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Abstract

We study informational dissociations between decisions and decision confidence. We explore the

consequences of a dual-system model: the decision system and confidence system have distinct goals,

but share access to a source of noisy and costly information about a decision-relevant variable. The

decision system aims to maximize utility while the confidence system monitors the decision system and

aims to provide good feedback about the correctness of the decision. In line with existing experimental

evidence showing the importance of post-decisional information in confidence formation, we allow the

confidence system to accumulate information after the decision. We aim to base the post-decisional

stage (used in descriptive models of confidence) in the optimal learning theory. However, we find

that it is not always optimal to engage in the second stage, even for a given individual in a given

decision environment. In particular, there is scope for post-decisional information acquisition only

for relatively fast decisions. Hence, a strict distinction between one-stage and two-stage theories of

decision confidence may be misleading because both may manifest themselves under one underlying

mechanism in a non-trivial manner.
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1 Introduction

Decision confidence is a subjective assessment of one’s own decision quality—a belief that a

decision is correct. It is a manifestation of one’s metacognitive abilities, which has been an

area of great interest in cognitive science. However, it has received much less attention in eco-

nomics even though it is relevant in many situations of economic interest.1 Moreover, decision

confidence provides cheap additional information about people’s preferences and judgements,

which relates to the proposal of Krajbich et al. (2014) to use previously neglected measures.

We jointly model decisions, decision times, confidence judgements, and interjudgement times.2

Such data are commonly gathered in the two-alternative choice-followed-by-confidence exper-

imental paradigm.3 For example, a participant may be asked to choose which cloud on the

screen (left or right) contains more dots and, after making the decision, to indicate on a slider

between 0 and 1 her confidence in the decision.

In cognitive science, several descriptive4 models have been developed to capture this kind of

data. We relate directly to two prominent models in this literature: the Two-Stage Dynamic

Signal Detection (2DSD) model of Pleskac and Busemeyer (2010) and the Collapsing Confidence

Boundary (CCB) model of Moran et al. (2015). We adopt the idea of (potential) post-decisional

evidence accumulation for confidence judgement formation (Yeung and Summerfield, 2012;

Fleming and Daw, 2017). The primary role of these models is to provide a flexible framework

1We list some areas and literature that provide economic motivation for interest in decision confidence in

Appendix F.
2Confidence judgements can be recorded on a slider between 0 and 1, with 1 corresponding to being certain

about the decision and 0 to recognizing an error with certainty. Decision times (also called ‘reaction times’

or RT) measure the time between the start of the visual display of stimulus and the recording of the decision.

Interjudgement times (also denoted RT2) measure the time between the recording of the decision and the

recording of the confidence judgement.
3The best available source of data is the Confidence Database (Rahnev et al., 2020).
4We use the nomenclature of normative and descriptive models in the sense of Baron (2012). In particular,

descriptive models “try to explain how people make judgments and decisions” (Baron, 2012, p. 1); they are

data-driven. On the other hand, normative models serve as “standards for evaluation” and “[t]hey must be

justified independently of observations of people’s judgments and decisions, once we have observed enough to

define what we are talking about.” (Baron, 2012, p. 1). Hence, normative models capture our understanding of

a situation, formulate a problem associated with that situation, and assume an optimal solution to the problem

to derive behavior.
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that is able to capture a multitude of empirical patterns and thus enable us to summarize and

think about those patterns in a succinct way. However, these models are heuristic in the sense

that they are not derived from first principles and the objects characterizing the behavior are

not tied to the primitives of the decision environment. To be able to conduct counterfactual

analyses and theorize about the drivers of decision confidence, normative models are needed.

At the normative spectrum of the literature, we follow closely the model of Fudenberg et al.

(2018). However, this and similar normative models (Wald, 1947; Tajima et al., 2016) were

developed to model primarily decisions, but not decision confidence. On one hand, they feature

belief confidence,5 so one can define decision confidence in these models as the belief confidence

in the chosen option upon stopping. On the other hand, such decision confidence is incompatible

with the observed ability of people to recognize their own errors even without explicit feedback

(Yeung and Summerfield, 2012; Fleming and Daw, 2017) and the importance of post-decisional

evidence in confidence formation (Moran et al., 2015). Hence, an extension of these models is

needed to account for the whole mechanism behind decision confidence.

In this paper, we develop a normative dynamic model of decision confidence. At Marr’s (1982)

computational level, we posit that a decision maker employs two systems with distinct goals—

a decision system and a confidence system. The decision system aims to choose the best

option, i.e., it maximizes expected utility. The confidence system aims to monitor the decision

system and provide good feedback on its performance. We assume that confidence acts as a

substitute for explicit feedback (thus, it plays a key role in situations when explicit feedback is

not (immediately) available); the confidence system minimizes the mean-squared error (MSE)

of confidence relative to the perfect feedback indicator of (in)correctness of the decision. An

implication of this assumption is that decision confidence is the posterior probability of being

correct, in accordance with the Bayesian confidence hypothesis (Pouget et al., 2016). Finally,

the two separate systems have access to a common source of costly and noisy evidence about

the values of the options and resolve the speed-performance trade-off optimally. Naturally, we

assume that the confidence system can continue evidence accumulation beyond decisions.

5To clarify the terminology, belief confidence (in an option) is accessible at any point of deliberation. However,

in this paper, we are modeling decision confidence, which we define as a subjective assessment of one’s own

decision quality. In particular, this definition requires implicitly that (i) a decision is made (i.e., there is no

decision confidence without a decision) and (ii) decision confidence is a committed judgement (i.e., the endpoint

of deliberation, not a running variable). This distinction mirrors the distinction between “confidence” and

“certainty” advocated by Pouget et al. (2016).
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We are interested especially in dissociations between decision performance and metacognition.

Specifically, we ask when decision and decision confidence should be based on the same evi-

dence. Stated differently, we allow for two-stage confidence formation and we ask when it is

optimal to use only one stage. This amounts to the comparison of the optimal stopping regions

for evidence accumulation of the decision stopping problem and the unconstrained confidence

stopping problem.6

Our main analytical result is a closed-form tight bound on the unconstrained confidence stop-

ping time of the evidence process.7 Together with the unboundedness of the decision stopping

time, this implies that (relatively)8 slow decisions will lead to so called one-stage confidence,

which is a situation when the confidence is based on the same evidence as the decision. There-

fore, there is scope for two-stage confidence, which is a situation when the confidence is based

on more evidence than the decision, only for fast decisions. Consequently, there is space for

error monitoring only for the fast decisions. However, we demonstrate numerically that un-

der some parameters, not all fast decisions must lead to two-stage confidence. Surprisingly,

it may happen that the very fastest decisions (together with the slow decisions) lead to one-

stage confidence, while only intermediately fast decisions lead to two-stage confidence. Finally,

an intuitive result is that it is only under low cost of time and/or strong preference for good

confidence that there is room for two-stage confidence at all.

We contribute to two main strands of literature. First, we build on the analysis of Chernoff’s

(1961) problem of sequential testing of the sign of the normal drift of a Brownian motion

(Zhitlukhin and Muravlev, 2013; Fudenberg et al., 2018). However, our confidence stopping

problem is, to the best of our knowledge, a novel problem. Second, we contribute to the

first long-term goal for the field of metacognition formulated by Rahnev et al. (2021, p. 6)—

development of detailed models of visual metacognition. To the best of our knowledge, we are

the first to propose a dynamic normative model of decision confidence.

6We express both stopping algorithms in the space of the evidence process (as opposed to the space of

posterior expected values, for example).
7The original confidence stopping problem is constrained by the decision stopping time.
8In short, “relatively” means relative to a decision environment. Intuitively, choosing a house in one minute

is fast, but choosing an apple for a snack in one minute is slow. We discuss in detail the meaning of “relatively”

(fast/slow decisions) in Section 3.3.
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Our main contribution to the discussion about one-stage vs. two-stage theories of decision

confidence is that a strict distinction between them (Moran et al., 2015) might be misleading

because both may manifest themselves under one underlying mechanism, even within one indi-

vidual in a given controlled decision environment. Moreover, our approach allows us to predict

how an individual might change the modes of decision confidence formation under different

circumstances. Hence, our model speaks to both intra- and inter-individual differences in the

formation of decision confidence.

In a complementary work, Fleming and Daw (2017) propose a Bayesian framework for grounding

a discussion about a related aspect of metacognitive computation—whether decision and con-

fidence are informed by the same signal or different but correlated signals. In their framework,

our model falls into the category of “postdecisional” models (Pleskac and Busemeyer, 2010;

Moran et al., 2015), in which a single process informs both decision and decision confidence.

We are thus leaving aside their proposed “second-order” architecture that allows decision and

decision confidence to be informed by distinct but correlated processes. However, our model

has a feature reminiscent of the “second-order” architecture: the goals of the decision and

confidence systems are distinct. Neverthless, Fleming and Daw (2017) do not postulate an

explicit goal for the confidence system (for the decision system, it is implicitly expected utility

maximization). Moreover, they work in a static environment and are concerned with a high-

level structure of confidence computation, while we focus on procedural details of the optimal

evidence accumulation.9

The question we ask—when is it optimal to gather additional evidence after the decision?—is

similar to the question studied by the literature about metacognitive control (Schulz et al.,

2021; Boldt et al., 2019; Desender et al., 2018). In a typical experimental paradigm in this

literature, participants are asked to decide whether to obtain additional information after the

first decision/stimulus presentation, but they are given an explicit motivation for doing so,

e.g., a revision of the initial decision or a subsequent related decision. Moreover, the stimulus

presentation is often not under full control of the participant. In contrast, we aim to contribute

primarily to the literature about metacognitive monitoring, i.e., we are interested in how deci-

sion confidence arises rather than how it is used to control subsequent behavior. In particular,

sampling beyond decisions in our setup leads to formation of decision confidence, while in the

9Fleming and Daw (2017) recognize the importance of modeling the dynamics in their footnote 1, p. 94.
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control literature, the roles are reversed—decision confidence is used to decide about additional

sampling for a specified goal.

2 Model

Our model consists of two separate systems—decision system and confidence system. The

systems have access to a common evidence process and sampling is costly. Since the systems

have different goals, they have to solve different optimal stopping problems.

2.1 Decision system

The model of the decision system follows closely the model of Fudenberg et al. (2018).10 In

the decision stage, the agent is choosing between options l and r, which can bring her utilities

θl ∈ R and θr ∈ R, respectively. The agent does not know the true utilities but has a prior

about (θl, θr)

µ0 ∼ N


X l

0

Xr
0

 ,
σ2

0 0

0 σ2
0


 . (1)

Moreover, she can learn about the utilities by observing continuously the signal {(Z l
t, Z

r
t )}t≥0

such that for i ∈ {l, r}

Zi
t = θit+ αBi

t, t ≥ 0, (2)

where {Bi
t}t≥0 is a standard Brownian motion (the l and r versions are independent of each

other and of (θl, θr)) and parameter α > 0 captures the noisiness of the signal components.

However, the agent pays constant flow cost c > 0 for accumulating evidence.

We denote by Ft the information up to time t (formally, on our probability space (Ω,F ,P), we

have a filtration {Ft}t≥0 generated by process {(Z l
t, Z

r
t )}t≥0) and beliefs about (θl, θr) at time

t by µt. We denote the posterior means for i ∈ {l, r} by X i
t = E [θi|Ft].

The agent decides when to stop the accumulation of evidence and what option to choose upon

stopping. Conditional on stopping at time t, she chooses an option to maximize her expected

10We also try to adopt the notation of Fudenberg et al. (2018) to the highest reasonable degree so that our

new results about decision confidence can be better understood within their framework.
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utility, so her (optimal) decision rule d : R2 → {l, r} is

d(X l
t , X

r
t ) =


l if X l

t ≥ Xr
t ,

r if X l
t < Xr

t

(3)

and she expects to get max{X l
t , X

r
t }. Hence, she faces a stopping problem

sup
τ∈T

E
[
max{X l

τ , X
r
τ} − cτ

]
, (4)

where τ is an Ft-stopping time (formally, τ : Ω → [0,∞] such that {τ ≤ t} ∈ Ft ∀t ≥ 0 and

P (τ <∞) = 1) and T is the set of all Ft-stopping times.11

2.2 Confidence system

The agent can continue to accumulate signal {(Z l
t, Z

r
t )}t≥0 even after the end of the the decision

stage τ in order to refine her beliefs for forming decision confidence. By accumulating the

evidence in the confidence stage, the agent pays constant flow cost c̄ > 0.

In accordance with the Bayesian confidence hypothesis (Pouget et al., 2016), we define decision

confidence as the probability of having made the optimal decision.12 Hence, decision confidence

at time t ≥ τ is13

conf t = P
(
d(X l

τ , X
r
τ ) = arg max

i∈{l,r}
θi
∣∣∣∣∣Ft

)
. (5)

The agent decides when to stop the confidence stage in order to minimize the MSE loss from

incorrectly assessing the (objective) (in)correctness of the decision and the additional cost of

evidence accumulation in the confidence stage

inf
τc∈T s.t. τc≥τ

E
(conf τc − 1{d(X l

τ , X
r
τ ) = arg max

i∈{l,r}
θi}
)2

+ c̄(τc − τ)
 . (6)

Note that flow cost c̄ is likely to be different from c because it is expressed in different units:

while c captures forgone utils during decision making, c̄ captures forgone utils during confi-

dence formation relative to lost utils due to imperfect confidence (confidence with higher MSE

11In cases of multiple optimal stopping times, we select the minimal optimal stopping time. This is assumed

also for the confidence stopping problem.
12This definition of decision confidence can also be justified as the optimal assessment under the mean-squared

error (MSE) loss from incorrectly assessing the (objective) (in)correctness of the decision.
13We implicitly exclude the event θl = θr, which is of zero probability (for any Ft), so the arg max in the

formula is a singleton.
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loss). Formally, the most natural interpretation of c̄ is that it is cost of time c relative to

the importance of well-calibrated confidence denoted by γ, c̄ = c
γ
. However, c and c̄ can be

manipulated even independently in experiments, e.g., a time-pressure-on-choice manipulation

can be understood as an increase in c without a change in c̄.

3 Analysis

Our research question leads to the comparison of the solutions of the optimal stopping problems

of the decision and confidence system. Since the stopping problem of the decision system has

been studied elsewhere (in particular, by Fudenberg et al. [2018]), we focus on the confidence

stopping problem. The notorious difficulty of optimal stopping problems prevents us from going

far analytically, so we first provide insights based on numerical solutions before presenting more

general points.

3.1 Reformulation of the confidence problem

Since the decision of the agent depends only on the sign of the difference between the options,

the object of interest is θ := θl − θr.14 The prior about θ is

N(X0 := X l
0 −Xr

0 , 2σ2
0). (7)

Hence, a sufficient statistic for the agent is the process

Zt := Z l
t − Zr

t = θt+ α
√

2Bt, t ≥ 0, (8)

where Bt = 1/
√

2(Bl
t −Br

t ) is a standard Brownian motion independent of θ. By Lemma A.1,

the beliefs about θ at time t are normal

N(Xt, σ
2
t ) (9)

with mean

Xt = σ−2
0 X0 + α−2Zt
σ−2

0 + α−2t
(10)

and variance

σ2
t = 2

σ−2
0 + α−2t

. (11)

14Note that Fudenberg et al. (2018) denote by θ something else—the pair (θl, θr).
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Hence, we can express the confidence explicitly

conf t = Φ
(
Xt

σt

)
1{Xτ ≥ 0}+ Φ

(
−Xt

σt

)
1{Xτ < 0}, (12)

where Φ is the CDF of the standard normal distribution.

Since

E
(conf τc − 1{d(X l

τ , X
r
τ ) = arg max

i∈{l,r}
θi}
)2
 (13)

= E
E

(conf τc − 1{d(X l
τ , X

r
τ ) = arg max

i∈{l,r}
θi}
)2
∣∣∣∣∣∣Fτc

 (14)

= E
[
var

(
1{d(X l

τ , X
r
τ ) = arg max

i∈{l,r}
θi}
∣∣∣∣∣Fτc

)]
(15)

= E
[
conf τc(1− conf τc)

]
, (16)

we can use (12) to rewrite the confidence-stage objective function as

E
[
Φ
(
Xτc

στc

)
Φ
(
−Xτc

στc

)
+ c̄τc

]
− c̄E [τ ] . (17)

In the reformulation of the confidence objective (17), we can focus only on the first part because

c̄E [τ ] is irrelevant for the choice of τc. Moreover, the first part in (17) does not feature any τ

elements, so we can simplify the analysis by studying the unconstrained stopping problem

inf
τ ′∈T

E
Φ

 σ−2
0 X0 + α−2Zτ ′√
2(σ−2

0 + α−2τ ′)

Φ
− σ−2

0 X0 + α−2Zτ ′√
2(σ−2

0 + α−2τ ′)

+ c̄τ ′

 . (18)

Due to the Markovian structure of problem (18) (see Appendix A.2), the solution of this problem

boils down to finding its continuation region in the (t, z)-space (= [0,∞) × R). Specifically,

we are looking for a set CC ⊆ [0,∞) × R such that the complement of CC is closed and the

stopping time τ ′∗ = inf{t ≥ 0: (t, Zt) /∈ CC} is the (minimal) optimal stopping time in (18).

To simplify further notation, let us introduce the loss function f : [0,∞) × R → R defined for

all (r, x) ∈ [0,∞)× R as follows

f(r, x) = Φ
 σ−2

0 X0 + α−2x√
2(σ−2

0 + α−2r)

Φ
− σ−2

0 X0 + α−2x√
2(σ−2

0 + α−2r)

+ c̄r. (19)

Moreover, we will denote the expected loss at time t ∈ [0,∞) when we start sampling with

s ∈ [0,∞) amount of evidence and the evidence process at position z ∈ R

u(t; s, z) = E [f(s+ t, Zz
t )] , (20)

9



where Zz
t = z+θt+α

√
2B̃t, t ≥ 0, with a new standard Brownian motion {B̃t}t≥0 (see Appendix

A.2). Finally, we will denote the value function

U(s, z) = inf
τ∈T

u(τ ; s, z). (21)

With this notation, the confidence stopping problem can be formulated as the problem of

characterizing the set

CC = {(s, z) ∈ [0,∞)× R : U(s, z) < f(s, z)}. (22)

If we denote by CD the continuation region of the decision stopping problem (4) in the (t, z)-

space,15 the continuation region of the original confidence stopping problem (6) will be CD ∪

CC . We are interested especially in the analysis of the regions CC\CD and CD\CC , which

characterize when it is optimal to continue accumulating evidence beyond the decision stage

and when it is optimal to stop immediately after the decision stage, respectively.

3.2 Qualitative insights from numerical solutions

In Figure 1, we depict the numerically computed decision and confidence stopping boundaries

(∂CD and ∂CC , respectively) for an actual individual with estimated parameters c = 0.02, α =

2, σ0 = 1.8, X0 = 016 and a hypothetical value of c̄ = 0.007. As is illustrated by this figure, the

decision stopping boundary is a pair of barriers collapsing to zero at infinity and the confidence

stopping boundary is a left-truncated ellipse.17 These are the typical features of these regions

(for another example of the boundaries with different parameters, see Figure 3 in Appendix

G). One less typical feature of the boundaries depicted in Figure 1 is that they first expand

before collapsing.18 We chose this non-typical (but realistic) set of parameters to illustrate an

important point developed later in this section.

The value of c̄ used in Figure 1 is sufficiently low so that it is sometimes optimal to sample

beyond decisions. In particular, if a realization of the evidence process Zt is sufficiently strong,

15Fudenberg et al. (2018) characterize CD in their Theorem 4 and footnote 22.
16See Subject 45 in Table 4 in the Online Appendix of Fudenberg et al. (2018). The value of X0 = 0 was

imposed in their work.
17For the characterization of the decision stopping boundary, see Fudenberg et al. (2018). The shape of the

confidence stopping boundary is driven by region C̊C derived analytically in Appendix A.3.
18This can be seen from Figure 3 in the Online Appendix of Fudenberg et al. (2018). The estimated decision

boundaries for most participants are monotonically collapsing.
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Figure 1: An illustration of optimal stopping of the evidence process for decision and confi-

dence for a low value of c̄. The decision and confidence stopping boundaries are computed

numerically (see Appendix D) for parameters c̄ = 0.007, c = 0.02, α = 2, σ0 = 1.8, X0 = 0. The

grey lines represent two possible realizations of the evidence process. The blue dots represent

the moments of decision formation and the pink dots represent the moments of confidence

formation.

e.g., as depicted by the dark grey line, then the decision is made inside the confidence continu-

ation region CC and it is optimal to sample beyond such decision to refine confidence. Hence,

the confidence judgement will be based on more information than the decision. We call such

cases of informational dissociation between decision and confidence two-stage confidence.

On the other hand, if a realization of the evidence process Zt is sufficiently weak, e.g., as

depicted by the light grey line, then the decision is made outside the confidence continuation

region CC and it is optimal to stop as soon as the decision is made. In fact, from the perspective

of confidence, it would be optimal to stop even sooner in this case—upon hitting ∂CC ; however,

the confidence stopping time is chosen only from a restricted set of stopping times that come

11



after the optimal decision stopping time. Hence, the confidence judgement will be based on

the same information as the decision. We call such cases of informational congruence between

decision and confidence one-stage confidence.

As one might expect, the higher is c̄, the smaller is the confidence continuation region CC ,

thus the less likely confidence will be two-stage. Moreover, from the shape of the decision

and confidence stopping boundaries, one might expect that the two-stage confidence would

prevail only for the fastest decisions. However, as suggested by the numerical solution in the

next paragraph, this intuition might not hold. This might be an important point speaking to

the architecture underlying confidence formation that would be missed by heuristic models of

decision confidence (Moran et al., 2015; Pleskac and Busemeyer, 2010).

In Figure 2, we depict the numerically computed decision and confidence stopping boundaries

for an individual with c̄ = 0.012 and the same remaining parameters as in Figure 1, c =

0.02, α = 2, σ0 = 1.8, X0 = 0. The value of c̄ is sufficiently low so that there is space for

two-stage confidence. However, for the fastest decisions, CC is contained in CD, so confidence

will be one-stage for these decisions—for example, see the strong realization of the evidence

process depicted in dark grey. On the other hand, the weak realization of the evidence process

depicted in light grey will lead to a relatively fast (but not the fastest) decision and two-stage

confidence.19 Finally, the weakest realizations of the evidence process (as the yellow one) will

again lead to one-stage confidence. This illustrates a potential “non-monotonicity” of occurrence

of two-stage confidence.

In summary, the numerical solutions suggest several qualitative insights about the informational

underpinning of confidence judgements relative to decisions:

• The slowest decisions are associated with one-stage confidence, i.e., decisions and decision

confidence are based on the same evidence.

• If the cost of time relative to the importance of good confidence c̄ is sufficiently low,

(intermediately) fast decisions are associated with two-stage confidence, i.e., decision

confidence is based on more evidence than decisions.

19Notice that even though the decision and confidence boundaries ∂CD and ∂CC are not very distant in the

region for intermediately fast decisions, the resulting timing of decision and confidence formation may be very

distinct as illustrated by the light grey realization of the evidence process.
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Figure 2: An illustration of optimal stopping of the evidence process for decision and confidence

for a moderately high value of c̄. The decision and confidence stopping boundaries are

computed numerically (see Appendix D) for parameters c̄ = 0.012, c = 0.02, α = 2, σ0 =

1.8, X0 = 0. The grey and yellow lines represent three possible realizations of the evidence

process. The blue dots represent the moments of decision formation and the pink dots represent

the moments of confidence formation.

• If the cost of time relative to the importance of good confidence c̄ is sufficiently low, the

fastest decisions might be associated with two-stage confidence.

The meaning of “fast” and “slow” decisions in these statements is relative to the decision

environment. It is supposed to capture a qualitative distinction between decisions in terms

of timing for a given decision environment, but it does not mean there are some fixed time

thresholds that could help to classify decisions as fast or slow universally. In the next section, we

provide a threshold as a function of the parameters of a decision environment that brings more

meaning to this distinction between fast and slow decisions and corroborates the qualitative

insights just described.
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3.3 Bound for two-stage confidence

Our main analytical result is the explicit tight bound on the optimal stopping time in the

unconstrained confidence stopping problem (18).

Proposition 1. Any optimal stopping time in the unconstrained confidence stopping problem

(18) is bounded almost surely by max{α2[(2πα2c̄)−1 − σ−2
0 ], 0}.

Proof. The proof is in Appendix A.4.

To gain intuition for the overall shape and boundedness of the confidence stopping region,

assume X0 = 0 for simplicity and fix a time t > τ . Conditional on t, the MSE loss, which

we want to minimize, can be rewritten as in (13). In particular, it can be noticed that as a

function of the evidence particle Zt (denoted MSEt(Zt)), it is bell-shaped and smooth around

zero. Hence, when deciding at time t whether to continue to t + dt, we can see from the bell

shape of MSEt(Zt) that some scope for a decrease in the loss can be expected only around

zero due to concavity, i.e., we can expect the evidence process to diffuse almost equally likely

to parts with much lower loss than to parts with only slightly higher loss.

The boundedness stems from the smoothness of MSEt(Zt) around zero. In particular, as time

t increases, MSEt(Zt) becomes flatter around zero,20 so the expected drop in loss near zero

becomes smaller as time passes. However, there is no kink at zero as in the case of the decision

problem that would prevent the expected drop in loss to be dominated by the cost of sampling

time at a finite point of time.

The bound in Proposition 1 is the threshold distinguishing “slow” and “fast” decisions alluded

to in the previous section. For decisions made after this point, the decision confidence will

certainly be one-stage. For decisions made slightly before this point, the decision confidence

will still be one-stage, which comes from the fact that the decision stopping boundary is bounded

away from zero at any specific time while the confidence boundary collapses to zero at a finite

time.

20As time increases, low values of Zt become more consistent with the value of the utility difference θ around

zero, for which the most cautious confidence judgement is 0.5. Moreover, as time increases, a larger interval of

values of Zt around zero becomes more consistent with the values of θ around zero because larger θ would have

likely drifted the process far away by that time.
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Next, three distinct cases may occur:

1. The confidence region CC is entirely contained in the decision region CD. Confidence will

always be one-stage in this case.

2. The confidence region CC “peaks out” above the decision region CD in an interval of

decision times [t, t̄], 0 < t < t̄ < ∞, but is contained in CD near zero as in Figure 2.

Confidence will be mostly one-stage (for fast and slow decisions) except for the interval

of decision times [t, t̄], where it will be two-stage.

3. The confidence region CC “embraces” the decision region CD in an interval of decision

times [0, t̄], t̄ > 0 (as in Figure 1), in which confidence will be two-stage, while it will be

one-stage beyond this interval.

Unfortunately, a full analytical characterization of cases of one-stage and two-stage decision

confidence, which requires a nontrivial analysis of the relative position of objects CC and CD,

is a difficult problem.21

The bound in Proposition 1 varies intuitively with the parameters of the decision environment:

it increases with lower cost of time relative to importance of precise confidence c̄, lower noisiness

of the evidence process α, and higher prior variance σ2
0. In particular, prior variance is higher

for a choice of a house than for a choice of a snack, for example. Hence, “fast” decisions

distinguished by this threshold bear naturally different meaning in different contexts. Finally,

the explicit expression for the bound also enables us to say that for cost of time c̄ larger than
σ2

0
2πα2 there will be certainly no scope for two-stage confidence.

21Besides the numerical solution (see Appendix D), we can also derive analytically the first-order condition

for deterministic stopping, see Appendix B, which is necessary but not sufficient. The interest of studying

the deterministic stopping lies in the following implication: if immediate stopping is not optimal in the set of

deterministic stopping times, then it is not optimal in the set of all stopping times T either. Nevertheless, based

on numerical solutions, the reverse implication does not hold, so the connection between the unconstrained and

deterministic optimal stopping is not tight even from this perspective.
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4 Discussion

In this section, we evaluate our model (referred to as Two-Stage Sequential Sampling or 2SS)

on the basis of empirical patterns of Moran et al. (2015) (which extend the list of patterns of

Pleskac and Busemeyer [2010]). Moreover, we contrast the 2SS model with the most related

models.

4.1 Empirical evaluation and contrast to heuristic models

Using a small simulation study, we report in Table 1 in Appendix E that 2SS matches all

empirical patterns of Moran et al. (2015, Table 1, p. 102) except for the positive correlation

of decision and interjudgement times (pattern 8.4). Intuitively, there is scope for non-zero

interjudgement times in 2SS only for relatively fast decisions.22

The 2SS model can be seen as an attempt to microfound the heuristic model of Moran et al.

(2015) (referred to as Collapsing Confidence Boundary or CCB). CCB matches all patterns

in Table 1. In particular, it captures the positive correlation of decision and interjudgement

times, unlike 2SS. The driving force behind this feature is non-stationarity of the confidence

boundary and selection: in CCB, the confidence boundary is decision-triggered, i.e., it is placed

only at the moment of decision. Hence, the distance the evidence particle has to travel to reach

a given point on the confidence boundary is independent of the decision stopping point (unlike

in the 2SS model). Therefore, the selection effect operates: slow decisions are more likely to be

generated by a signal with low drift (in absolute value) and this carries over to the confidence

stage, leading to slower confidence judgements more likely as well.

The decision-triggered confidence boundary in CCB reflects the assumption that confidence is

always two-stage. In contrast, in this paper we do not impose this assumption; instead, we allow

for the second stage and derive when it should actually occur. Thus, our paper is an attempt to

give a statistical foundation for the two-stage confidence architecture. Our analysis reveals that

this uniform assumption may not be well justified and a strict distinction between one-stage and

two-stage theories of decision confidence (Moran et al., 2015) might be misleading. Both modes

of confidence formation may manifest themselves under one underlying mechanism. Moreover,

2265% and 49% trials lead to two-stage confidence (non-zero interjudgement times) in 2SS under the two

parametrizations used in the simulations specified in Table 1.
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they may manifest themselves in a surprising manner as in Figure 2, i.e., one-stage confidence

for the fastest and slow decisions while two-stage for intermediately fast ones.23

It is worth noting that even the empirical results of Moran et al. (2015) “may indicate that there

are important individual differences with respect to the number of information collection stages”

(p. 111). Our approach enables us to study more rigorously not only these individual differences

(e.g., different values of mental noise α [Enke and Graeber, 2022]), but also differences for a

given individual across decision environments (e.g., different opportunity cost c), and even

differences in the use of one-stage vs. two-stage mode for a given individual in a given decision

environment (for fixed parameters).

4.2 Comparison with the model of Fudenberg et al. (2018)

Since the 2SS model is an extension of the uncertain-difference model of Fudenberg et al. (2018)

(referred to as FSS), it is natural to discuss predictions of FSS about decision confidence. As

outlined in the Introduction, the natural way to define decision confidence in the FSS model is

by (12) at the time of decision τ . However, such model is incompatible with the observed ability

of people to recognize their own errors even without explicit feedback (Yeung and Summerfield,

2012; Fleming and Daw, 2017). Moreover, Moran et al. (2015) conduct experiments where post-

decisional evidence availability has a causal effect on confidence resolution.24 These experiments

put forward the interjudgement time (RT2) as an important variable to guide the modeling of

decision confidence—a variable that FSS is silent about.25

In Table 1, we report that FSS does not capture the increased confidence resolution under

time pressure (higher c). Intuitively, decisions and confidence are tied in FSS, so time pressure

affects both negatively. On the other hand, in two-stage models, time pressure makes the job

easier for the confidence system because mistakes are easier to recognize.

23Moran et al. (2015) build on the work of Pleskac and Busemeyer (2010) who also propose heuristic models

of decision confidence capturing the two-stage idea. Importantly, these insights provided by 2SS in relation to

CCB apply to the models of Pleskac and Busemeyer (2010) too.
24Confidence resolution is the correlation between confidence and decision correctness.
25The inability to capture error monitoring and the effect of post-decisional evidence availability is shared by

all single-stage models, e.g., the Wald model.
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4.3 Simpler version: two-stage Wald model

One may wonder whether our extension to the model of Fudenberg et al. (2018) would bring

something interesting in the simpler Wald model. We develop this idea in Appendix C; call

it two-stage Wald model. We find that the decision maker either (i) never wants to sample

beyond decisions (one-stage confidence always) and there is a single confidence level achieved,

or (ii) always wants to sample beyond decisions (two-stage confidence always) and there are two

possible confidence levels achieved—one above 1
2 for correctness confirmation and one below 1

2

for error recognition.26,27

People are likely to report more than two levels of confidence, so to account for that we can

introduce a noisy readout of confidence, i.e., the confidence levels predicted by the two-stage

Wald model would be reported with some independent noise. Nevertheless, there are several

empirical regularities that such model cannot explain. For example, there will be no correla-

tion between decision times and confidence because the belief process is a time-homogeneous

diffusion. Intuitively, conditional on stopping for decision, the belief process restarts at the

same point regardless of the decision time due to the constant decision boundary. Indepen-

dent readout noise does not change this relationship. This is inconsistent with the empirical

regularity no. 4 from Moran et al. (2015) (negative correlation between decision time and con-

fidence). Moreover, the regularities tied to the manipulation of stimulus discriminability will

pose problems for the two-stage Wald model too, e.g., pattern no. 3 of negative correlation

between confidence and difficulty.28

26The use of mode (i) or (ii) depends on the parameters, especially c̄.
27In fact, these predictions would be obtained with an even simpler static model of a rationally inattentive

decision maker. However, the static version would be silent about the reaction times.
28Nevertheless, one has to be cautious about the use of these empirical regularities because manipulating the

objective difference between the two options across trials does not fit the setup of the Wald model. In the Wald

model, the decision maker is assumed to know the difference between the options a priori; she is uncertain only

about which option is the better one. Hence, the prior of the decision maker is not correct in this setup and

there is a mismatch between the experimenter and decision maker.
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5 Conclusion

We develop a normative dynamic model of decision confidence. This model captures the dual-

system view of mind with the decision system aiming to maximize expected utility and the

confidence system aiming to monitor the decision system and provide good feedback on the de-

cision system’s performance. We focus on studying optimal informational dissociations between

decisions and decision confidence, i.e., we ask when we should expect the decision and confi-

dence to be based on the same evidence and when not. We question the following assumption

adopted by models from cognitive science: decision confidence is always (i.e., uniformly across

all decisions) based on post-decisional evidence accumulation. We find that this assumption is

not justified by our normative model; our model suggests that there is scope for post-decisional

evidence accumulation only for relatively fast decisions. Moreover, a nontrivial pattern may

emerge in some situations—confidence based on the same information as decisions for very fast

and slow decisions and post-decisional evidence accumulation for intermediately fast decisions.

Our findings contribute to the theory of metacognitive monitoring. In particular, we provide

a normative foundation for post-decisional evidence accumulation and derive how one- and

two-stage modes of decision confidence may arise under a single mechanism. Moreover, an

empirical evaluation of our model indicates that it is consistent with the patterns of Moran

et al. (2015), except for the positive correlation of decision times and interjudgement times.

This and similar patterns may guide future theorizing about the mechanisms underlying decision

confidence, which will lead to a better understanding of its functional role. Moreover, it will

be interesting to contrast and merge our approach to theorizing about mechanisms behind

decision confidence with the complementary direction of “second-order” models (Fleming and

Daw, 2017), in which distinct but related processes inform decision and decision confidence.

Finally, decision confidence is involved in the control of future mental processes and behavior.

Different mechanisms underlying decision confidence may lead to different predictions about the

relationships between confidence and future behavior (Schulz et al., 2021). Hence, analyzing

the implications of our model of decision confidence for the control of future behavior is an

exciting avenue for future research.
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Appendix

A Technical details and proofs

A.1 Beliefs

Lemma A.1. Let θ ∼ N(X0, 2σ2
0) and Zt = θt + α

√
2Bt, t ≥ 0, where α > 0 is a parameter

and Bt is a standard Brownian motion independent of θ. Then the posterior distribution of θ

after observing Zs, s ≤ t, is normal with mean

σ−2
0 X0 + α−2Zt
σ−2

0 + α−2t
(23)

and variance
2

σ−2
0 + α−2t

. (24)

Proof. As outlined by Chernoff (1961, p. 81) (and developed in more detail by Shiryaev29), the

conditional distribution of θ is determined by

P (θ ≤ y|Ft) =

y∫
−∞

dP(Zt0|θ=ξ)
dP(Zt0|θ=0) dPθ (ξ)

∞∫
−∞

dP(Zt0|θ=ξ)
dP(Zt0|θ=0) dPθ (ξ)

, (25)

where
dP (Zt

0|θ = ξ)
dP (Zt

0|θ = 0) (26)

is the Radon-Nikodym derivative of the measure of the process Zt
0 = {Zs}ts=0 with θ = ξ with

respect to the measure of the process Zt
0 = {Zs}ts=0 with θ = 0. The Radon-Nikodym derivative

can be calculated explicitly as30

dP (Zt
0|θ = ξ)

dP (Zt
0|θ = 0) = e

1
2

(
ξ

α2Zt−
1
2
ξ2

α2 t

)
. (27)

Hence, the conditional density of θ is

p(y; t, Zt) = dP (θ ≤ y|Ft)
dy = e

1
2

(
y

α2Zt−
1
2
y2

α2 t

)
p(y)

∞∫
−∞

e
1
2

(
ξ

α2Zt−
1
2
ξ2
α2 t

)
p(ξ) dξ

, (28)

29See p. 8–9 at https://www.uni-ulm.de/fileadmin/website_uni_ulm/mawi.inst.110/lehre/ws13/

Workshop_Probab_Anal_Geom/Shiryaev.pdf.
30For example, see the Girsanov theorem, specifically Theorem 8.6.4 in Øksendal (2003).
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where p is the prior density of θ. The numerator is

1√
4πσ2

0

e
1
2

(
y

α2Zt−
1
2
y2

α2 t−
1
2

(y−X0)2

σ2
0

)

= 1√
4πσ2

0

e
− 1

4σ2
0

(1+σ2
0α
−2t)

(
y2−2y

σ2
0α
−2Zt+X0

1+σ2
0α
−2t

+
X2

0
1+σ2

0α
−2t

+
[(

σ2
0α
−2Zt+X0

1+σ2
0α
−2t

)2
−
(
σ2

0α
−2Zt+X0

1+σ2
0α
−2t

)2
])

= 1√
4πσ2

0

e
− 1

4σ2
0

(1+σ2
0α
−2t)

(
y−

σ2
0α
−2Zt+X0

1+σ2
0α
−2t

)2

e

−(1+σ2
0α
−2t)

4σ2
0

[
X2

0
1+σ2

0α
−2t
−
(
σ2

0α
−2Zt+X0

1+σ2
0α
−2t

)2
]
. (29)

Therefore, by exploiting the density of normal distribution with mean

X0 + σ2
0α
−2Zt

1 + σ2
0α
−2t

(30)

and variance
2σ2

0
1 + σ2

0α
−2t

, (31)

the denominator in (28) is

e

−(1+σ2
0α
−2t)

4σ2
0

[
X2

0
1+σ2

0α
−2t
−
(
σ2

0α
−2Zt+X0

1+σ2
0α
−2t

)2
]

1√
1 + σ2

0α
−2t

. (32)

Hence, by putting (28), (29), and (32) together, we can see that the conditional density is

p(y; t, Zt) = 1√
2π 2σ2

0
1+σ2

0α
−2t

e
− 1

4σ2
0

(1+σ2
0α
−2t)

(
y−

σ2
0α
−2Zt+X0

1+σ2
0α
−2t

)2

, (33)

which is the density of the normal distribution with mean

X0 + σ2
0α
−2Zt

1 + σ2
0α
−2t

= σ−2
0 X0 + α−2Zt
σ−2

0 + α−2t
(34)

and variance
2σ2

0
1 + σ2

0α
−2t

= 2
σ−2

0 + α−2t
. (35)

A.2 Structure of the unrestricted confidence stopping problem

Let us recall the full unrestricted confidence stopping problem (18)

inf
τ ′∈T

E
Φ

 σ−2
0 X0 + α−2Zτ ′√
2(σ−2

0 + α−2τ ′)

Φ
− σ−2

0 X0 + α−2Zτ ′√
2(σ−2

0 + α−2τ ′)

+ c̄τ ′

 . (36)

Here, we discuss the structure of this problem.
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We can restart process {Zt}t≥0 after time s

Zs+t = θ(s+ t) + α
√

2Bs+t = Zs + θt+ α
√

2(Bs+t −Bs), (37)

where we denote the new starting point z := Zs and the new standard Brownian motion

B̃t := Bs+t − Bs for t ≥ 0. This motivates us to introduce process {Zz
t }t≥0 with the same

differential as {Zt}t≥0, but starting at z

Zz
t = z + θt+ α

√
2B̃t, t ≥ 0. (38)

The innovation representation (Liptser and Shiryaev, 2000, section 7.4) of {Zz
t }t≥0 starts with

a different initial information set, F̃t = Fs+t for t ≥ 0, thus the prior is N(Xs, σ
2
s). Hence, its

innovation representation is

Zz
t = z +

∫ t

0
X̃r dr + α

√
2B̃t, (39)

where

X̃r = E
[
θ|F̃r

]
= σ−2

0 X0 + α−2Zz
r

σ−2
0 + α−2(s+ r)

(40)

and

B̃t = 1
α
√

2

(
θt+ α

√
2B̃t −

∫ t

0
X̃r dr

)
(41)

is a standard Brownian motion.

We can introduce process {Y (s,z)
t }t≥0 such that Y (s,z)

t = (s+t, Zz
t )′ for t ≥ 0 with the differential

dY (s,z)
t =

 1
σ−2

0 X0+α−2Zzt
σ−2

0 +α−2(s+t)

 dt+

 0

α
√

2

 dB̃t, t ≥ 0, Y (s,z)
0 = (s, z). (42)

Since this process is Markovian (it always restarts anew), the unrestricted confidence stopping

problem (18) has the structure of the problem (2.2.2) of Peskir and Shiryaev (2006). However,

their condition (2.2.1) is not satisfied in our problem because of the potentially unbounded

sampling cost c̄t. Nevertheless, their comments on p. 27 and 2 indicate that this may not be

a problem, especially if we restrict our search for optimal stopping times to τ ′ ∈ T such that

E [τ ′] < ∞ for which the expectation of the cost upon stopping is well defined. Restriction to

such stopping times is innocuous in our problem (18) because, by boundedness of the function

x 7→ Φ(x)Φ(−x), stopping times that are expected to be infinite are dominated by immediate

stopping due to unbounded sampling cost.
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A.3 Subcontinuation region for the unrestricted confidence stopping problem

Lemma A.2. Let

C̊C =

(r, x) ∈ [0,∞)× R : α−2

σ−2
0 + α−2r

ϕ2

 σ−2
0 X0 + α−2x√
2(σ−2

0 + α−2r)

 > c̄

 . (43)

It is not optimal to stop sampling for confidence in this region, i.e., C̊C ⊆ CC.

Proof. Consider process {Y (s,z)
t }t≥0 introduced in (42) and function f introduced in (19). By

applying the Itô formula, we obtain

f(Y (s,z)
t ) = f(s, z) +

∫ t

0
Af(s+ r, Zz

r ) dr +
∫ t

0
α
√

2∂f
∂x

(s+ r, Zz
r ) dB̃r, (44)

where A is a differential operator acting on f such that, when evaluated at (r, x),

Af(r, x) = ∂f

∂r
(r, x) + σ−2

0 X0 + α−2x

σ−2
0 + α−2r

∂f

∂x
(r, x) + α2∂

2f

∂x2 (r, x). (45)

Similar to Lemma 7.3.2 of Øksendal (2003), it can be proved that for a stopping time τ ′ such

that E [τ ′] <∞,

E
[∫ τ ′

0
α
√

2∂f
∂x

(s+ r, Zz
r ) dB̃r

]
= 0, (46)

thus, from (44),

E
[
f(Y (s,z)

τ ′ )
]

= f(s, z) + E
[∫ τ ′

0
Af(s+ r, Zz

r ) dr
]
. (47)

Consider set

C̊C = {(r, x) ∈ [0,∞)× R : Af(r, x) < 0}. (48)

For (s, z) ∈ C̊C and a bounded open set V such that (s, z) ∈ V ⊂ C̊C , consider stopping time

τV = inf{t ≥ 0: Y (s,z)
t /∈ V }. (49)

Then, we can see from (47) that

E
[
f(Y (s,z)

τV
)
]
< f(s, z). (50)

Hence, as long as we are in C̊C , it is not optimal to stop sampling for confidence because

we expect the total confidence cost f to decrease at least until we exit from C̊C . Therefore,

C̊C ⊆ CC and that is why we call C̊C a subcontinuation region for the unrestricted confidence

stopping problem (18).31

31In fact, C̊C 6= CC in general. As Øksendal (2003, p. 205) writes, this is “the typical situation” in these

problems.
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To express region C̊C explicitly, denote

M(r, x) = σ−2
0 X0 + α−2x√
2(σ−2

0 + α−2r)
. (51)

First, we calculate

Mr(r, x) = ∂M(r, x)
∂r

= − α−2

2(σ−2
0 + α−2r)

M(r, x), (52)

Mx(r, x) = ∂M(r, x)
∂x

= α−2√
2(σ−2

0 + α−2r)
, (53)

Mxx(r, x) = ∂2M(r, x)
∂x2 = 0. (54)

Second, using (54) and the following properties of the standard normal pdf ϕ

ϕ′(x) = −xϕ(x), (55)

ϕ(−x) = ϕ(x), (56)

we obtain
∂f(r, x)
∂r

= ϕ(M(r, x))Mr(r, x)(1− 2Φ(M(r, x))) + c̄, (57)

∂f(r, x)
∂x

= ϕ(M(r, x))Mx(r, x)(1− 2Φ(M(r, x))), (58)

∂2f(r, x)
∂x2 = ϕ(M(r, x))M2

x(r, x)[−M(r, x)(1− 2Φ(M(r, x)))− 2ϕ(M(r, x))]. (59)

Finally, plugging expressions (52)–(53) and (57)–(59) into (45) and simplifying yields

Af(r, x) = c̄− α−2

σ−2
0 + α−2r

ϕ2(M(r, x)). (60)

Hence, the subcontinuation region is

C̊C =

(r, x) ∈ [0,∞)× R : α−2

σ−2
0 + α−2r

ϕ2

 σ−2
0 X0 + α−2x√
2(σ−2

0 + α−2r)

 > c̄

 . (61)

A.4 Boundedness of the unrestricted confidence stopping time

Intuitively, the bound is the rightmost point of C̊C .

Proof of Proposition 1. Denote Tc := α2[(2πα2c̄)−1 − σ−2
0 ] and suppose Tc > 0.32 Toward con-

tradiction, suppose we have an optimal stopping time of the unconstrained confidence stopping

32Tc is the (unique) solution of equation Af(r,−α2σ−2
0 X0) = 0, where Af(r, x) is given by (60) (the motivation

for this choice will become obvious in the proof). Notice that we are looking for the solution r ∈ R, so it can

also be negative.
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problem (18), σ, that ends beyond Tc with strictly positive probability, i.e., P(σ > Tc) > 0.

Nevertheless, we still assume that E [σ] < ∞ because stopping times that are expected to be

infinite cannot be optimal as we already argued at the end of section A.2.33

With the use of notation from section A.3 and by using (47), the expected loss in problem (18)

for σ can be written as

E
[
f(Y (0,0)

σ )
]

= f(0, 0) + E
[∫ σ

0
Af(r, Zr) dr

]
. (62)

Similarly, we can write for stopping time σ ∧ Tc

E
[
f(Y (0,0)

σ∧Tc )
]

= f(0, 0) + E
[∫ σ∧Tc

0
Af(r, Zr) dr

]
. (63)

Hence,

E
[
f(Y (0,0)

σ )
]
− E

[
f(Y (0,0)

σ∧Tc )
]

= E
[∫ σ

0
Af(r, Zr) dr −

∫ σ∧Tc

0
Af(r, Zr) dr

]
. (64)

By the Law of Iterated Expectations, this can be simplified to

E
[∫ σ

Tc
Af(r, Zr) dr

∣∣∣∣σ > Tc

]
P(σ > Tc). (65)

But from (60) and the definition of Tc, we can see that for any r > Tc, Af(r, x) > 0 ∀x ∈ R.

Therefore, stopping time σ∧Tc (which differs from σ with strictly positive probability) achieves

strictly lower expected loss, which is a contradiction to σ being optimal.

Finally, when Tc ≤ 0 (which corresponds to high cost of time c̄), we can see from (47) and (60)

that it is never beneficial to wait, so any optimal stopping time is trivially bounded by 0 almost

surely.

33As a consequence, we also have P(σ <∞) = 1.
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B Deterministic stopping times

Finding the optimal deterministic stopping time

inf
t∈[0,∞)

u(t; s, z) (66)

amounts to analyzing the derivative of function u defined in (20).

Lemma B.1.

∂u(t; s, z)
∂t

= c̄− α−2

σ−2
0 + α−2(s+ t)

√√√√ σ−2
0 + α−2s

σ−2
0 + α−2s+ 2α−2t

× 1
2π exp

(
−1

2
σ−2

0 + α−2(s+ t)
σ−2

0 + α−2s+ 2α−2t

(σ−2
0 X0 + α−2z)2

σ−2
0 + α−2s

)
. (67)

Proof. As noticed by Øksendal (2003) in (8.1.1), we can see from (47) that

∂u(t; s, z)
∂t

= E [Af(s+ t, Zz
t )] , (68)

where Af(r, x) takes the form (60). Hence, we need to calculate

E
ϕ2

 σ−2
0 X0 + α−2Zz

t√
2(σ−2

0 + α−2(s+ t))

 . (69)

By the Law of Iterated Expectations

E
ϕ2

 σ−2
0 X0 + α−2Zz

t√
2(σ−2

0 + α−2(s+ t))


= E

E
ϕ2

 σ−2
0 X0 + α−2Zz

t√
2(σ−2

0 + α−2(s+ t))

 ∣∣∣∣∣∣θ
 . (70)

Since
σ−2

0 X0 + α−2Zz
t√

2(σ−2
0 + α−2(s+ t))

∣∣∣∣∣∣θ ∼ N(µ, σ2) (71)

with

µ = σ−2
0 X0 + α−2(z + θt)√
2(σ−2

0 + α−2(s+ t))
, (72)

σ2 = α−2t

σ−2
0 + α−2(s+ t)

, (73)

the interior expectation in (70) is

E
ϕ2

 σ−2
0 X0 + α−2Zz

t√
2(σ−2

0 + α−2(s+ t))

 ∣∣∣∣∣∣θ
 =

∫ ∞
−∞

ϕ2(x) 1√
2πσ2

e−
1
2

(x−µ)2

σ2 dx

= (2π)− 3
2σ−1

∫ ∞
−∞

e−x
2− 1

2
(x−µ)2

σ2 dx. (74)
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We can write

−x2 − 1
2

(x− µ)2

σ2 = − 1
2σ2 ((1 + 2σ2)x2 − 2xµ+ µ2)

= −1 + 2σ2

2σ2

(
x2 − 2x µ

1 + 2σ2 + µ2

(1 + 2σ2)2

)

+ µ2

2σ2(1 + 2σ2) −
µ2

2σ2 . (75)

Plugging (75) to (74) yields

E
ϕ2

 σ−2
0 X0 + α−2Zz

t√
2(σ−2

0 + α−2(s+ t))

 ∣∣∣∣∣∣θ


= (2π)− 3
2σ−1

∫ ∞
−∞

e
− 1

2
1+2σ2
σ2

(
x− µ

1+2σ2

)2

dx · e
µ2

2σ2(1+2σ2)
− µ2

2σ2

= (2π)− 3
2σ−1

√
2π σ2

1 + 2σ2
1√

2π σ2

1+2σ2

∫ ∞
−∞

e
− 1

2
1+2σ2
σ2

(
x− µ

1+2σ2

)2

dx

︸ ︷︷ ︸
=1

·e−
µ2

1+2σ2

= 1
2π
√

1 + 2σ2
e
− µ2

1+2σ2 . (76)

By Lemma A.1, the beliefs about θ at (s, z) are

N(Xs, σ
2
s) (77)

with

Xs = σ−2
0 X0 + α−2z

σ−2
0 + α−2s

, (78)

σ2
s = 2

σ−2
0 + α−2s

. (79)

Hence, we can insert (76) back to (70) and calculate the outer expectation explicitly. Let us

focus on the part in (76) that depends on θ

E
[
e
− µ2

1+2σ2

]
= 1√

2πσ2
s

∫ ∞
−∞

e
−
(

µ2

1+2σ2 + (θ−Xs)2

2σ2
s

)
dθ. (80)

We can write

µ2

1 + 2σ2 + (θ −Xs)2

2σ2
s

= (2σ2
s(1 + 2σ2))−1[(θ2 − 2θXs +X2

s )(1 + 2σ2) + 2σ2
sµ

2]. (81)

By expanding µ according to (72) and denoting

σ2
s+t = 2

σ−2
0 + α−2(s+ t)

, (82)
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we can continue rewriting (81) as

(2σ2
s(1 + 2σ2))−1

[
θ2(1 + 2σ2 + 1

2σ
2
sσ

2
s+tα

−4t2)

− 2θ(Xs(1 + 2σ2)− 1
2σ

2
sσ

2
s+t(σ−2

0 X0 + α−2z)α−2t)

+X2
s (1 + 2σ2) + 1

2σ
2
sσ

2
s+t(σ−2

0 X0 + α−2z)2
]
. (83)

Using σ2 = σ2
s+tα

−2t/2 and Xs = σ2
s(σ−2

0 X0 + α−2z)/2, we can simplify the terms in (83) and

introduce term K to simplify further calculations

K := 1 + 2σ2 + 1
2σ

2
sσ

2
s+tα

−4t2 = 1 + σ2
s+tα

−2t(1 + 1
2σ

2
sα
−2t)

= 1 + 2α−2t

σ−2
0 + α−2(s+ t)

(
1 + α−2t

σ−2
0 + α−2s

)
= σ−2

0 + α−2s+ 2α−2t

σ−2
0 + α−2s

, (84)

Xs(1 + 2σ2)− 1
2σ

2
sσ

2
s+t(σ−2

0 X0 + α−2z)α−2t = Xs, (85)

X2
s (1 + 2σ2) + 1

2σ
2
sσ

2
s+t(σ−2

0 X0 + α−2z)2

= X2
s (1 + σ2

s+tα
−2t+ 2σ−2

s σ2
s+t) = X2

s [1 + σ2
s+t(α−2t+ 2σ−2

s︸ ︷︷ ︸
2σ−2
s+t

)] = 3X2
s . (86)

Then, we can continue with (83)

(2σ2
s(1 + 2σ2))−1

[
Kθ2 − 2θXs + 3X2

s

]
= (2σ2

s(1 + 2σ2))−1K

[
θ2 − 2θXs

K
+ X2

s

K2 −
X2
s

K2 + 3X2
s

K

]

= K

2σ2
s(1 + 2σ2)

[(
θ − Xs

K

)2
− X2

s

K2 + 3X2
s

K

]
. (87)

Plugging this back to (80) yields

E
[
e
− µ2

1+2σ2

]
= exp

(
− K

2σ2
s(1 + 2σ2)

(
−X

2
s

K2 + 3X2
s

K

))

× 1√
2πσ2

s

∫ ∞
−∞

exp
− 1

2σ2
s(1+2σ2)

K

(
θ − Xs

K

)2
 dθ

= exp
(

1
2σ2

s(1 + 2σ2)

(
X2
s

K
− 3X2

s

))√
1 + 2σ2

K

× 1√
2πσ2

s
1+2σ2

K

∫ ∞
−∞

exp
− 1

2σ2
s(1+2σ2)

K

(
θ − Xs

K

)2
 dθ

︸ ︷︷ ︸
=1

= exp
(

1
2σ2

s(1 + 2σ2)

(
X2
s

K
− 3X2

s

))√
1 + 2σ2

K
. (88)
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The following steps lead to a simplification of expression (88):

2σ2
s(1 + 2σ2) = 4 σ−2

0 + α−2s+ 3α−2t

(σ−2
0 + α−2s)(σ−2

0 + α−2(s+ t))
,

1− 3K = −2(σ−2
0 + α−2s+ 3α−2t)
σ−2

0 + α−2s
,

1− 3K
K

= −2(σ−2
0 + α−2s+ 3α−2t)

σ−2
0 + α−2s+ 2α−2t

,

1
2σ2

s(1 + 2σ2)
1− 3K
K

X2
s = −1

2
σ−2

0 + α−2s+ α−2t

σ−2
0 + α−2s+ 2α−2t

(σ−2
0 X0 + α−2z)2

σ−2
0 + α−2s

. (89)

Therefore, by putting together (60), (68), (70), (76), (84), (88), and (89), we obtain

∂u(t; s, z)
∂t

= c̄− α−2

σ−2
0 + α−2(s+ t)

√√√√ σ−2
0 + α−2s

σ−2
0 + α−2s+ 2α−2t

× 1
2π exp

(
−1

2
σ−2

0 + α−2(s+ t)
σ−2

0 + α−2s+ 2α−2t

(σ−2
0 X0 + α−2z)2

σ−2
0 + α−2s

)
. (90)
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C Confidence in the Wald model

Fudenberg et al. (2018) also study a variant of the model with a priori known difference between

the options θd := |θl − θr| with the only uncertainty about which option is the best. This

corresponds to the binomial prior about θ:

θ =


θd with probability µ0 ∈ (0, 1),

−θd with probability 1− µ0.

(91)

This model is the continuous-time version of the model of Wald (1947). As Fudenberg et al.

(2018) write, Shiryaev (2007) provides a solution to this problem.

Theorem C.1. For the model with the binomial prior, there exists k > 0 such that the minimal

optimal stopping time is τ̂ = inf{t ≥ 0 : |lt| = k}, where lt = log
(

pt
1−pt

)
and pt = P (θ = θd| Ft).

Since pt can be seen as belief confidence (in the left option), this solution is often interpreted as

a decision maker committing to a desired level of confidence ex ante. Since there is no further

deliberation in this model, the predicted (one-stage) decision confidence is constant ek

1+ek .

Given the interest of this paper, we can ask whether there is a scope for two-stage confidence in

this model. Motivated by calculations (13), we will analyze the unconstrained stopping problem

inf
τ ′∈T

E [pτ ′(1− pτ ′) + c̄τ ′] . (92)

The belief process {pt}t≥0 solves the stochastic differential equation

dpt = pt(1− pt)
√

2
α

dWt, (93)

where {Wt}t≥0 is a Brownian motion with respect to Ft (Morris and Strack, 2019, Lemma 1).

By applying the differential operator of the process {(s + t, ppt )}t≥0 to the function (t, p) 7→

p(1− p) + c̄t and inspecting where it is negative, we obtain a candidate stopping region in the

(t, p)-space

C̊W =

(t, p) ∈ [0,∞)× [0, 1] : p(1− p) > α

√
c̄

2

 . (94)

If c̄ > 1
8α2 , this region is empty and it is always optimal to stop immediately. Otherwise this

region implicitly prescribes constant boundaries for pt, 0 ≤ p∗ ≤ 1
2 ≤ p∗ ≤ 1.

We will show that the optimal continuation region takes the same form as C̊W , i.e.,

CW :=
{

(t, p) ∈ [0,∞)× [0, 1] : p < p < p̄
}

(95)
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with the boundaries p ≤ p∗ ≤ 1
2 ≤ p∗ ≤ p̄ (since C̊W ⊆ CW ). To do that, we follow a similar

approach as Øksendal (2003, p. 210).

Denote the value function

V (s, p) = inf
τ∈T

E [ppτ (1− ppτ ) + c̄(τ + s)] , (96)

where

ppt = p+
∫ t

0
pr(1− pr)

√
2
α

dWr. (97)

Since

V (s− t0, p) = inf
τ∈T

E [ppτ (1− ppτ ) + c̄(τ + s− t0)]

= inf
τ∈T

E [ppτ (1− ppτ ) + c̄(τ + s)]− c̄t0

= V (s, p)− c̄t0,

we can show that CW is invariant in time:

CW + (t0, 0) = {(t0 + t, p) : (t, p) ∈ CW}

= {(s, p) : (s− t0, p) ∈ CW}

= {(s, p) : V (s− t0, p) < p(1− p) + c̄(s− t0)}

= {(s, p) : V (s, p)− c̄t0 < p(1− p) + c̄(s− t0)}

= {(s, p) : V (s, p) < p(1− p) + c̄s} = CW .

Hence, CW must take the form (95).

This analysis reveals that if the parameters c̄, c, α, µ0 are such that ek

1+ek ≥ p̄, confidence will

always be one-stage with the resulting confidence level ek

1+ek ; otherwise confidence will always

be two-stage with the two potential levels p (for error recognition) and p̄ (for correctness

confirmation).
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D Numerical solution

In this section, we describe the numerical methods for finding the optimal decision and confi-

dence stopping boundaries ∂CD and ∂CC , respectively.

The decision boundary is found by building on the code and descriptions of Fudenberg et al.

(2018) from their paper, Online Appendix, and replication folder accessible at OPENICPSR.

In particular, script h_patching.m34 imports all csv files35 from the subfolder ’solver/mat’ of

their replication folder and patches them together as described in Section 4.1.2 of their Online

Appendix. Moreover, script h_patching.m also (i) reduces the size of the resulting vector by

dropping unnecessary points36 and (ii) rectifies monotonicity as mentioned in Footnote 2 of

their Online Appendix.37 The resulting vector representing their h function is saved and used

by function opt_dec_bound.m to calculate the optimal decision boundary, which Fudenberg

et al. (2018) denote by b∗ and define in Theorem 4 (page 3661), with the generalization to

non-symmetric prior means in their Footnote 22 (page 3662).38 Function opt_dec_bound.m

thus takes as input characteristics/parameters of an individual (c, σ0, α, X0) and the h vector,

and outputs upper and lower portions of the decision stopping boundary.

The confidence boundary is computed by function conf_bound.m, which takes as input char-

acteristics/parameters of an individual (c̄, σ0, α, X0) and outputs a list of points in the (t, z)-

space. The computation is performed by backward induction. Denote by U the numerical

approximation of the value function U defined in (21).

U is computed as follows. Fix a space grid by choosing sufficiently large (in absolute value)

z̄ > 0 and z < 0 and a sufficiently small ∆z > 0: ζ = {z, z + ∆z, . . . , z̄ −∆z, z̄}.39 Start at T

34The codes are available upon request.
35Except for h-30-100.csv because they write in Section 5 of readme.pdf that it is just a mistake.
36The original resulting vector has more than 95% of useless constant parts, which we drop and use linear

interpolation instead to speed up further computations.
379 points are redefined.
38See also Lemma O.4 of their Online Appendix for details of these calculations.
39∆z and ∆t are set to 0.1 (unless the time bound from Proposition 1 is smaller than 5; then a smaller ∆t

is chosen). Initially, z̄ and z are set ad hoc to 50 − α2σ−2
0 X0 and −50 − α2σ−2

0 X0, respectively. During the

backward induction computation, if these initial z̄ and z become insufficient (the computed continuation region

approaches 0.8z̄ from below or 0.8z from above), the backward induction repeatedly restarts anew with a larger

range of bounds until it is sufficient.
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slightly above the bound from Proposition 1 where it is surely optimal to stop for any z ∈ R,

i.e., set U(T, z) = f(T, z). Going backwards in time by ∆t, suppose we already computed

U(s, z), z ∈ ζ, for all s ∈ {t + ∆t, . . . , T}. At time point t for space point z ∈ ζ, we want to

compare f(t, z) and

E(t,z)
[
U(t+ ∆t, Z

z
∆t

)
]

=
∫ ∞
−∞

U(t+ ∆t, x)g(t,z)(x) dx, (98)

where g(t,z) is the pdf of the normal distribution

N

(
z + σ−2

0 X0 + α−2z

σ−2
0 + α−2t

∆t, 2α2∆t + 2
σ−2

0 + α−2t
∆2
t

)
. (99)

Denote the cdf of this distribution G(t,z). To approximate the expected value (98), use a

constant approximation of U(t+ ∆t, x) below z and above z̄40 and the trapezoidal rule on ζ
∫ ∞
−∞

U(t+ ∆t, x)g(t,z)(x) dx ≈ U(t+ ∆t, z)G(t,z)(z)

+
∑

x∈{z,z+∆z ,...,z̄−∆z}

1
2[U(t+ ∆t, x)g(t,z)(x) + U(t+ ∆t, x+ ∆z)g(t,z)(x+ ∆z)]∆z

+ U(t+ ∆t, z̄)(1−G(t,z)(z̄))

=: E(t,z). (100)

Finally, set

U(t, z) = min{f(t, z), E(t,z)}. (101)

The numerically computed continuation region is

{(t, z) : U(t, z) < f(t, z)}. (102)

More precisely, for a given t ∈ {0,∆t, . . . , T}, we find the extreme points z ∈ ζ for which

U(t, z) < f(t, z) and consider them to be on the boundary of the confidence continuation

region.

40Below z and above z̄, the MSE part of the loss function is almost zero, so U(t + ∆t, x) flattens out to

approximately c̄(t+ ∆t) beyond these points.
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E Empirical evaluation of models

Table 1: Evaluation of models using empirical patterns of Moran et al. (2015)
.

Empirical pattern Explanation FSS 2SS

1. Speed-accuracy trade-off Higher error rate under time pres-

sure

X X

2. Slow/fast errors Error choices can be slower or

faster than correct choices

Slow errors Slow errors

3. Negative correlation of confidence

and difficulty

Positive correlation of confidence

and stimulus discriminability

X X

4. Negative correlation of decision

time and confidence

X X

5. Lower confidence under time

pressure

X X

6. Positive confidence resolution Higher confidence in correct deci-

sions

X X

7. Increased confidence resolution

under time pressure

Difference in confidence between

correct and error choices is higher

under time pressure

× X

8.1. Positive correlation of RT2 and

difficulty

Negative correlation of RT2 and

stimulus discriminability

– X

8.2. Lower RT2 in correct choices – X

8.3. Negative correlation of RT2 and

confidence

– X

8.4. Positive correlation of RT2 and

RT

– ×

9. Decreased confidence resolution

for difficult decisions

Difference in confidence between

correct and error choices is lower

under lower stimulus discrim-

inability

X X

10. Higher RT2 for correct choices

and lower RT2 for errors under

higher difficulty

– X

FSS is the model of Fudenberg et al. (2018) with confidence determined at decision stopping. 2SS is the model proposed in this

paper. We tried the following parameters: (i) c = 0.06, σ0 = 1, α = 2, X0 = 0 with c̄ = 0.02 for 2SS model (“typical” subject as in

Figure 3), (ii) c = 0.02, σ0 = 1.8, α = 2, X0 = 0 with c̄ = 0.012 for 2SS model (“atypical” subject as in Figure 2). The results are

based on 100,000 simulated trials for each model and set of parameters. We tried θ distributed according to (a) the agent’s prior

N(X0, 2σ2
0), (b) N(0, 1). Discriminability is measured by |θ|. RT is response time, RT2 is interjudgement time. Time pressure

effect was analyzed by decreasing c to 0.05 in (i) and 0.01 in (ii).
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F Literature: economic motivation for decision confidence

• Enke and Graeber (2022) demonstrate the economic relevance of decision confidence in

predicting behavioral biases.

• Enke et al. (2022) show that confidence modulates attenuation of behavioral biases in

aggregate through self-selection into institutions.

• Folke et al. (2016) show that “an explicit representation of confidence is harnessed for

subsequent changes of mind.” This may be relevant for markets with the possibility of

changing one’s mind, e.g., return policies in online shopping or cancellation insurance in

airlines or races.

• Van den Berg et al. (2016) show that people exploit confidence in previous choices to

adjust their termination mechanism in subsequent decisions. This may be relevant for

projects, which are typically composed of several subsequent decisions directed towards

an overarching goal. Moreover, it is well known that demand for many products is derived

from demand for other products; however, the demand for the “later” products may also

be affected by the mere confidence in the “earlier” products, e.g., demand for electricity

may be affected by one’s decision confidence in a purchase of an appliance if one cares

about its energy efficiency.

• Purcell and Kiani (2016) show that people use confidence to modulate the adjustment of

their strategy when facing negative feedback, i.e., confidence disambiguates between two

sources of errors: bad strategy vs. bad information. This suggests an important role of

confidence in reinforcement learning and the Credit Assignment Problem in particular.

• Yin et al. (2016) document that consumers exhibit confirmation bias in evaluating online

reviews and this bias is amplified by higher confidence in their initial beliefs. Hence,

confidence plays a role in information acquisition (Schulz et al., 2021).

• Confidence is often communicated to others and it has a strong influence on their decisions

(Vullioud et al., 2017; Shea et al., 2014; Sah et al., 2013; Brewer and Burke, 2002).

• Artiga González et al. (2022) show that voters change their policy preferences (in line

with the supported candidate) after merely expressing their support. We suspect that

confidence may play a role in this process of formation of policy preferences and polar-

ization.
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G Additional figures

Figure 3: An example of decision and confidence stopping boundaries computed numerically

(see Appendix D) for parameters c = 0.06, α = 2, σ0 = 1, X0 = 0 (corresponding to Subject 47

in Table 4 in the Online Appendix of Fudenberg et al. (2018)) and c̄ = 0.02.
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Abstrakt 

 

Studujeme informační disociace mezi rozhodnutími a důvěrou v rozhodnutí. Zkoumáme důsledky 

modelu duálního systému myšlení: rozhodovací systém a systém důvěry mají odlišné cíle, ale sdílejí 

přístup ke zdroji nepřesných a nákladných informací o proměnné, která je důležitá pro rozhodování. 

Rozhodovací systém má za cíl maximalizovat užitek, zatímco systém důvěry monitoruje rozhodovací 

systém a má za cíl poskytnout kvalitní zpětnou vazbu o správnosti rozhodnutí. V souladu se stávajícími 

experimentálními výsledky ukazujícími důležitost informací, které následují po rozhodnutí při vytváření 

důvěry, také dovolujeme systému důvěry, aby shromažďoval informace po rozhodnutí. Naším cílem je 

podložit proces získávaní informací po rozhodnutí (používaný v deskriptivních modelech důvěry) teorií 

optimálního učení. Nicméně zjišťujeme, že není vždy optimální pokračovat v získávání informací po 

rozhodnutí, a to ani pro daného jedince v daném rozhodovacím prostředí. Zejména, prostor pro získávání 

informací po rozhodnutí existuje jenom pro relativně rychlá rozhodnutí. Striktní rozlišování mezi 

jednostupňovou a dvoustupňovou teorií důvěry v rozhodnutí může být tedy zavádějící, protože oba 

způsoby formace důvěry v rozhodnutí se mohou projevit pod jedním mechanismem netriviálním 

způsobem. 

Klíčová slova: rozhodování, důvěra, sekvenční výběr, optimální zastavení 
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