0

ij>0.8}.
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where ιp is a 1 × p vector of ones, and 0q is a 1 × q vector of zeros. In the sparse scenario

Π = (3ι5, 0K−5)
′, so only five instruments are relevant. Finally, in the mixed scenario, Π =

(3ι5, ι0.4K , 00.6K−5)
′. By varying the noise σ2

u in the first-stage regression, I control the strength of

the instrument set measured by the concentration parameter µ2 = NΠ′E [Z ′iZi] Π/σ2
u. To model

the cases of the weak and strong signal provided by the instruments, I set µ2 = 30 and µ2 = 150,

respectively.

I consider three IV estimators based on elastic-net: elastic-net IV estimator (ENIV), sample-

split elastic-net IV estimator (SS-ENIV), and cross-fit elastic-net IV estimator (CF-ENIV). Their

lasso-based counterparts are Lasso-IV, SS-Lasso-IV, and CF-Lasso-IV. I also report the results for

RJIVE and the 2SLS estimator. In addition, I present the results for the post-Lasso-IV estimator

described in BCCH14, as well as its sample-split version (SS-post-Lasso-IV). The penalty levels for

ENIV, SS-ENIV, and CF-ENIV is chosen through cross-validation.

The reported results are obtained by averaging across 1500 draws for each setting. For each

estimator, I present the median bias (Med. Bias), the median absolute deviation (MAD), and the

rejection rate for a 5%-level test of H0 : δ0 = 1 (RP 5%). For the post-Lasso estimator with lasso

sometimes selecting no instruments into the first stage regression, I calculate the median bias and

the median absolute deviation conditional on the lasso estimator selecting at least one variable.

In such a case, a failure to reject the null is recorded.

Table 1 shows the results for K = 95. Panels A and B focus on the results for weak instruments

(µ2 = 30), Panels C and D report the results for a stronger signal (µ2 = 150). For the weak sparse

signal, Lasso-IV, post-Lasso-IV, RJIVE, SS-ENIV, and CF-ENIV result in reasonable rejection

frequencies, with RJIVE and SS-ENIV being among the most accurate. However, for the dense

weak signal, only RJIVE, SS-ENIV and CF-ENIV continue to have approximately the correct size

(CF-ENIV tends to over-reject but not as much as the Lasso-based estimators).
14BCCH recommend the penalty level to be proportional to

√
n logK. We employ the same penalty as in Hansen

and Kozbur (2014), namely 2.2
√

2n log (2K)σuσe.
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Table 1. Simulation Results many instruments K = 95
Sparse Signal Dense Signal Mixed Signal

Med. Bias MAD RP 5% Med. Bias MAD RP 5% Med. Bias MAD RP 5%
A. Concentration parameter = 30. Binary Instruments

Lasso-IV 0.009 0.015 0.091 0.017 0.018 0.237 0.012 0.013 0.201
SS-Lasso-IV 0.003 0.023 0.009 0.004 0.04 0.011 0.000 0.024 0.007

post-Lasso-IV 0.010 0.015 0.111 0.016 0.017 0.253 0.012 0.013 0.249
SS-post-Lasso-IV 0.003 0.023 0.008 0.004 0.038 0.013 0.000 0.024 0.009

CF-Lasso-IV 0.014 0.015 0.000 0.002 0.025 0.000 0.007 0.015 0
RJIVE -0.001 0.020 0.047 -0.001 0.011 0.055 -0.001 0.010 0.052
ENIV 0.022 0.022 0.405 0.020 0.020 0.448 0.015 0.015 0.466

SS-ENIV 0.000 0.028 0.038 0.001 0.020 0.056 0.000 0.015 0.048
CF-ENIV 0.001 0.022 0.104 0.000 0.015 0.098 -0.001 0.012 0.095

B. Concentration parameter = 30. Gaussian Instruments
Lasso-IV 0.005 0.011 0.076 0.011 0.012 0.210 0.007 0.008 0.177

SS-Lasso-IV 0.002 0.016 0.031 0.002 0.030 0.005 0.002 0.015 0.012
post-Lasso-IV 0.007 0.011 0.104 0.011 0.012 0.224 0.008 0.009 0.215

SS-post-Lasso-IV 0.002 0.016 0.029 0.001 0.030 0.005 0.003 0.015 0.011
CF-Lasso-IV 0.004 0.010 0.001 0.004 0.022 0.000 0.006 0.009 0.000

RJIVE -0.001 0.014 0.051 -0.002 0.010 0.041 0.000 0.008 0.053
ENIV 0.012 0.014 0.284 0.013 0.013 0.421 0.010 0.010 0.459

SS-ENIV 0.001 0.019 0.041 0.001 0.018 0.037 0.002 0.013 0.043
CF-ENIV 0.001 0.014 0.101 0.001 0.014 0.123 0.001 0.010 0.119

C. Concentration parameter = 150. Binary Instruments
Lasso-IV 0.005 0.014 0.065 0.012 0.014 0.133 0.008 0.010 0.130

SS-Lasso-IV 0.000 0.022 0.047 0.000 0.022 0.048 -0.001 0.016 0.043
post-Lasso-IV 0.005 0.014 0.068 0.013 0.014 0.155 0.009 0.010 0.144

SS-post-Lasso-IV -0.001 0.022 0.047 0.001 0.020 0.047 0.000 0.016 0.047
CF-Lasso-IV -0.001 0.016 0.000 -0.001 0.016 0.000 -0.001 0.013 0.000

RJIVE -0.002 0.017 0.052 0.000 0.011 0.063 -0.001 0.009 0.063
ENIV 0.012 0.016 0.149 0.016 0.016 0.218 0.012 0.012 0.233

SS-ENIV 0.000 0.022 0.052 0.001 0.016 0.060 -0.001 0.013 0.057
CF-ENIV -0.001 0.015 0.054 0.000 0.012 0.053 -0.001 0.010 0.071

D. Concentration parameter = 150. Gaussian Instruments
Lasso-IV 0.002 0.010 0.064 0.010 0.011 0.175 0.005 0.007 0.113

SS-Lasso-IV 0.000 0.015 0.058 0.000 0.02 0.045 -0.001 0.012 0.048
post-Lasso-IV 0.004 0.010 0.076 0.010 0.011 0.186 0.006 0.007 0.145

SS-post-Lasso-IV 0.000 0.015 0.057 0.001 0.018 0.045 -0.001 0.012 0.048
CF-Lasso-IV -0.001 0.011 0.006 0.000 0.014 0.000 0.000 0.009 0.002

RJIVE 0.000 0.011 0.057 0.000 0.009 0.065 -0.001 0.006 0.055
ENIV 0.008 0.011 0.132 0.012 0.012 0.251 0.008 0.009 0.225

SS-ENIV 0.000 0.015 0.054 0.001 0.013 0.060 0.000 0.010 0.047
CF-ENIV -0.001 0.011 0.056 0.000 0.010 0.079 0.000 0.007 0.070

Note: Results are based on 1500 simulation replications. I report Median Bias (Med. Bias), Median absolute deviation (MAD) and
rejection frequency for a 5% level test (RP 5%) for nine different estimators: the Lasso IV and post-Lasso IV estimators of Belloni et al.
(2012, Lasso-IV and post-Lasso-IV), their sample-split versions (SS-Lasso-IV and SS-post-Lasso-IV), the cross-fit Lasso IV estimator,
the RJIVE by Hansen and Kozbur (2014, RJIVE), and three estimators proposed in this paper: the elastic-net IV estimator (ENIV),
the sample-split elastic-net IV estimator (SS-ENIV) and the cross-fit elastic-net IV estimator (CF-ENIV).
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For the mixed design, only RJIVE and SS-ENIV deliver accurate test size. Overall, SS-ENIV tends

to produce more precise rejection rates when the true non-zero coefficients on the instruments vary

in magnitude (the case of a mixed signal), compared to the case of the equal coefficient magnitude15,

which is often examined as part of simulation exercises in the literature (e.g. in Hansen and Kozbur,

2014, among others). In practice, there is often no good reason to expect a signal to be evenly

distributed across all instruments that explain a decent share of variance in xi, the treatment

variable. Whereas RJIVE tends to result in rejection frequencies slightly above the nominal test

size, the opposite is true for SS-ENIV.

With a strong sparse signal, most Lasso-based estimators produce adequate rejection frequencies,

as expected. RJIVE, SS-ENIV and CF-ENIV retain rather accurate test size irrespective of the

data structure when the signal is strong. Notably, CF-ENIV performs better with strong signals

(sparse, dense, or mixed) than with weak signals. The SS-ENIV estimator proves to be a good

alternative to RJIVE when dealing with a strong mixed signal, similarly to the case of a weak

mixed signal discussed above.

Table 2 shows the results for K = 190. Panels A and B again focus on the results for weak

instruments (µ2 = 30), Panels C and D report the results for a stronger signal (µ2 = 150).

For the weak sparse signal, some Lasso-based estimators have reasonable rejection frequencies,

although RJIVE and SS-ENIV tend to be superior in terms of bias and rejection rate, irrespective

of sparsity. With the weak signal and mixed data structure, RJIVE and SS-ENIV perform similarly,

although the sample-split elastic-net IV estimator seems to be more prone to under-rejection. With

the strong sparse signal, Lasso-based estimators (Lasso-IV, SS-Lasso-IV, post-Lasso-IV, SS-post-

Lasso-IV) most often result in relatively adequate rejection frequencies, the same holds for RJIVE,

SS-ENIV, and CF-ENIV. With the strong mixed signal, binary or Gaussian, SS-ENIV tends to

produce slightly lower rejection frequencies than RJIVE, including the case of Gaussian instruments

when both estimators slightly over-reject.
15All first-stage variables are standardized before ridge/lasso/elastic-net estimation is performed.
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Table 2. Simulation Results many instruments K = 190
Sparse Signal Dense Signal Mixed Signal

Med. Bias MAD RP 5% Med. Bias MAD RP 5% Med. Bias MAD RP 5%
A. Concentration parameter = 30. Binary Instruments

Lasso-IV 0.010 0.015 0.103 0.016 0.016 0.329 0.013 0.013 0.290
SS-Lasso-IV 0.001 0.032 0.009 0.007 0.038 0.003 0.004 0.025 0.001

post-Lasso-IV 0.010 0.015 0.120 0.015 0.015 0.359 0.013 0.013 0.333
SS-post-Lasso-IV 0.001 0.032 0.008 0.005 0.039 0.003 0.003 0.026 0.002

CF-Lasso-IV 0.025 0.025 0.000 0.009 0.027 0.000 0.006 0.012 0.000
RJIVE 0.000 0.025 0.042 0.000 0.009 0.043 0.000 0.008 0.048
ENIV 0.026 0.026 0.498 0.018 0.018 0.720 0.016 0.016 0.729

SS-ENIV 0.001 0.034 0.037 0.000 0.015 0.043 0.002 0.013 0.043
CF-ENIV 0.001 0.026 0.132 0.000 0.012 0.108 0.001 0.010 0.124

B. Concentration parameter = 30. Gaussian Instruments
Lasso-IV 0.005 0.011 0.074 0.010 0.01 0.275 0.007 0.008 0.231

SS-Lasso-IV 0.000 0.016 0.031 0.010 0.025 0.001 0.002 0.019 0.005
post-Lasso-IV 0.007 0.011 0.124 0.010 0.01 0.315 0.008 0.274

SS-post-Lasso-IV 0.000 0.016 0.030 0.011 0.023 0.001 0.002 0.019 0.005
CF-Lasso-IV 0.005 0.010 0.000 0.015 0.015 0.000 0.007 0.009 0.000

RJIVE -0.001 0.017 0.052 0.000 0.008 0.050 -0.001 0.007 0.042
ENIV 0.013 0.015 0.348 0.011 0.011 0.688 0.009 0.009 0.641

SS-ENIV 0.001 0.019 0.044 0.002 0.013 0.045 0.001 0.013 0.025
CF-ENIV 0.001 0.015 0.110 0.002 0.011 0.129 0.001 0.010 0.141

C. Concentration parameter = 150. Binary Instruments
Lasso-IV 0.005 0.014 0.069 0.011 0.012 0.208 0.010 0.01 0.180

SS-Lasso-IV -0.001 0.021 0.049 0.000 0.023 0.039 0.001 0.018 0.029
post-Lasso-IV 0.005 0.014 0.074 0.012 0.012 0.235 0.010 0.011 0.217

SS-post-Lasso-IV 0.000 0.021 0.051 0.001 0.020 0.042 0.001 0.016 0.032
CF-Lasso-IV 0.001 0.015 0.001 0.001 0.016 0.002 0.000 0.014 0.001

RJIVE -0.001 0.018 0.053 0.000 0.008 0.059 0.000 0.007 0.049
ENIV 0.015 0.018 0.201 0.015 0.015 0.400 0.014 0.014 0.430

SS-ENIV 0.001 0.021 0.052 0.000 0.012 0.061 0.000 0.010 0.042
CF-ENIV 0.000 0.015 0.047 0.000 0.009 0.053 0.000 0.007 0.055

D. Concentration parameter = 150. Gaussian Instruments
Lasso-IV 0.003 0.010 0.055 0.009 0.010 0.239 0.007 0.008 0.207

SS-Lasso-IV -0.001 0.016 0.043 0.002 0.018 0.021 0.000 0.014 0.036
post-Lasso-IV 0.004 0.010 0.060 0.010 0.010 0.274 0.008 0.008 0.259

SS-post-Lasso-IV 0.000 0.015 0.043 0.001 0.016 0.024 0.000 0.014 0.033
CF-Lasso-IV -0.001 0.011 0.002 0.002 0.015 0.001 0.000 0.010 0.002

RJIVE 0.000 0.012 0.045 -0.001 0.006 0.053 0.000 0.006 0.064
ENIV 0.009 0.012 0.146 0.012 0.012 0.440 0.010 0.010 0.444

SS-ENIV 0.000 0.016 0.037 0.000 0.010 0.039 0.000 0.009 0.053
CF-ENIV 0.000 0.011 0.046 0.000 0.007 0.083 0.000 0.006 0.088

Note: Results are based on 1500 simulation replications. I report Median Bias (Med. Bias), Median absolute deviation (MAD) and
rejection frequency for a 5% level test (RP 5%) for nine different estimators: the Lasso IV and post-Lasso IV estimators of Belloni et al.
(2012, Lasso-IV and post-Lasso-IV), their sample-split versions (SS-Lasso-IV and SS-post-Lasso-IV), the cross-fit Lasso IV estimator,
the RJIVE by Hansen and Kozbur (2014, RJIVE), and three estimators proposed in this paper: the elastic-net IV estimator (ENIV),
the sample-split elastic-net IV estimator (SS-ENIV) and the cross-fit elastic-net IV estimator (CF-ENIV).
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To sum up the results of the simulation study, the IV estimators based on elastic-net constitute

a safe alternative to those based on lasso under an unknown degree of sparsity. In particular, the

sample-split elastic-net IV estimator tends to dominate its lasso-based counterpart, the sample-split

lasso IV estimator, as well as other lasso-based IV estimators, in terms of bias and test accuracy.

In addition, the performance of the sample-split elastic-net IV estimator is comparable to that of

the ridge jackknife IV estimator. SS-ENIV tends to result in slightly lower rejection frequencies

than RJIVE, thus being superior in the settings when both estimators over-reject. RJIVE shows

minor over-rejection in most settings considered with the mixed signal, thereby motivating further

investigation of the relative performance of RJIVE and SS-ENIV estimators in various settings

with uneven distribution of explanatory power across the instrumental variables. Finally, data

generating processes with alternative degrees of sparsity are also worth examining.

Figure 1 presents frequency plots for the penalty ratio from first-stage regressions estimated via

elastic-net. The elastic-net penalty ratio is a/ (a+ b) where a and b come from representing the

elastic-net penalty term λ
(
α |βj|+ (1− α) β2

j

)
as a |βj|+ bβ2

j . The penalty ratio is chosen through

cross-validation.16 For the ratio 1.0 the penalty is an l1-penalty (lasso-type), whereas for the ratio

0.0 it is an l2-penalty (ridge-type). A combination of both l1 and l2 penalties is employed when

the cross-validation procedure results in a value between 0 and 1. The results for a sparse, dense,

and mixed DGP are shown in the first, second and third column of plots, respectively. As before,

panels A, B, C and D correspond to various instrument designs. Only the case with p = 95 is

presented, since the results for the case with p = 190 look very similar.

When fitting the right combination of both l1 and l2 penalties to a first-stage relationship, the

elastic-net estimator is quite successful in detecting a sparse structure, and thus often sets the

penalty ratio to 1 in this case. When dealing with non-sparse first-stage relationships, the distri-

bution of the penalty ratio is more even, with massive point mass on 0 and 1, and also on the
16I use a Python package, sklearn.linear_model.ElasticNetCV, to fit the first-stage via elastic-net, with a prespec-

ified grid [0.01, 0.03, .05, .07, .1, .2, .5, .8, .9, 0.93, .95, 0.97, .99, 1]. For each value of the penalty ratio, the grid for
a parameter α, which is also estimated through cross-validation, consists of 100 values and is defined automatically
as part of the ElasticNetCV package.
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Figure 1: The penalty ratio chosen through cross-validation as part of the first-stage elastic-net regression.
Cross-validation is performed on a grid from 0 to 1. Graphs show the frequency of each value being selected.
For the penalty ratio 1 the penalty is an l1-penalty; for the penalty ratio 0 it is an l2-penalty; for the
penalty ratio between 0 and 1 it is a combination of both. The case with p = 95 instruments and n = 100

observations is presented.
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intermediate values if the signal is strong (µ = 150). Thus, the elastic-net estimator is performing

better in combining l1 and l2 penalties when facing a strong signal, whereas it tends to often con-

verge to a corner solution (imposing no ridge-type penalty, or no lasso-type penalty at all) when

dealing with a weak signal (µ = 30). In addition, the graphs presented indicate the need for a finer

grid to search over for the best penalty ratio (especially around the middle value), for a better fit

to the unknown sparsity of the data at hand.

4 Empirical Example

In this section, I demonstrate the application of the EN-based IV estimators to the classic example

from the many-instrument literature – Angrist and Krueger (1991). The coefficient of interest in

this example is the causal effect of schooling on earnings, and the schooling endogeneity is addressed

through the use of instrumental variables. The data from Angrist and Krueger (1991) potentially

allow one to employ many instruments for identification of the treatment effect, and there is a rich

literature on consequences of alternative IV-choice decisions, in terms of both point estimate’s and

inference quality, driven by the numerosity and weakness of the available instrumental variables

(Bound, Jaeger and Baker, 1995; Angrist, Imbens and Krueger, 1999; Staiger and Stock, 1997;

Hansen, Hausman and Newey, 2008).

The simple model under consideration is

log (wagei) = α Schoolingi +W ′
iγ + εi

Schoolingi = Z ′iΠ1 +W ′
iΠ2 + ui

where εi and ui satisfy E [εi|Wi, Zi] = E [ui|Wi, Zi] = 0, log (wagei) is a log of individual wage,

Schoolingi is individual years of completed schooling, Wi is a vector of control variables and Zi is

a vector of instrumental variables that affect the wage only through the education channel. The

data come from the 1980 U.S. Census and represent 329,509 men born between 1930 and 1939.

The control set consists of 510 variables: a constant, 9 year-of-birth dummies, 50 state-of-birth

dummies and 450 state-of-birth × year-of-birth cross-products. I employ three alternative sets of
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instruments, varying from three quarter-of-birth dummies to a full set of interactions with state-

of-birth and year-of-birth control variables Wi, i.e. a total of 1,527 instrumental variables. By the

identification argument of Angrist and Krueger (1991), α, the IV coefficient on Schoolingi, is a

causal effect of education on earnings.

I report the results for three instrument sets in Table 3. For each set of instrumental variables,

I present the estimates from conventional 2SLS, post-Lasso, SS-post-Lasso, ENIV, SS-ENIV, and

CF-ENIV. For the estimators involving sample-splitting, I report two estimates (separated by /

in Table 3) that result from swapping the sample halves used for fitting the first stage. This way

I demonstrate the sensitivity of the point estimates that takes place despite the large sample at

hand.

Table 3.
2SLS post-Lasso SS-post-Lasso RJIVE ENIV SS-ENIV CF-ENIV

A. 3 instruments
Coefficient 0.108 0.111 0.097 / 0.112 0.109 0.108 0.098 / 0.118 0.108
St. error 0.020 0.0205 0.034 / 0.039 0.020 0.020 0.027 / 0.029 0.020

B. 180 instruments
Coefficient 0.093 0.112 0.097 / 0.112 0.106 0.093 0.103 / 0.114 0.108
St. error 0.010 0.017 0.034 / 0.039 0.016 0.010 0.026 / 0.027 0.009

C. 1527 instruments
Coefficient 0.071 0.086 0.097 0.107 0.074 0.079 / 0.145 0.112
St. error 0.005 0.025 0.039 0.017 0.005 0.061 / 0.064 0.004

Panel A uses the three main quarter-of-birth dummies from Angrist and Krueger (1991). As

expected, all estimators considered result in similar point estimates and standard errors. Due to

the high strength of each of the small number of instrumental variables being used, the methods

involving regularization impose a small regularization penalty, thus leading to nearly identical

results as 2SLS.

Panel B employs 180 instruments including the three quarter-of-birth dummies and their cross-

products with the 9 year-of-birth dummies and 50 state-of-birth dummies. This set is also used

in Angrist and Krueger (1991), with the aim of increasing the efficiency of the estimates. As

expected, the 2SLS estimate is biased toward the OLS estimate of 0.0673. The same applies to

ENIV that actually employs approximately as many instruments as 2SLS does. Post-Lasso, SS-
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post-Lasso, SS-ENIV, and CF-ENIV tend to deliver adequate estimates, though the instability of

the estimators involving sample splitting is noticeable. The post-Lasso estimator does not have a

downward bias, while CF-ENIV results in the smallest estimated standard error.

In Panel C, I show results based on the full set of 1527 instrumental variables. Even stronger

bias of the 2SLS estimate towards the OLS estimate is observed. In this case, the SS-post-Lasso

estimator tends to select no variables into the first stage regression (therefore, only a single number

is provided). The post-Lasso, SS-post-Lasso, ENIV estimators now also result in a substantial

downward bias. However, the CF-ENIV still delivers a reasonable point estimate, and also the

smallest estimated standard error as well.

Conclusion

In this paper, I propose elastic-net instrumental variable estimators to deal with high-dimensional

sets of instruments. The proposed estimators can be asymptotically equivalent to the lasso-based

IV estimators but have better sampling properties if correlations among the instruments are not

negligible. In addition, the IV estimators based on elastic-net are robust to deviations of the

first-stage regression from sparsity. These features make the elastic-net IV estimators a valuable

alternative to the lasso IV estimators for policy evaluation.
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Appendix

Proof of Proposition 1.

Lemma 1 from Zou and Hastie (2006) shows that the naive elastic-net criterion

L
(
λEN1 , λEN2 , β

)
= |y −Xβ|2 + λEN1 |β|1 + λEN2 |β|2

can be written as the lasso criterion

L (γ, β∗) = |y∗ −X∗β∗|2 + γ |β∗|1 ,

where γ = λEN1 /
√

1 + λEN2 , β∗ =
√

1 + λEN2 β, and an augmented data set (y∗, X∗) is defined by

X∗(n+p)×p =
(
1 + λEN2

)−1/2 X√
λEN2 I

 , y∗(n+p) =

 y

0

 .

Then, for β̂∗ = arg minβ L (γ, β∗) ,

β̂EN =
1√

1 + λEN2

β̂∗.

Having the elastic-net problem represented as the lasso problem, we can directly apply the results

from Corollary 1 by BCCH on lasso’s convergence rates under non-Gaussian and heteroskedastic

errors. For a properly chosen γ,

∥∥∥D̂∗i −D∗i ∥∥∥
2,n

.P

√
s log (p ∨ (n+ p))

n+ p
=

√
s log (n+ p)

n+ p

and therefore, ∥∥∥D̂EN
i −Di

∥∥∥
2,n

.P

√
s log (n+ p)

n+ p
.

Similarly, using the second inequality from Corollary 1,∥∥∥β̂∗ − β∗∥∥∥
1
.P

√
s2 log (n+ p)

n+ p
,
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and it can be written as

∥∥∥β̂EN − β∥∥∥
1
.P

1√
1 + λEN2

√
s2 log (n+ p)

n+ p
≤

√
s2 log (n+ p)

n+ p
,

thus giving us a sufficient condition for Theorem 4 by BCCH to hold.
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Abstrakt 

 

Instrumentální proměnné (IV) se běžně používají pro identifikaci účinků treatmentu a následné 

vyhodnocení politiky. Použití mnoha informativních instrumentů zlepšuje přesnost odhadu. Užití 

mnohorozměrných sad instrumentálních proměnných neznámé síly však může být komplikované a 

vyžaduje výběr modelu nebo regularizaci regrese v prvním stupni. V současné době je lasso zavedeno jako 

jedna z nejpopulárnějších regularizačních technik, která se opírá o předpoklad přibližné řídkosti. Zkoumám 

relativní výkon odhadů lassa a elastických sítí (elastic net) pro predikované hodnoty prvního stupně jako 

součást odhadu IV. Jelikož elastická síť obsahuje kromě penalizace typu lasso penalizaci hřebenového typu, 

obecně se oproti lassu v konečných vzorcích zlepšuje, když korelace mezi instrumentálními proměnnými 

nejsou zanedbatelné. Ukazuji, že IV odhady založené na odhadech lasa a elastické sítě v prvním stupni 

mohou být asymptoticky ekvivalentní. Prostřednictvím Monte Carlo studie demonstruji robustnost 

estimátoru elastic net IV s rozděleným vzorkem dat vůči odchylkám od přibližné řídkosti a vůči korelaci 

mezi potenciálně mnohorozměrnými instrumenty. Nakonec uvádím empirický příklad, který demonstruje 

potenciální zlepšení přesnosti odhadu získané použitím IV odhadů založených na elastické síti. 
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