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Abstract

It is common practice to split time-series into in-sample and pseudo out-of-sample segments

and to estimate the out-of-sample loss of a given statistical model by evaluating forecasting

performance over the pseudo out-of-sample segment. We propose an alternative estimator of the

out-of-sample loss which, contrary to conventional wisdom, utilizes both measured in-sample and

out-of-sample performance via a carefully constructed system of affine weights. We prove that,

provided that the time-series is stationary, the proposed estimator is the best linear unbiased

estimator of the out-of-sample loss and outperforms the conventional estimator in terms of

sampling variance. Applying the optimal estimator to Diebold-Mariano type tests of predictive

ability leads to a substantial power gain without worsening finite sample level distortions. An

extensive evaluation on real world time-series from the M4 forecasting competition confirms the

superiority of the proposed estimator and also demonstrates a substantial robustness to the

violation of the underlying assumption of stationarity.
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1 Introduction

In the field of time-series forecasting, researchers are typically concerned with the expected per-

formance of a particular statistical model on yet unseen data, the so called out-of-sample loss.

Researchers use the out-of-sample loss to assess whether a proposed model statistically significantly

outperforms an already established benchmark model. Likewise, in practical forecasting tasks, the

out-of-sample loss is frequently used to select a model that is likely to deliver the best forecasting

performance from a set of competing models.

Out-of-sample loss is defined as the expected value of a contrast function that measures the

discrepancy between the prediction and the observed value (e.g., the expected value of squared

error). Thus, it is by definition unknown and needs to be estimated. This is typically achieved by

excluding the most recent segment of the observed time-series from the estimation and performing

a sequence of predictions for these observations instead, essentially mimicking the process of ac-

tual out-of-sample forecasting. The estimate of the out-of-sample loss is then obtained simply by

averaging the precision of individual predictions as measured by the contrast function, i.e., the so

called empirical contrasts (e.g. squared errors).1 While there are many such pseudo out-of-sample

evaluation schemes (for a survey, see Tashman, 2000), we restrict our attention to two prominent

variants; the rolling scheme and the fixed scheme. When performing an evaluation under the rolling

scheme, the model is repeatedly estimated on a rolling window of a fixed length and predictions are

made for the subsequent observations. In the fixed scheme, the model is estimated only once on the

first segment of the data and is then used to predict all remaining observations (see e.g. Clark and

McCracken, 2013).

A common drawback of all such pseudo out-of-sample evaluation schemes and corresponding

estimators is the relatively high sampling variance, as the estimate is computed based on only the

most recent observations reserved for the pseudo out-of-sample evaluation (Bergmeir and Beńıtez,

2012; Bergmeir et al., 2014; Schnaubelt, 2019; Cerqueira et al., 2020). Moreover, this issue of

scarcity of pseudo out-of-sample observations and consequently of high sampling variance is not

limited to situations with few observations, but also afflicts longer time-series. This is because there

is an inevitable trade-off between the size of the data-sets designated to be in-sample and pseudo

out-of-sample. The former allows for a more faithful approximation of the loss when the whole

data-set is used for estimation, whilst the latter allows for more precise estimation of the loss (see

Arlot and Celisse, 2010).

To alleviate this issue, we propose an alternative estimator of the out-of-sample loss that utilizes

in-sample performance to aid the estimation of the out-of-sample loss, a practice often considered

taboo in the forecasting community. In particular, we use in-sample empirical contrasts to partially

eliminate the idiosyncratic noise present in observations designated for the out-of-sample evaluation,

via a carefully constructed system of optimal affine weights. We prove that, under stationarity, the

1There is another class of evaluation schemes that do not respect the temporal ordering of the data and perform
out-of-sample evaluation not dissimilar to the canonical cross-validation for independent processes, see e.g., Burman
et al. (1994), Racine (2000), and Bergmeir et al. (2018). However, these are not as widely used in practice and hence
are not considered in this paper.
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proposed estimator of the out-of-sample loss is optimal in terms of the sampling variance within the

class of unbiased linear estimators, to which the conventional estimator also belongs. The proposed

estimator hence offers a lower sampling variance relative to the conventional estimator, all without

introducing any bias. In turn, this allows for a finer assessment of forecasting ability, more powerful

predictive ability inference, and more precise model selection.

The proposed optimal estimator is obtained by finding weights that minimize the sampling

variance, subject to constraints that guarantee unbiasedness. Importantly, both in- and out-of-

sample contrasts can be included with non-zero weights, and weights are allowed to be negative,

unlike the conventional estimator, which simply places equal positive weight only on out-of-sample

contrasts. In practice, this translates to assigning negative weights to in-sample empirical contrasts

that are positively correlated with out-of-sample empirical contrasts, and positive weights to in-

sample empirical contrasts that are uncorrelated with out-of-sample empirical contrasts. At the

same time, sums of weights of ex-ante identical in-sample contrasts are equal to zero, which ensures

that the inclusion of in-sample contrasts does not alter the expected value of the estimator, and hence

does not cause bias. From a more general standpoint, the possibility to reduce the sampling variance

arises because time-series out-of-sample evaluation schemes are inherently unbalanced in the sense

of Shao (1993). That is, these schemes generally do not treat observations equally in terms of

in-/out-of-sample usage. The proposed optimal weighting partially rectifies this unbalanced design.

Aside from the optimal estimator itself, we also propose modifications of the canonical Diebold-

Mariano test (Diebold and Mariano, 1995) and of the sub-sampling test of equal predictive ability

(Zhu and Timmermann, 2020; Ibragimov and Müller, 2010). Both modified tests leverage the

proposed optimal weighting for estimation of the loss differential. We show that these tests are

asymptotically valid and demonstrate that they exhibit a substantially higher power in detecting

deviations from the null hypothesis of equal predictive ability relative to their respective benchmarks.

Finally, to assess the real-life applicability and the robustness of the proposed estimator, we

perform an extensive evaluation on 100,000 time-series from the M4 forecasting competition (Makri-

dakis et al., 2020) ranging from yearly to hourly frequency. The proposed estimator delivers more

than a 10% reduction in mean squared error relative to the conventional estimator when tasked

with predicting the incurred loss on the test segments of time-series. Moreover, when selecting the

model by comparing estimated losses, the proposed optimal estimator is more likely to select the

best performing model and delivers a smaller overall incurred loss. Importantly, we take no special

care to ensure that the time-series are stationary in this evaluation. In fact, most series in the

M4 competition do exhibit either some trend, or seasonality, or both. Despite this adverse set-

ting, the proposed estimator still substantially outperforms the conventional estimator, exhibiting

a remarkable robustness to the violation of the underlying assumption of stationarity. This clearly

demonstrates that the theoretical superiority of the proposed estimator does extend to actual fore-

casting applications, even with all the difficulties that forecasting real time-series entails.

The next section introduces the statistical framework and provides formal definitions of out-

of-sample evaluation schemes and corresponding estimators. Section 3 introduces the proposed
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estimator of the out-of-sample loss, proves its optimality, and demonstrates its efficiency gains in a

simulated environment. Section 4 introduces modified tests of equal out-of-sample predictive ability

that utilize the optimal estimator, and demonstrates their power advantage relative to benchmarks.

Section 5 compares the performance of the conventional estimator and the proposed optimal estima-

tor on real world time-series from the M4 forecasting competition. Section 6 concludes. Appendices

A and B contain proofs and auxiliary results. A ready-to-use implementation of the estimator and

tests is provided as an R package ACV 2 and extends the widely used forecast package of Hyndman

et al. (2020).

2 Conventional Estimator of the Loss

Consider a d-variate sequence {Xt}T1 ∈
(
Rd
)T

from a stationary random process Xt for a given T ∈
N. Following the notation of Arlot and Celisse (2010), a statistical model M = {s, θ̂} is composed

of two functions; the estimator θ̂ ({Xt}m1 ) generating estimated parameters and the forecasting

function s
(
{Xt}k1 ; θ

)
, which predicts the upcoming value of the process based on past values and

parameters θ.3 In particular, θ̂ : ∪m∈N
(
Rd
)m → Θ where Θ is a parameter space and m is the

number of observations used for the estimation. Predictions about the τ -th upcoming value of the

process are made via function s : {
(
Rd
)k

; Θ} → Ψ, where τ is the forecasting horizon, Ψ represent

the space of all such possible predictions, and k is the number of past values of the process used to

predict the τ -th upcoming value. To assess the quality of a model M, we use a contrast function

γ : {Rd, Ψ} → R that measures the discrepancy between a prediction ψ ∈ Ψ and the actual

realization of the process.

This rather general framework allows us to simultaneously consider many typical applications

encountered in time-series forecasting. For example, in the case of uni-variate step ahead mean

forecasting, τ = 1, and the space of possible predictions Ψ = R. A model M could be AR(k)

with the corresponding least square estimator, in which case the parameter space Θ = Rk and

prediction ψ = s({Xt}k1 ; θ̂) =
∑k

1 Xkθ̂k where θ̂ is an OLS estimator. A contrast function is

typically a squared error, and hence γ (Xk+1, ψ) = (Xk+1 − ψ)2 =
(
Xk+1 −

∑k
1 Xkθ̂k

)2
. In the

case of univariate conditional density forecasting, a model M could be a class of densities and a

corresponding estimator θ̂ for its parameters, set Ψ is a space of density functions and ψ(q) =

s
(
{Xt}k1 ; θ̂

)
(q) = f̂

(
q| {Xt}k1 ; θ̂

)
is the predicted density at point q. One may take γ (Xk+τ , ψ) =

−ln (ψ (Xk+τ )) = −ln
(
f̂
(
Xk+τ | {Xt}k1 ; θ̂

))
to obtain the Kullback-Leibler divergence (Kullback

and Leibler, 1951) as a measure of precision of ψ.

Finally, let us denote the loss of model M = {s, θ̂} when estimated on a sequence of length m

2Available at: https://github.com/stanek-fi/ACV.
3To facilitate the exposition, we take the liberty of representing the model as a prediction and estimation function

pair M = {s, θ̂} rather than a single function A representing a statistical algorithm as in Arlot and Celisse (2010),
hence focusing on parametric models. All results can nonetheless be extended to non-parametric models by using the

identity A
(
{Xt}m1

) (
{Xt}j−τj−k−τ+1

)
= s

(
{Xt}j−τj−k−τ+1 ; θ̂

(
{Xt}m1

))
.
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and when faced with forecasting the period j > m using observations {Xt}j−τj−k−τ+1 as

Lmj (M) = E
[
γ
(
Xj , s

(
{Xt}j−τj−k−τ+1 ; θ̂ ({Xt}m1 )

))]
. (1)

Note that the expectation is taken over the whole segment {Xt}j1, i.e., both the forecasted ob-

servation Xj and its predecessors, including the estimation window {Xt}m1 . We are therefore in-

terested in the performance of model M rather than that of some particular forecasting function

s
(
{Xt}j−τj−k−τ+1 ; θ0

)
with fixed θ0 ∈ Θ (i.e., Question 6 from Dietterich’s (1998) taxonomy).

Further, for a “shifting” index i : 0 ≤ i ≤ T −m, we also denote the out-of-sample empirical

contrast of modelM when estimated on a sequence {Xt}i+mi+1 and evaluated at the (i+ j)-th period

with j > m as

lmi
j (M) = γ

(
Xi+j , s

(
{Xt}i+j−τi+j−k−τ+1 ; θ̂

(
{Xt}i+mi+1

)))
. (2)

The assumption of stationarity then immediately implies

E
[
lm, ij (M)

]
= Lmj (M) . (3)

In this text, we focus on the pseudo out-of-sample evaluation with step-size v (see e.g., Callen

et al. (1996) and Swanson and White (1997)). The procedure is as follows. The model is estimated

on a segment of data of length m and forecasts are iteratively made on v consecutive periods for

which empirical contrasts are recorded. After that, the estimation window is moved forward by v,

and the process is repeated until the end of the sample is reached. The estimate of the out-of-sample

loss is then computed simply by averaging all pseudo out-of-sample empirical contrasts incurred.

Figure 1a provides a diagram of such a procedure. More formally, the estimator is expressed as4

L̂CV =
1

n

n/v∑
i=1

v∑
j=1

l
m, (i−1)v
m+j (4)

where n ≡ T−m is the number of observations designated for the pseudo out-of-sample evaluation.5

This specification nests the two most common variants of pseudo out-of-sample evaluation. By set-

ting v = n, we obtain the fixed scheme evaluation, which is popular because of its low computational

requirements and simplicity. On the other hand, by setting v = 1, we obtain the rolling scheme

evaluation, which requires repeated re-estimations, but is presumably more theoretically appealing

(Swanson and White, 1997).

From Eq. 3, it follows that

E
[
L̂CV

]
=

1

v

v∑
j=1

Lmm+j ≡ LCV (5)

4Due to space considerations, we omit M from the argument of empirical contrasts, losses, and estimators when
it causes no confusion.

5Throughout this text, we assume that n is divisible by v, i.e. n mod v = 0.
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(a) Conventional estimator L̂CV .
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(b) Optimal estimator L̂ACV .

Figure 1: A diagram illustrating estimators of the out-of-sample loss.
The example is for T = 20 observations, length of the estimation window m = 14, and step size v = 2.
The gray background indicates whether the observation Xt is used in the estimation of parameters θ.
The blue outline indicates whether the empirical contrast lm,ij is used when computing the estimate of

the out-of-sample loss.

where LCV is the quantity of interest. Note that LCV depends not only on modelM but also τ , v,

and m. Indeed, different losses LCV might be relevant to different applications, depending on the

desired horizon, the ability to update the model, and the length of the available data. However,

irrespective of the particular LCV to be estimated, we show that the conventional estimator L̂CV is

sub-optimal for that task. In the next section, we derive the optimal estimator of LCV which, under

the assumption of stationarity, outperforms the conventional estimator in terms of the sampling

variance while retaining its unbiasedness.

3 Optimal Estimator of the Loss

Analogically to out-of-sample empirical contrasts, in-sample empirical contrasts can be expressed

as

lmi
j (M) = γ

(
Xi+j , s

(
{Xt}i+j−τi+j−k−τ+1 ; θ̂

(
{Xt}i+mi+1

)))
(6)
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with the only difference being that j ≤ m.6 To construct the optimal estimator, we leverage two

facts. First, the correlation between out-of-sample contrast lm, ij and in-sample contrast lm, i
′

j′ varies,

generally being the strongest when j + i = j′ + i′, i.e. when the in-sample empirical contrast is

computed from the same observation Xi+j as the out-of-sample contrast, and hence is influenced

by the same idiosyncratic noise. Second, for any pair i and i′ it holds that E[lm, ij ] = E[lm, i
′

j ].

Consequently, we can construct affine combinations of in-sample contrasts lm, ij , which are of zero

mean, but are still negatively correlated with L̂CV , and whose inclusion reduces the sampling

variance without introducing any bias.

To provide a precise description of how such affine combinations should be obtained, we denote

the vector of in-sample and out-of-sample contrasts of a model estimated on {Xt}i+mi+1 by lm, iin and

lm, iout respectively, i.e.

lm, iin =
(
lm, i1 , lm, i2 , . . . , lm, im

)>
(7)

lm, iout =
(
lm, im+1, l

m, i
m+2, . . . , l

m, i
m+v

)>
. (8)

We can then collect all measured in-sample and out-of-sample contrasts across different window

locations i to a single column vector φ, i.e.

φ =

(lm, 0vin

lm, 0vout

)>
,

(
lm, 1vin

lm, 1vout

)>
, . . . ,

(
l
m, (n

v
−1)v

in

l
m, (n

v
−1)v

out

)>
,
(
lm,nin

)>> . (9)

Throughout this paper, we consider estimators linear in measured empirical contrasts, i.e.

λ>φ with λ ∈ Rcard(φ) (10)

where, following the work of Lavancier and Rochet (2016) on optimal weighting of estimators, λ

is a vector of weights for individual elements of φ. Note that the conventional estimator L̂CV can

likewise be expressed as in Eq. 10; by defining7

λCV q =


1

n
for q coresponding to elements lm, ivj with 0 ≤ i ≤ n

v and j > m

0 otherwise
(11)

it follows that

L̂CV = (λCV )>φ. (12)

This automatically poses the question of whether the vector of weights λCV is optimal in terms

6The derivations remain valid even if the definition in Eq. 6 is replaced with a measurable model-specific function

κj
(
{Xt}i+mi+1

)
proxying the in-sample contrasts as defined in Eq. 6. This allows us to also consider applications in

which the forecasting function s uses all available observations up to Xj−τ in order to predict Xj , i.e., when k = m.
7We follow convention and denote q-th element of vector a by aq and the row (resp. column) subset of matrix A

by AQ,: (resp. A:,Q) where Q is the set of indices to be kept. Furthermore, we denote the identity matrix by I and
column vectors of ones (resp. zeroes) of length k by 1k (resp. 0k).
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of mean squared error

E
[(
λ>φ− LCV

)2
]

= λ>Σφλ (13)

where

Σφ = E
[
(φ− LCV 1card(φ))(φ− LCV 1card(φ))

>
]
. (14)

In the following proposition, we derive the optimal linear unbiased estimator of LCV (denoted by

L̂ACV ∗ where the “A” stands for affine) and show that the conventional estimator L̂CV is generally

not optimal.

Proposition 1 Let {Xt} be a stationary process and let Vφ be a positive definite covariance matrix

of vector φ. It then holds that the set of all linear estimators of LCV that are guaranteed to be

unbiased is given as

E[λ>φ] = LCV ⇐⇒ λ ∈ ΛACV ≡

{
x ∈ Rcard(φ)

∣∣∣∣∣Bx = b

}
(15)

with

B =
(
1>n/v ⊗ I, I:,M

)
b =

(
0m
1
v1v

)
(16)

where M = (1, 2, . . . , m). Furthermore, for estimator

L̂ACV ∗ = (λACV )> φ with λACV = V −1
φ B>

(
BV −1

φ B>
)−1

b (17)

it holds that

E
[
L̂ACV ∗

]
= LCV , (18)

V ar
(
L̂ACV ∗

)
< V ar

(
λ>φ

)
with λ ∈ ΛACV , λ 6= λACV , (19)

and also

V ar
(
L̂ACV ∗

)
≤ V ar

(
L̂CV

)
. (20)

In Proposition 1, we first show that, for all linear unbiased estimators, it holds that λ ∈ ΛACV .

We then derive the variance minimizing weights λACV within ΛACV . The corresponding optimal

estimator L̂ACV ∗ = (λACV )>φ is preferred to the conventional estimator L̂CV as it is also unbiased

and V ar
(
L̂ACV ∗

)
≤ V ar

(
L̂CV

)
.

It is worth noting that the efficiency gains do not necessarily stem from the stationarity per

se, but rather from the existence of some partition (in addition to the partition of singletons) of

vector φ where contrasts within components of that partition share a common mean. Consequently,

analogous estimators can also be constructed for non-stationary series, provided that there is such

a partition, i.e., as long as there is at least some degree of regularity. For example, by partitioning

φ so lm, ivj and lm, i
′v

j′ share a common component of the partition if and only if j = j′ and both

8



contrasts are from the same day of the week, we can construct the optimal estimator for time-series

with a day-of-the-week seasonality.

3.1 Feasible Approximate Optimal Estimator of the Loss

Obviously, the estimator L̂ACV ∗ as presented in Eq. 17 is not feasible, as Vφ is not known and

needs to be estimated. Given the large size of matrix Vφ relative to the amount of data available,

some restrictions on its structure are necessary. Furthermore, computational resources needed for

the storage of Vφ, and even more so for its inversion, grow very quickly, making the computation of

optimal weights λACV directly via Eq. 17 infeasible for even moderately sized applications.8

Consequently, to make the proposed estimator practical, it is essential to develop the estimator

V̂φ jointly with an algorithm for computation of weights λ̂ACV , so it is not prohibitively computa-

tionally expensive. To achieve this, we assume the following covariance structure:

Cov(lm, ivj , lm, i
′v

j′ ) =

0 for i+ jv 6= i′ + j′v

σ2ρ|i−i
′| for i+ jv = i′ + j′v

, (21)

i.e., only contrasts computed from the same period are mutually correlated, and the strength of that

correlation increases in the overlap between respective estimation windows. We can then express

V̂φ as

V̂φ = σ̂2



I A1
L A2

L . . . A
n
v
−2

L A
n
v
−1

L (A
n
v
L ):,M

A1
U I A1

L

. . . A
n
v
−2

L (A
n
v
−1

L ):,M

A2
U A1

U I
. . . (A

n
v
−2

L ):,M

...
. . .

. . .
. . .

. . .
. . .

...

A
n
v
−2

U

. . . I A1
L (A2

L):,M

A
n
v
−1

U A
n
v
−2

U

. . . A1
U I (A1

L):,M

(A
n
v
U )M,: (A

n
v
−1

U )M,: (A
n
v
−2

U )M,: . . . (A2
U )M,: (A1

U )M,: (I)M,M


(22)

where

� AiU = (ρ̂Uv)i

� AiL = (ρ̂Lv)i

and M = (1, 2, . . . , m). Matrices U,L ∈ R(m+v)2

are upper and lower shift matrices, i.e., matrices

8For applications as small as T = 600, m = 400, and v = 1, approximately 109 GB of RAM would be needed
merely for the storage of Vφ (assuming double precision). Inversion of such a matrix is practically impossible via

regularly available CPUs, as it requires O
((

(m+ v)n
v

+m
)3)

floating-point operations.
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with ones on the superdiagonal and subdiagonal, respectively:

Ui,j =

0 for i− j 6= −1

1 for i− j = −1
Li,j =

0 for i− j 6= 1

1 for i− j = 1
. (23)

The convenient structure of V̂φ from Eq. 22 admits a closed-form inverse as shown in Lemma 2.

Consequently, we can estimate parameters ρ and σ2 via GMM and compute a feasible and approx-

imately optimal analog of L̂ACV ∗ ; estimator L̂ACV with weights

λ̂ACV = V̂ −1
φ B>

(
BV̂ −1

φ B>
)−1

b, (24)

without the need to store or numerically invert V̂φ.9

Admittedly, the parametrization via ρ and σ2 is rather restrictive and might not fully account

for all complexities of the true Vφ. However, since the covariances of contrasts from the same period

are generally larger than other entries of Vφ by an order of magnitude, and since they tend to

decay approximately exponentially, V̂φ as defined in Eq. 22 successfully captures the key properties

relevant for optimal weighting. Consequently, it is able to reap a major share of the available variance

reduction as demonstrated in Sub-section 3.2. This is in line with the observation of Lavancier and

Rochet (2016) that the weighting of estimators is often beneficial, even when based on an imperfect

variance estimator. Furthermore, the estimator L̂CV retains unbiasedness irrespective of how well

V̂φ approximates the true Vφ, as by definition λ̂ACV ∈ ΛACV . Therefore, only the magnitude of the

sampling variance reduction is at risk when Vφ is imprecisely estimated.

3.2 Simulations

We first illustrate the core mechanism that leads to the variance reduction. Figures 2 and 3 display

weights λCV and λ̂ACV for an illustrative simulated scenario with T = 20, m = 16, n = 4, and

simple AR(1) process/model for the fixed and the rolling schemes, respectively. As is apparent from

the figures, λ̂ACV includes in-sample empirical contrasts from periods 17−20 with negative weights

to eliminate a part of the idiosyncratic noise present in out-of-sample empirical contrasts. In turn,

it is necessary to include other in-sample contrasts with positive weights to retain unbiasedness,

creating a chain of positive and negative weights that gradually approach zero as we move towards

the beginning of the sample. Obviously, such a small sample application is rarely encountered in

practice, but it serves well for illustrative purposes, as the basic mechanics are the same regardless

of the sample size.

To assess the magnitude of the variance reduction, we perform a series of simulations with the

AR(1) data generating process (ϕ1 = 0.9) and an AR(1) model estimated via OLS. For varying m

and n, we repeatedly10 estimate the loss of the model by L̂CV and L̂ACV under a fixed scheme, and

9A description of the GMM estimation procedure and the (partially analytic) computational implementation, which
does not require exorbitant computational resources, is available in the documentation of the ACV software package.

101,000 repetitions for each combination of m and n.
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Figure 2: A side by side comparison of weights λCV and λ̂ACV for the fixed scheme.
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Figure 3: A side by side comparison of weights λCV and λ̂ACV for the rolling scheme.
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measure the variance of each estimator. Furthermore, to assess how well the feasible approximate

estimator V̂φ matches the true Vφ, we also compute the true Vφ by means of simulations, which then

allows us to compute the unfeasible L̂ACV ∗ and its variance as a reference point.11

Figure 4 displays ratios V ar(L̂ACV )

V ar(L̂CV )
for different combinations of m and n. Clearly, the improve-

ment brought by L̂ACV relative to L̂CV decreases in n and increases in m. This is because the

larger the n, the more precise the L̂CV and the lesser the potential of reducing the variance by

optimal weighting. On the other hand, the larger the m, the stronger the correlation ρ, which in

turn allows for better utilization of in-sample contrasts and larger variance reduction. Consequently,

for commonly used in-/out-of-sample splitting rules that maintain a fixed ratio of n and m, L̂ACV
delivers a variance reduction that is approximately constant in the sample size T . Variance ratios

range from ∼ 0.4, when 1/3 of the sample is reserved for the out-of-sample evaluation, to ∼ 0.1,

when 1/10 of the sample is reserved for the out-of-sample evaluation. This clearly demonstrates

that the variance reduction is sizable and not limited to small sample applications.

Furthermore, the estimator V̂φ, despite its parsimonious parametrization, approximates the true

matrix Vφ relatively well, as measured by the performance of L̂ACV relative to L̂ACV ∗ . Indeed, the

feasible estimator L̂ACV is able to reap more than 90% of the available variance reduction relative

to the optimal unfeasible estimator L̂ACV ∗ , as is apparent from the ratios V ar(L̂CV )−V ar(L̂ACV )

V ar(L̂CV )−V ar(L̂ACV ∗ )
.

11We choose a fixed scheme as the computation of the true matrix Vφ is prohibitively computationally expensive

in the case of a rolling scheme. With respect to the variance reduction of L̂ACV relative to L̂CV , the results are
comparable (available upon request).
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4 Predictive Ability Inference

The lower variance of the proposed estimator might also translate to a substantial power advan-

tage when performing loss inference. Since Diebold and Mariano’s (1995) pioneering work, many

studies have been devoted to the field of predictive ability inference (see West (2006) or Clark and

McCracken (2013) for a comprehensive survey). Following the taxonomy of Clark and McCracken

(2013), these tests can be broadly divided into two families. First, there are the tests of population-

level predictive ability (e.g. West, 1996; Clark and McCracken, 2001), which are concerned with the

null hypothesis about prediction errors of models evaluated at the true, unknown parameters. Sec-

ond, there are the tests of finite-sample predictive ability (e.g. Giacomini and White, 2006; Clark

and McCracken, 2015), which are concerned with the null hypothesis about prediction errors of

models with parameters that are themselves a function of a finitely sized window of observed data.

In this section, we apply the optimal estimator to an inference about finite-sample predictive

ability, i.e., asymptotics n→∞ with m considered fixed. The reasons for adoption of this asymp-

totic framework are threefold. First, the null hypothesis addressed by the test of finite-sample

predictive ability appeals to practitioners, as it takes into consideration the bias/variance trade-off

inherent to comparing models of different complexity at a given sample size (Clark and McCracken,

2013). Second, unlike for tests of population-level predictive ability, the null hypothesis cannot

be addressed with full-sample methods, which tend to dominate pseudo out-of-sample methods in

terms of power if applicable (Diebold, 2015). Lastly, the finite-sample predictive ability inference is

very general and can be used for both parametric/non-parametric and nested/non-nested models,

which is in sharp contrast to tests of population-level predictive ability, where special care has to

be taken to address individual cases (West, 2006).

We restrict our attention to the rolling window (i.e. v = 1) one-step ahead unconditional test

of equal predictive ability, i.e. the test of null hypothesis H0 : Lmm+1(M1) = Lmm+1(M2) for models

M1 andM2. This narrower scope is motivated by recent findings showing that the null hypothesis

of equal conditional predictive ability can occur only under very specific data generating processes

(Zhu and Timmermann, 2020) and findings that the inference under the fixed scheme (i.e. v = n)

fails to address the desired null hypothesis about models M1 and M2 (McCracken, 2020).

Let ∆L̂CV ≡ L̂CV (M2)−L̂CV (M1) and let σ̂2
CV be a HAC estimator of its asymptotic variance;

σ2
CV ≡ V ar

(√
n∆L̂CV

)
. As shown in Giacomini and White (2006), the following proposition

applies.

Proposition 2 Provided that:

(i) {Xt} is mixing with φ of size −r/(2r − 2), r ≥ 2 or α of size −r/(r − 2), r > 2.

(ii) E
[
|∆lm,vm+1|2r

]
<∞ for all v.

(iii) σ2
CV ≡ V ar

(√
n∆L̂CV

)
> 0 for all n sufficiently large.

14



Then under H0

tDM ≡
∆L̂CV
σ̂CV /

√
n

=
(λCV )>∆φ

σ̂CV /
√
n

d−→ N(0, 1) (25)

where ∆φ = φ(M1)− φ(M1) and under HA : |E
[
∆L̂CV

]
| ≥ δ > 0 for all n sufficiently large

P (|tDM | > c) −→ 1. (26)

We denote the test statistic by a subscript DM as it coincides exactly with the canonical Diebold

and Mariano (1995) test (henceforth DM test).

Provided that {Xt} is stationary, the third expression in Equation 25 motivates an alternative

test statistic that utilizes the optimal weights λ̂ACV to gain more power. Note that, unlike in Section

3, here the weights are optimal for minimizing the variance of the loss differential rather than that

of individual estimators of Lmm+1(M1) and Lmm+1(M2), which is generally not the same task. We

propose the following modification of the DM test, which uses the optimal affine weighting (ADM

test henceforth).

Proposition 3 Provided that {Xt} is stationary, plim(ρ̂) 6= 1, and (i)-(iii) holds, then

tADM ≡
∆L̂ACV
σ̂ACV /

√
n

=
(λ̂ACV )>∆φ

σ̂ACV /
√
n

d−→ N(0, 1) (27)

where σ̂ACV = σ̂CV
λ̂>ACV V̂∆φλ̂ACV

λ̂>CV V̂∆φλ̂CV
and under HA : |E

[
∆L̂CV

]
| ≥ δ > 0 for all n sufficiently large

P (|tADM | > c) −→ 1. (28)

While widely adopted, the DM test is known to suffer from level distortions in small samples,

stemming from the estimation of the long-run variance (see Clark and McCracken, 2013). To

mitigate this issue, Zhu and Timmermann (2020) propose to use Ibragimov and Müller’s (2010) sub-

sampling t-test (IM test henceforth), which does not require a variance estimation. In particular,

Zhu and Timmermann (2020) prove the following proposition.

Proposition 4 Suppose that {Xt} is stationary and E[∆lm,im+1] = 0. Assume that E|∆lm,im+1|r = 0

is bounded for some r > 2 and ∆lm,im+1 is strong mixing of size −r/(r − 2). Then, for fixed K > 1

tIM =
∆L̂CV√

(K − 1)
∑K

k=1

(
L̂(k)
CV −∆L̂CV

)2
/
√
K

d−→ tK−1 (29)

where L̂(k)
CV is the loss estimate computed from the k-th block of data of size ñ = n/K, that is L̂(k)

CV =

ñ−1
∑ñ−1

i=0 ∆l
m,i+ñ(k−1)
m+1 = λ

(k)
CV ∆φ(k) where ∆φ(k) = ∆φM with M = {i}(ñ+1)∗(m+1)−1+ñ∗(m+1)(k−1)

i=1+ñ∗(m+1)(k−1) ,

and where ∆L̂CV = K−1
∑K

k=1 L̂
(k)
CV .
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Similarly to the DM test, the IM test also immediately lends itself to a modified version that exploits

the optimal weighting λ̂ACV (AIM test henceforth).

Proposition 5 Suppose that {Xt} is stationary, plim(ρ̂) 6= 1, and E[∆lm,im+1] = 0. Assume that

E|∆lm,im+1|r = 0 is bounded for some r > 2 and ∆lm,im+1 is strong mixing of size −r/(r − 2). Then,

for fixed K > 1

tAIM =
∆L̂ACV√

(K − 1)
∑K

k=1

(
L̂(k)
ACV −∆L̂ACV

)2
/
√
K

d−→ tK−1 (30)

where L̂(k)
ACV is the loss estimate computed from the k-th block of data of size ñ = n/K, that is

L̂(k)
ACV = λ̂

(k)
ACV ∆φ(k) where ∆φ(k) = ∆φM with M = {i}(ñ+1)∗(m+1)−1+ñ∗(m+1)(k−1)

i=1+ñ∗(m+1)(k−1) , and where

∆L̂ACV = K−1
∑K

k=1 L̂
(k)
ACV .

4.1 Power and Level Properties

To evaluate the power and level properties of the proposed tests, we adapt the simulation environ-

ment of Giacomini and White (2006). We consider a process {Xt} = {Yt, Zt} following the law of

motion

Yt+1 = c+ Zt + εt+1 εt+1 ∼ N(0, σ2) (31)

and two models M1 = {s1, θ̂1} and M2 = {s2, θ̂2} producing point predictions of Yt+1:

s1

(
Xt; β̂

1
t

)
= β̂1

1,tZt with β̂1
t =

{
β̂1

1,t

}
= θ̂1

(
{Xt}tt−m+1

)
(32)

and

s2

(
Xt; β̂

2
t

)
= β̂2

0,t + β̂2
1,tZt with β̂2

t =
{
β̂2

0,t, β̂
2
1,t

}
= θ̂2

(
{Xt}tt−m+1

)
(33)

where θ̂1 and θ̂2 are OLS estimators of the slope, and of the intercept and the slope, respectively.

Model M1 is hence misspecified in that it omits the intercept. Under the mean squared error

contrast function (henceforth MSE), we put forward the following proposition, which is a slight

generalization of Proposition 5 from Giacomini and White (2006). It allows us to explore not only

level distortions but also the power of the proposed tests.

Proposition 6 Let Zt = 1
m−1

∑t−1
j=t−m+1 Zj,Z

2
t = 1

m−1

∑t−1
j=t−m+1 Z

2
j , and St =

∑t−1
j=t−m+1 Z

2
j −

(m− 1)Z
2
t . Then for given ς ≥ 1 and

c = σ


∑T−1

t=m

(
1 + Z2

t
St

+
Z2
t
St
− 2ZtSt Zt

)
ς −

∑T−1
t=m

(
1 +

Z2
t

(m−1)Z2
t

)
∑T−1

t=m

(
1− Zt

Z2
t
Zt

)2


0.5

(34)

it holds that

ς =
Lmm+1(M1)

Lmm+1(M2)
. (35)
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By setting ς = 1, Proposition 6 allows us to simulate data under H0, that is with c such that the

omission of the intercept will cause an increase of the loss that is exactly offset by the reduction of

the loss stemming from a more precisely estimated slope coefficient. Furthermore, we also consider

values ς > 1, in which the omission of the intercept will result in worse predictions. In the exercise

below, we follow the setup of Giacomini and White (2006) and take {Zt} to be a second log difference

of the US CPI index for the 1959-01 – 1998-12 period (U.S. Bureau of Labor Statistics, 2020).12

The truncation lag of Newey and West’s (1987) HAC estimator in DM and ADM tests is chosen

according to the commonly used rule
⌊

3
4n

1
3

⌋
(see e.g. Lazarus et al., 2018). The number of groups

K in IM and AIM tests is 2 as in Zhu and Timmermann (2020).

We simulate the process from Eq. 31 with constant c corresponding to values of ς ∈ { 1, 1.03125,

1.0625, 1.125, 1.25, 1.375, 1.5, 1.75, 2 } for n ∈ {10, 20, 50, 100, 200, 300} and m = 100. As can

be seen in Figure 5, the proposed ADM and AIM tests exhibit substantially higher power relative

to their conventional counterparts. In accordance with results from Section 3.2, the power gain is

especially sizable in scenarios with small n relative to m. The power gain also appears to be more

pronounced in the case of the IM type tests, which tend to sacrifice power in exchange for lesser

finite sample level distortions, creating a greater opportunity for improvement.

To better explore level properties, we repeat the exercise with ς = 1, levels p ∈ {0.01, 0.05, 0.1}
for values n ∈ {10, 20, 50, 100, 200, 300} and m = 100. Inspecting Table 1, it is apparent that

while we do observe the same small sample level distortions for DM type tests as documented in

the literature, their magnitude is, in fact, smaller for the proposed ADM test. This shows that the

power gain is achieved despite better level properties, not because of them. As expected, rejection

probabilities for IM type tests are closer to the desired levels. The AIM test exhibits larger level

distortions in small samples relative to the conventional IM test. These distortions stem from

stronger finite sample dependencies between individual estimators L̂(k)
ACV introduced by the affine

weighting. However, given the substantially higher power of AIM relative to IM, these finite sample

distortions seem acceptable.

p = 0.01 p = 0.05 p = 0.10
n DM ADM IM AIM DM ADM IM AIM DM ADM IM AIM

10 0.048 0.034 0.011 0.017 0.122 0.085 0.050 0.086 0.190 0.135 0.095 0.164
20 0.029 0.025 0.011 0.016 0.098 0.072 0.046 0.077 0.167 0.117 0.092 0.162
50 0.017 0.015 0.010 0.014 0.070 0.055 0.050 0.079 0.129 0.099 0.099 0.152
100 0.013 0.016 0.010 0.014 0.059 0.056 0.044 0.068 0.111 0.100 0.096 0.142
200 0.010 0.012 0.011 0.015 0.048 0.046 0.054 0.073 0.091 0.083 0.107 0.140
300 0.010 0.009 0.012 0.013 0.045 0.040 0.053 0.070 0.082 0.075 0.106 0.136

Table 1: A table of rejection probabilities for DM, ADM, IM, and AIM tests for different levels p.

12As a robustness check, we also repeat the exercise with the first log difference of CPI and the log of CPI. These
results are qualitatively similar and are available in Appendix B.
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Figure 5: Plots of rejection probabilities for DM, IM, ADM, and AIM tests at level 0.05.
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5 Empirical Evaluation

To demonstrate that the theoretical superiority of the proposed estimator also translates to real-life

forecasting tasks, we perform an extensive evaluation on the M4 competition (Makridakis et al.,

2020), which is currently the largest time-series forecasting competition, with 100,000 time-series

ranging from yearly to hourly frequency. Participants in the M4 competition were asked to produce

forecasts for each of the series for the upcoming 6/8/18/13/14/48 periods for yearly/quarterly/

monthly/weekly/daily/hourly frequency, respectively. The organizers withheld the most recent

segment of each series of corresponding length (test segments, henceforth). Submitted forecasts

were then compared with test segments to evaluate their precision.

To assess the performance of L̂ACV we consider two canonical models that were used as standards

for comparison in the M4 competition; the ETS (Hyndman et al., 2002), which automatically selects

the optimal form of exponential smoothing via the information criterion, and the autoARIMA

(Hyndman and Khandakar, 2008), which selects the most appropriate ARIMA specification via the

information criterion. Both these models are frequently used in practice and performed comparably

well in the M4 competition, making them ideal candidates. Similarly to the competition, the

performance of each model is assessed on the test segment of series using the sMAPE contrast

function:13

γ
(
Xt, X̂t

)
=

|Xt − X̂t|
1
2 |Xt|+ 1

2 |X̂t|
100. (36)

Unlike in the M4 competition however, our interest is not in the performance of individual

models per se, but rather in our ability to predict the out-of-sample performance L̃CV,s(M)14 on

the test segment of a series s with the use of in-sample data only. To do so, we perform pseudo

out-of-sample evaluations under the rolling scheme (i.e. v = 1) with the same number of pseudo

out-of-sample observations as in the test segment (i.e. n ∈ {6, 8, 18, 13, 14, 48}). For each series

s, we compute the estimates L̂CV,s(M) and L̂ACV,s(M) and compare them with the actual out-

of-sample loss L̃CV,s(M) incurred on the test segment. The overall precision of the estimator is

computed as

MSECV (M) =
1

|S|
∑
s∈S

(
L̃CV,s(M)− L̂CV,s(M)

)2
(37)

and

MSEACV (M) =
1

|S|
∑
s∈S

(
L̃CV,s(M)− L̂ACV,s(M)

)2
(38)

with S ⊂ {1, 2, . . . , 100000} being a subset of time-series under consideration. To better assess the

performance on different types of series, we also subject each series to a non-parametric CS test for

13This contrast function was chosen by organizers so that losses of series on different scales are approximately
comparable. As a robustness check, we also repeat the exercise with MAE and MSE contrast functions with prior
normalization and obtain comparable results (available upon request).

14We use the notation L̃CV rather than L̂CV to highlight that this is the loss incurred on the test segment (i.e., the
true out-of-sample evaluation). However, as the test segment is of finite length, this is still only an estimate of the
true theoretical loss LCV . The subscript CV indicates that the conventional estimator is used to compute the loss
incurred on the test segment.
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the presence of a trend (Cox and Stuart, 1955) and a QS test for the presence of seasonality (Ljung

and Box, 1978).

Table 2 depicts MSECV and MSEACV for both models across all frequencies, further broken

down by the results of the CS and QS tests (for both, the threshold p = 0.05 is considered). For

each model, percentage improvements of L̂ACV over L̂CV in terms of MSE are shown alongside

their statistical significance. As is apparent, the use of L̂ACV leads to a substantially more precise

estimation of the incurred out-of-sample loss L̃CV , in particular to a reduction of MSE by 13.0%

and 10.6% on average for ETS and autoARIMA, respectively. It is worth highlighting that this

MSE reduction likely underestimates the true magnitude of the sampling variance reduction, as the

comparison is made with respect to the estimate of loss L̃CV rather than the true theoretical loss

LCV ; hence, the corresponding part of the MSE in principle cannot be reduced. A back of the

envelope calculation suggests that the theoretical MSE reduction, if computed against the true loss

rather than its estimate, is actually twice the size.

Furthermore, the majority of series in the M4 competition are not-stationary, exhibiting either

a trend (90%), seasonality (39%), or both (36%). Despite this adverse setting, L̂ACV still offers a

substantial advantage over L̂CV , although it should be noted the MSE reduction is not as sizable

for series that exhibit seasonality. The fact that L̂ACV exhibits superior performance relative to

L̂CV , even when applied indiscriminately to a wide range of time-series without any regards for

stationarity, clearly demonstrates its robustness and practical applicability.

Lastly, we assess the performance of L̂ACV in terms of model selection. In this exercise, the

task is to use the loss estimate to select the model M that will perform best on the test segment

of a given series, i.e., to identify the model with the smallest L̃CV,s(M). Table 3 shows the average

incurred loss L̃CV and the probability of selecting the best model, whether this is done according to

AIC (Akaike, 1998) or the sign of the loss differential estimated via L̂CV and L̂ACV . The table also

includes the average loss that would be incurred if we knew which model was the best-performing

on the test segment.15 Obviously, such a selection is not feasible in practice but it provides a useful

benchmark, as it represents the best possible outcome that can be achieved via model selection alone.

Compared to AIC, L̂ACV achieves a 23.7% incurred loss reduction relative to what is achievable

and is more likely to select the best model by 4.9% points.16 Compared to L̂CV , the relative loss

reduction is more modest, only 1.4%, but still statistically significant. The estimator L̂ACV is 0.3%

points more likely to select the best model than L̂CV .

While the gains from more accurate model selection via L̂ACV rather than L̂CV are not as

sizable, it should be noted that the variance minimizing weights of L̂ACV are not necessarily optimal

in terms of selecting a model so that its incurred loss is the lowest in expectation. By computing

15We denoted these incurred losses and probabilities of selecting the best model by L̃CV (Mx) and P (best)x, re-
spectively, where x ∈ {AIC, CV, ACV, ex− post opt.}.

16The dominance of CV and ACV over AIC likely stems from violations of stationarity, which more heavily penalize
the AIC than the ACV, and/or the fact that the sMAPE contrast function in Eq. 36 is not aligned with the MSE
contrast function, for which the AIC is designed. A thorough theoretical comparison of the AIC and pseudo out-of-
sample estimators such as L̂CV or L̂ACV is beyond the scope of this article. A detailed analysis can, however, be
found in Inoue and Kilian (2006).
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Time-series ETS autoARIMA
Period Trending Seasonal N MSECV MSEACV ∆MSE [%] MSECV MSEACV ∆MSE [%]

Yearly 23000 48.68 41.47 -14.8*** 57.05 51.37 -10.0***
(1.65) (1.49) (2.42) (2.38)

F F 2214 139.93 126.41 -9.7*** 194.26 187.93 -3.3
(10.60) (10.27) (16.17) (16.36)

F T 267 20.22 19.86 -1.8 24.08 23.84 -1.0
(5.49) (5.43) (6.22) (5.76)

T F 15076 49.62 41.06 -17.3*** 54.29 46.57 -14.2***
(1.92) (1.65) (2.74) (2.63)

T T 5443 10.35 9.12 -11.9** 10.51 10.44 -0.7
(0.90) (0.81) (1.38) (1.37)

Quarterly 24000 28.70 24.18 -15.8*** 33.87 29.30 -13.5***
(1.16) (0.97) (1.41) (1.22)

F F 1561 92.17 78.02 -15.4** 101.50 81.68 -19.5***
(8.96) (7.75) (9.51) (7.78)

F T 681 65.29 49.90 -23.6 90.95 81.41 -10.5
(14.91) (8.83) (16.93) (14.93)

T F 14115 26.34 21.68 -17.7*** 29.50 25.23 -14.5***
(1.32) (1.09) (1.49) (1.18)

T T 7643 16.82 15.50 -7.9 23.02 21.50 -6.6
(1.48) (1.38) (2.43) (2.33)

Monthly 48000 19.32 17.65 -8.6*** 21.68 19.69 -9.2***
(0.47) (0.45) (0.57) (0.55)

F F 2574 78.64 63.56 -19.2*** 87.64 73.09 -16.6***
(5.02) (4.42) (5.89) (5.28)

F T 1964 21.89 19.70 -10.0* 24.63 21.33 -13.4**
(1.99) (1.88) (2.67) (2.38)

T F 21613 23.60 22.27 -5.6** 26.57 24.78 -6.8***
(0.72) (0.75) (0.91) (0.94)

T T 21849 7.85 7.49 -4.7* 8.81 8.23 -6.6**
(0.36) (0.36) (0.41) (0.40)

Weekly 359 8.81 5.55 -37.0*** 6.47 5.95 -8.0
(1.40) (0.99) (0.86) (1.13)

F F 54 13.18 10.50 -20.4 9.50 7.51 -21.0
(3.05) (4.09) (2.27) (1.67)

F T 3 2.72 1.85 -32.1 0.81 0.67 -18.0
(2.09) (1.47) (0.80) (0.64)

T F 257 8.81 5.15 -41.5*** 6.39 6.35 -0.7
(1.81) (1.06) (1.06) (1.53)

T T 45 4.01 2.14 -46.8 3.61 2.12 -41.2
(1.99) (0.91) (1.65) (0.84)

Daily 4227 1.62 1.56 -3.5 2.11 2.15 1.7
(0.33) (0.37) (0.51) (0.54)

F F 226 2.71 3.98 47.1 4.05 4.36 7.6
(2.33) (3.73) (3.53) (4.01)

F T 19 0.39 0.43 10.8 0.33 0.42 26.5
(0.19) (0.24) (0.18) (0.21)

T F 3535 0.89 0.71 -19.3* 0.89 0.77 -13.4*
(0.22) (0.19) (0.23) (0.22)

T T 447 6.94 7.11 2.5 10.92 12.05 10.3**
(2.29) (2.45) (4.07) (4.31)

Hourly 414 12.71 8.55 -32.7*** 53.11 45.62 -14.1
(2.27) (1.47) (11.36) (12.16)

F F 1 0.24 0.09 -60.4 0.06 0.02 -56.3
( NA) ( NA) ( NA) ( NA)

F T 125 29.67 17.97 -39.4*** 90.33 59.04 -34.6***
(6.65) (3.89) (21.18) (15.35)

T F 5 2.12 2.70 27.1 1.56 1.86 18.6
(1.93) (2.54) (1.30) (1.49)

T T 283 5.45 4.53 -16.8 37.77 40.63 7.6
(1.36) (1.22) (13.64) (16.44)

All 100000 27.51 23.94 -13.0*** 31.99 28.60 -10.6***
(0.52) (0.47) (0.71) (0.68)

Table 2: Comparison of L̂CV and L̂ACV in terms of the loss estimation.
∆MSE [%] = MSEACV −MSECV

MSECV
100. Standard errors in brackets, ∗ ∗ ∗ p < 0.001, ∗ ∗ p < 0.01, ∗ p < 0.05.
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Time-series ex-post opt. AIC CV ACV AIC vs ACV CV vs ACV

Period N L̃ P (best) L̃ P (best) L̃ P (best) L̃ ∆L̃ [%] ∆L̃ [%]

Yearly 23000 6.489 0.513 7.186 0.528 7.096 0.526 7.089 -13.9*** -1.2
(0.056) (0.003) (0.065) (0.003) (0.063) (0.003) (0.062)

Quarterly 24000 5.602 0.484 6.198 0.548 6.007 0.551 6.002 -32.8*** -1.0
(0.055) (0.003) (0.061) (0.003) (0.059) (0.003) (0.059)

Monthly 48000 6.513 0.525 6.944 0.578 6.858 0.585 6.852 -21.3*** -1.7
(0.043) (0.002) (0.046) (0.002) (0.045) (0.002) (0.045)

Weekly 359 5.033 0.616 5.162 0.526 5.245 0.577 5.229 52.1 -7.3
(0.298) (0.026) (0.303) (0.026) (0.316) (0.026) (0.316)

Daily 4227 1.013 0.516 1.052 0.522 1.030 0.509 1.031 -53.6*** 4.4*
(0.027) (0.008) (0.031) (0.008) (0.028) (0.008) (0.028)

Hourly 414 6.765 0.551 9.261 0.804 6.911 0.819 6.869 -95.9*** -28.9
(0.443) (0.024) (0.655) (0.020) (0.452) (0.019) (0.450)

All 100000 6.052 0.512 6.575 0.558 6.456 0.561 6.451 -23.7*** -1.4*
(0.028) (0.002) (0.031) (0.002) (0.030) (0.002) (0.030)

Table 3: Comparison of AIC, L̂CV and L̂ACV in terms of model selection.

For x ∈ {AIC, CV }, ∆L̃ [%] = L̃CV (MACV )−L̃CV (Mx)

L̃CV (Mx)−L̃CV (Mex−post opt.)
100. Standard errors in brackets,

∗ ∗ ∗ p < 0.001, ∗ ∗ p < 0.01, ∗ p < 0.05.

multiple sets of weights jointly, so that they are optimal in terms of model selection, we could

presumably attain even better results. This promising research direction is, however, beyond the

scope of this paper.

6 Conclusion

We challenge the notion that a model’s in-sample performance cannot be utilized when assessing its

out-of-sample performance. We propose an alternative estimator of the out-of-sample loss that op-

timally utilizes both in-sample and out-of-sample empirical contrasts via a system of affine weights.

We prove that under stationarity, the proposed (unfeasible) estimator is the best unbiased linear

estimator of the out-of-sample loss and that it dominates the conventional estimator in terms of the

sampling variance. We also propose an approximate feasible variant of the estimator, which closely

matches the performance of the unfeasible optimal estimator, and which exhibits a substantially

smaller sampling variance relative to the conventional estimator, by a factor of ∼ 0.4 to ∼ 0.1 in

our simulations. The variance reduction is most sizable in situations where few observations are

designated for the out-of-sample evaluation relative to the number of in-sample observations.

The proposed optimal estimator can also be applied to the inference about predictive ability.

We put forward modifications of Diebold and Mariano’s (1995) test and of Ibragimov and Müller’s

(2010) test and show that utilization of the optimal estimator leads to a substantial power gain

(often by a factor > 2) in detecting deviations from the null hypothesis of equal predictive ability.

In addition, the finite sample level distortions of Diebold and Mariano’s (1995) test frequently

documented in the literature seem to be attenuated, rather than exacerbated, by the system of

optimal affine weights.

Finally, to assess the real-life applicability of the estimator and its robustness, we perform an

extensive evaluation on time-series from the M4 forecasting competition (Makridakis et al., 2020).

In line with the theoretical derivations and the simulation evidence, the proposed estimator more

precisely estimates the losses incurred on the test segments of series (> 10% MSE reduction relative

to the conventional estimator). Furthermore, selecting a model based on the proposed estimator
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leads to a higher probability of selecting the ex-post optimal model and also to an overall lower loss

relative to that which would be incurred if the model were selected according to the conventional

estimator. Importantly, these improvements are achieved despite the majority of time-series in the

M4 competition exhibiting some form of non-stationarity, and hence not strictly satisfying require-

ments for the application of the proposed estimator. This demonstrates a remarkable robustness

of the proposed estimator and even potential for forecasting time-series where the assumption of

stationarity might be in question.
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Appendices

A Proofs

Lemma 1 Let P =
{
P1, P2, . . . , Pcard(P )

}
be a partition of {1, 2, . . . , card(φ)} such that ∀j ∈

{1, 2, . . . , card(P )} ∀i, i′ ∈ Pj : E[φi] = E[φi′ ]. Then for λ ∈ ΛACV where

ΛACV =

λCV + x

∣∣∣∣∣x ∈ Rcard(φ) ∧ ∀j ∈ {1, 2, . . . , card(P )} :
∑
i∈Pj

xi = 0

 , (39)

it holds that

E[λ>φ] = LCV (40)

and

λ>Σφλ = λ>Vφλ (41)

where Σφ = E
[
(φ− LCV 1)(φ− LCV 1)>

]
and Vφ = V ar(φ).

Proof of Lemma 1 To prove this lemma, consider

E[λ>φ] = E[(λCV + x)> φ]

= E[(λCV )> φ] + E[x>φ]

= LCV +

card(P )∑
j=1

∑
i∈Pj

xiE[φi]︸ ︷︷ ︸
=0

= LCV .

(42)

Furthermore

Σφ = E[(φ− LCV 1) (φ− LCV 1)>]

= E[((φ− E[φ]) + (E[φ]− LCV 1)) ((φ− E[φ]) + (E[φ]− LCV 1))>]

= V ar(φ) + (E[φ]− LCV 1) (E[φ]− LCV 1)>

(43)

and

λ>Σφλ = λ>
(
V ar(φ) + (E[φ]− LCV 1) (E[φ]− LCV 1)>

)
λ

= λ>V ar(φ)λ+ λ> (E[φ]− LCV 1) (E[φ]− LCV 1)> λ

= λ>V ar(φ)λ

(44)
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as

λ> (E[φ]− LCV 1) = (λCV + x)> (E[φ]− LCV 1)

= (λCV )> E[φ]− (λCV )> LCV 1 + x>E[φ]− x>LCV 1

= LCV − LCV +

card(P )∑
j=1

∑
i∈Pj

xiE[φi]︸ ︷︷ ︸
=0

−LCV
card(P )∑
j=1

∑
i∈Pj

xi1i︸ ︷︷ ︸
=0

= 0,

(45)

which completes the proof.

Proof of Proposition 1 Let P = {P1, P2, . . . , Pm+v} be a partition of {1, 2, . . . , card(φ)} such

that ∀j ∈ {1, 2, . . . , m+ v} ∀i ∈
{

0, 1, . . . , nv
}

: lm, ivj ∈ Pj. Due to stationarity, it holds that

∀j ∈ {1, 2, . . . , card(P )} ∀i, i′ ∈ Pj : E[φi] = E[φi′ ] and hence Lemma 1 can be applied. Also note

that the set ΛACV from Lemma 1 can be equivalently expressed as

λ ∈ ΛACV ⇐⇒ Bλ = b (46)

with

B =
(
1>n/v ⊗ I, I:,M

)
b =

(
0m
1
v1v

)
(47)

where M = (1, 2, . . . , m).

By virtue of Proposition 1, for any λ ∈ ΛACV , it holds that

E[λ>φ] = LCV (48)

and

λ>Σφλ = λ>Vφλ, (49)

i.e., all estimators with weights in ΛACV are unbiased estimators of LCV and their mean squared

error is equal to their variance. We are interested in the best possible estimator (in terms of mean

squared error/variance) in the set ΛACV . Formally:

argmin
λ

λ>Vφλ s.t : Bλ = b. (50)

This is an elementary problem of quadratic programming and its solution can be found in many

texts related to that field (see e.g. Johnson, 2020, p: 53). Below we present a short outline of the

proof.

The Lagrangian associated with the problem is given by

L(λ, α) = λ>Vφλ− α>(Bλ− b). (51)
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Necessary conditions for pair {λ, α} to be solution to Eq. 50 are

∂L(λ, α)

∂λ
= 2Vφλ−B>α = 0, (52)

∂L(λ, α)

∂α
= Bλ− b = 0. (53)

From Eq. 52, it follows

λ =
1

2
V −1
φ B>α, (54)

combining that with Eq. 53 leads to

α = 2
(
BV −1

φ B>
)−1

b (55)

and consequently

λ = V −1
φ B>

(
BV −1

φ B>
)−1

b. (56)

The invertibility of matrix Vφ and
(
BV −1

φ B>
)

follows from positive-definiteness of Vφ and full rank

of B. The sufficient conditions then follows from the fact that λ>Vφλ is strictly convex function as

Vφ is positive definite. We denote the optimum weights as λACV and the corresponding estimator

by L̂ACV ∗, i.e.

L̂ACV ∗ = (λACV )> φ with λACV = V −1
φ B>

(
BV −1

φ B>
)−1

b. (57)

The statement

E[L̂ACV ∗ ] = LCV (58)

stems directly from λACV ∈ ΛACV and Proposition 1. Statements

V ar(L̂ACV ∗) < V ar(λ>φ) with λ ∈ ΛACV , λ 6= λACV (59)

and

V ar(L̂ACV ∗) ≤ V ar(L̂CV ) (60)

follows from strict convexity of function λ>Vφλ and λCV ∈ ΛACV , respectively.

It remains to show that there is no λ′ /∈ ΛACV such that it is guaranteed that E[(λ′)> φ] = LCV .

Suppose that there is such λ′ and let x = λ′−λCV . From λ′ /∈ ΛACV it follows that ∃j′ :
∑

i∈Pj′
xi =

c 6= 0. Suppose that ∀j ∈ {1, 2, ..., m+ v} , j 6= j′ : Lmj = 0 and Lmj′ 6= 0. Then

E[
(
λ′
)>
φ] = E[λ>CV φ] + E[x>φ] = LCV + cLmj′ 6= LCV , (61)

which is a contradiction.
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Lemma 2 Provided that ρ̂ 6= 1, matrix V̂φ defined as:

V̂φ = σ̂2



I A1
L A2

L . . . A
n
v
−2

L A
n
v
−1

L (A
n
v
L ):,M

A1
U I A1

L

. . . A
n
v
−2

L (A
n
v
−1

L ):,M

A2
U A1

U I
. . . (A

n
v
−2

L ):,M

...
. . .

. . .
. . .

. . .
. . .

...

A
n
v
−2

U

. . . I A1
L (A2

L):,M

A
n
v
−1

U A
n
v
−2

U

. . . A1
U I (A1

L):,M

(A
n
v
U )M,: (A

n
v
−1

U )M,: (A
n
v
−2

U )M,: . . . (A2
U )M,: (A1

U )M,: (I)M,M


(62)

with

� AiU = (ρ̂Uv)i

� AiL = (ρ̂Lv)i

� M = (1, 2, . . . , m)

is invertible and its inverse is given by:

V̂ −1
φ =

1

σ̂2



Z1 ZL 0 . . . 0 0 (0):,M

ZU Z2 ZL
. . . 0 (0):,M

0 ZU Z2
. . . (0):,M

...
. . .

. . .
. . .

. . .
. . .

...

0
. . . Z2 ZL (0):,M

0 0
. . . ZU Z2 (ZL):,M

(0)M,: (0)M,: (0)M,: . . . (0)M,: (ZU )M,: (Z3)M,M


(63)

with

� Z1 = I + ρ̂2

1−ρ̂2L
vUv

� Z2 = I + ρ̂2

1−ρ̂2 (LvUv + UvLv)

� Z3 = 1
1−ρ̂2 I

� ZU = −ρ̂
1−ρ̂2U

v

� ZL = −ρ̂
1−ρ̂2L

v.

Proof of Lemma 2 To prove this lemma, we check individual sub-matrices of V̂φV̂
−1
φ to verify

that, together, they indeed constitute an identity matrix:
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� [i, i] : i = 1

IZ1 +A1
LZU = I

(
I +

ρ̂2

1− ρ̂2
LvUv

)
+ ρ̂Lv

−ρ̂
1− ρ̂2

Uv

= I

(64)

� [i, i] : 1 < i ≤ n
v

A1
UZL + IZ2 +A1

LZU = ρ̂Uv
−ρ̂

1− ρ̂2
Lv + I

(
I +

ρ̂2

1− ρ̂2
(LvUv + UvLv)

)
+ ρ̂Lv

−ρ̂
1− ρ̂2

Uv

= I

(65)

� [i, i] : i = n
v + 1

(A1
U )M,:(ZL):,M + (I)M,M (Z3)M,M = ρ̂(Uv)M,:

−ρ̂
1− ρ̂2

(Lv):,M + (I)M,M
1

1− ρ̂2
(I)M,M

=
−ρ̂2

1− ρ̂2
(I)M,M +

1

1− ρ̂2
(I)M,M

= (I)M,M

(66)

� [i, j] : 1 < i ≤ n
v , j = 1

Ai−1
U Z1 +Ai−2

U ZU = (ρ̂Uv)i−2

(
ρ̂Uv

(
I +

ρ̂2

1− ρ̂2
LvUv

)
+
−ρ̂

1− ρ̂2
Uv
)

= (ρ̂Uv)i−2 1

1− ρ̂2

((
ρ̂− ρ̂3

)
Uv + ρ̂3Uv − ρ̂Uv

)
= 0

(67)

� [i, j] : i = n
v + 1, j = 1

(Ai−1
U )M,:Z1 + (Ai−2

U )M,:ZU = (Ai−1
U Z1 +Ai−2

U ZU )M,:

= (0)M,:

(68)

� [i, j] : j < i < n
v , 1 < j ≤ n

v

Ai−j+1
U ZL +Ai−jU Z2 +Ai−j−1

U ZU =

= (ρ̂Uv)i−j−1

(
(ρ̂Uv)2 −ρ̂

1− ρ̂2
Lv + ρ̂Uv

(
I +

ρ̂2

1− ρ̂2
(LvUv + UvLv)

)
+
−ρ̂

1− ρ̂2
Uv
)

= (ρ̂Uv)i−2 1

1− ρ̂2

(
−ρ̂3U2vLv +

(
ρ̂− ρ̂3

)
Uv + ρ̂3UvLvUv + ρ̂3U2vLv − ρ̂Uv

)
= 0

(69)
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� [i, j] : i = n
v + 1, 1 < j ≤ n

v

(Ai−j+1
U )M,:ZL + (Ai−jU )M,:Z2 + (Ai−j−1

U )M,:ZU = (Ai−j+1
U ZL +Ai−jU Z2 +Ai−j−1

U ZU )M,:

= (0)M,: .

(70)

The fact that remaining submatrices above the diagonal equal 0 follows from the symmetry of V̂φ.

Proof of Proposition 2 The proof is provided in Giacomini and White (2006, p. 1575).

Lemma 3 Provided that {Xt} is stationary, plim(ρ̂) 6= 1, and v = 1, it holds that:

√
n(λ̂ACV − λCV )>φ

p−→ 0 (71)

and
λ̂>ACV V̂φλ̂ACV

λ>CV V̂φλCV

p−→ 1. (72)

Proof of Lemma 3 To prove this lemma, we first express λ̂ACV as function of m, n and ρ. First

let us recapitulate that

λ̂ACV = V̂ −1
φ B>

(
BV̂ −1

φ B>
)−1

b (73)

and note that for v = 1, the system of restriction B and b representing partition implied by station-

arity is the following:

B =
(
1>n ⊗ I, I:,M

)
b =

(
0m

1

)
(74)

where M = (1, 2, . . . , m).

Consider any ρ̂ 6= 1, using the Lemma 2, we can express

V̂ −1
φ B> =

1

σ̂2

 Z1 + ZL

1n−1 ⊗ (ZU + Z2 + ZL)

(ZU )M,: + (Z3)M,M IM,:

 (75)
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and furthermore

BV̂ −1
φ B> =

1

σ̂2

Z1 + ZL + (n− 1) (ZU + Z2 + ZL) + I:,M (ZU )M,:︸ ︷︷ ︸
=ZU

+ I:,M (Z3)M,M IM,:︸ ︷︷ ︸
= 1

1−ρ̂2
UvLv


=

1

σ̂2

(
n (ZU + Z2 + ZL) + Z1 − Z2 +

1

1− ρ̂2
UvLv

)
=

1

σ̂2
(n (ZU + Z2 + ZL) + UvLv)

=
1

σ̂2

1

1− ρ̂2

(
n
(
(1− ρ̂2)I + ρ̂2(LvUv + UvLv)− ρ̂(Uv + Lv)

)
+ (1− ρ̂2)UvLv

)
.

(76)

Under v = 1, the resulting matrix is tridiagonal, in particular:

BV̂ −1
φ B> =

1

σ̂2

1

1− ρ̂2



a1 c 0 . . . 0 0 0

c a2 c
. . . 0 0

0 c a3
. . . 0

...
. . .

. . .
. . .

. . .
. . .

...

0
. . . am−1 c (0

0 0
. . . c am c

0 0 0 . . . 0 c am+1


︸ ︷︷ ︸

≡Y

(77)

with

� a1 = n+ 1− ρ̂2

� aj = (1 + ρ̂2)n+ 1− ρ̂2, 1 < j < m+ 1

� am+1 = n

� c = −nρ̂.

Using the results of Usmani (1994) on the inverse of tridiagonal matrices, we know that the left-most

column of Y −1 can be expressed as

(
Y −1

)
j,m+1

= (−1)j+(m+1) c(m+1)−j θj−1

θm+1
∗ 1

= (nρ̂)m+1−j θj−1

θm+1

(78)

with θ0 = 1, θ1 = a1, and θj = ajθj−1 + c2θj−2 with 2 ≤ j ≤ m + 1. In our particular case it then
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follows that

θj =

nj +O(nj−1) 0 ≤ j ≤ m

(1− ρ̂2)nj +O(nj−1) j = m+ 1,
(79)

which can be proven by induction as θ0 = 1 and θ1 = n+ 1− ρ̂2 and for 2 ≤ j ≤ m it holds that

θj = ajθj−1 + c2θj−2

=
(
(1 + ρ̂2)n+ 1− ρ̂2

) (
nj−1 +O(nj−2)

)
− (−nρ̂)2 (nj−2 +O(nj−3)

)
= nj +O(nj−1)

(80)

and consequently for j = m+ 1

θj = ajθj−1 + c2θj−2

= (n)
(
nj−1 +O(nj−2)

)
− (−nρ̂)2 (nj−2 +O(nj−3)

)
= (1− ρ̂2)nj +O(nj−1).

(81)

Therefore

(
Y −1

)
j,m+1

= (nρ̂)m+1−j nj−1 +O(nj−2)

(1− ρ̂2)nm+1 +O(nm)

=
ρ̂m+1−jnm +O(nm−1)

(1− ρ̂2)nm+1 +O(nm)

=
ρ̂m+1−j

1− ρ̂2

1

n
+O

(
1

n2

) (82)

and finally ((
BV̂ −1

φ B>
)−1

b

)
j

= σ̂2
(
1− ρ̂2

) (
Y −1

)
j,m+1

= σ̂2ρ̂m+1−j 1

n
+O

(
1

n2

) (83)

and furthemore using the definitions of Zj, ZU , and ZL

λ̂ACV =

 Z1 + ZL

1n−1 ⊗ (ZU + Z2 + ZL)

(ZU )M,: + (Z3)M,M IM,:




1
n ρ̂

m +O( 1
n2 )

1
n ρ̂

m−1 +O( 1
n2 )

...
1
n ρ̂

1 +O( 1
n2 )

1
n ρ̂

0 +O( 1
n2 )


=


1
nP + ε1(n)

1n−1 ⊗

(
1
n

(
0m

1

)
+ ε2(n)

)
1
n0m + ε3(n)

 (84)

where P =
(
ρ̂m, ρ̂m−1, ..., ρ̂1, ρ̂0

)>
and εk for k ∈ {1, 2, 3} is a vector function that is element-wise

O( 1
n2 ).

With the explicit, albeit approximate (up to O( 1
n2 )), expression for λ̂ACV , we proceed with proving
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the individual claims. Let us denote

λ∆ ≡ λ̂ACV − λCV =


1
nP + ε1(n)

1n−1 ⊗

(
1
n

(
0m

1

)
+ ε2(n)

)
1
n0m + ε3(n)

−
1n ⊗

(
1
n

(
0m

1

))
1
n0m



=


1
n

(
P −

(
0m

1

))
+ ε1(n)

1n−1 ⊗ ε2(n)

ε3(n)


(85)

and furthermore

λ>∆φ =

m+1∑
j=1

((
1

n
ρ̂m+1−j + ε1(n)j

)
lm,0j +

n−1∑
i=1

ε2(n)jl
m,i
j + ε3(n)jl

m,n
j 1(j ≤ m)

)
︸ ︷︷ ︸

≡Qj

. (86)

Consider any j ∈ {1, 2, ..., m+ 1}. From the definition of εk(n), k ∈ {1, 2, 3} it follows that

∃C, n0 : ∀n ≥ n0:

0 ≤ |
√
nQj | ≤

√
n

((
| 1
n
ρ̂m+1−j |+ |ε1(n)j |

)
|lm,0j |+

n−1∑
i=1

|ε2(n)j ||lm,ij |+ |ε3(n)j ||lm,nj |1(j ≤ m)

)

≤
√
n

1

n
ρ̂m+1−j |lm,0j |+

√
n

n−1∑
i=1

C
1

n2
|lm,ij |+

√
nC

1

n2
|lm,nj |1(j ≤ m)

=
1√
n
ρ̂m+1−j |lm,0j |︸ ︷︷ ︸

p−→0
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1√
n
C

1

n

n−1∑
i=1

|lm,ij |︸ ︷︷ ︸
p−→0

+
1√
n
C

1

n
|lm,nj |1(j ≤ m)︸ ︷︷ ︸

p−→0

p−→ 0.

(87)

Considering that

−
m+1∑
j=1

|
√
nQj | ≤ −|

√
n

m+1∑
j=1

Qj | ≤
√
nλ>∆φ ≤

m+1∑
j=1

|
√
nQj | ≤ |

√
n

m+1∑
j=1

Qj | (88)

it follows that
√
n(λACV − λ̂CV )>φ

p−→ 0 (89)
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via Squeeze theorem. To prove the second claim, note that

λ̂>ACV V̂φλ̂ACV

λ>CV V̂φλCV
=

(λCV + λ∆)> V̂φ (λCV + λ∆)

λ>CV V̂φλCV

=
λ>CV V̂φλCV + λ>∆V̂φλCV + λ>CV V̂φλ∆ + λ>∆V̂φλ∆

λ>CV V̂φλCV
.

(90)

Let us denote

ε̃1(n) = | 1
n

(
P −

(
0m

1

))
+ ε1(n)| (91)

e(n) =
1

n

(
0m

1

)
. (92)

From the definition of εk(n), k ∈ {1, 2, 3} it follows that ∃C, n0 : ∀n ≥ n0:

nλ>∆V̂φλCV ≤ n|λ>∆||V̂φ||λCV |

≤ nσ̂2
(

(2m+ 1)|ε̃1(n)|>Je(n) + n(2m+ 1)|ε2(n)|>Je(n) + (2m+ 1)|ε3(n)|>Je(n)
)

≤ nσ̂2(m+ 1)

(
(2m+ 1)C

1

n

1

n
+ n(2m+ 1)C

1

n2

1

n
+ (2m+ 1)C

1

n2

1

n

)
p−→ 0.

(93)

Where we utilized the fact that 1
σ̂2 V̂φ can be bounded from above by a block-Toeplitz matrix with a

matrix of ones (denoted by J) on the diagonal and first m sub/super-diagonals. Similarly for

nλ>∆V̂φλ∆ ≤ n|λ>∆||V̂φ||λ∆|

≤ nσ̂2(|ε̃1(n)|>J |ε̃1(n)|+ 2(n− 1)|ε̃1(n)|>J |ε2(n)|+ (n− 1)2|ε2(n)|>J |ε2(n)|+

+ 2|ε̃1(n)|>J |ε3(n)|+ 2(n− 1)|ε2(n)|>J |ε3(n)|+ 2|ε3(n)|>J |ε3(n)|)

≤ nσ̂2(m+ 1)2(C
1

n

1

n
+ 2(n− 1)C

1

n

1

n2
+ (n− 1)2C

1

n2

1

n2
+

+ 2C
1

n

1

n2
+ 2(n− 1)C

1

n2

1

n2
+ C

1

n2

1

n2
)

p−→ 0.

(94)

Utilizing the Squeeze theorem, we obtain nλ>∆V̂φλCV
p−→ 0 and nλ>∆V̂φλ∆

p−→ 0. By noting that

plim(nλ>CV V̂φλCV ) = const we can invoke Slutsky’s theorem to obtain

λ̂>ACV V̂φλ̂ACV

λ>CV V̂φλCV
=
nλ̂>ACV V̂φλ̂ACV

nλ>CV V̂φλCV

p−→ 1. (95)

Proof of Proposition 3 Applying lemma 3 to the contrasts differential ∆φ, it follows that

√
n(λ̂ACV − λCV )>∆φ

p−→ 0 (96)
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λ̂>ACV V̂∆φλ̂ACV

λ>CV V̂∆φλCV

p−→ 1 (97)

noting that

tADM ≡
(λ̂ACV )>∆φ

σ̂ACV /
√
n

=

√
n(λCV )>∆φ+

√
n(λ̂ACV − λCV )>∆φ

σ̂CV
λ̂>ACV V̂∆φλ̂ACV

λ>CV V̂∆φλCV

(98)

and hence via Slutsky’s theorem

plim(tADM ) = plim(tDM ). (99)

Combing this with already established results from Proposition 2, both

tADM
d−→ N(0, 1) (100)

and

P (|tADM | > c) −→ 1 (101)

immediately follow.

Proof of Proposition 4 The proof is provided in Zhu and Timmermann (2020). Just note that

stationarity of
{

∆lm,im+1

}
follows from the stationarity of {Xt}.

Proof of Proposition 5 From Lemma 3 it follows that ∀k ∈ {1, ..., K}:

plim
(√

ñL̂(k)
CV

)
= plim

(√
ñL̂(k)

ACV

)
. (102)

As √
ñ
(
L̂(1)
CV , ..., L̂

(K)
CV

)
d−→ N(0, c2I) (103)

where c2 = E[∆lm,im+1] + 2
∑∞

s=1E[∆lm,im+1∆lm,i+sm+1 ] (see Zhu and Timmermann (2020)), it then im-

mediately follows that also

√
ñ
(
L̂(1)
ACV , ..., L̂

(K)
ACV

)
d−→ N(0, c2I). (104)

The rest of the proof coincides with Zhu and Timmermann (2020).

Proof of Proposition 6 For for both models i ∈ {1, 2} the losses (conditioned on sequence {Zt})
can be written as:

Lmm+1(Mi) =

T−1∑
t=m

E
[
Yt+1 − f̂ it

]2
+ V ar

(
Yt+1 − f̂ it

)
. (105)
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For the bias term of model M1 we have

E
[
Yt+1 − f̂1

t

]2
=
(
c+ Zt − E

[
β̂1

1,t

]
Zt

)2
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(106)

and for the variance term

V ar
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)
= V ar

(
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)
= σ2
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. (107)

For model M2 the bias term is equal to 0 and the variance term is
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St
Zt

)
.

(108)

By setting

ς =
Lmm+1(M1)

Lmm+1(M2)
(109)

and solving for c, we obtain

c = σ
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. (110)
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B Additional Results
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Figure 6: A plot of rejection probabilities for DM, IM, ADM, and AIM tests at level 0.05 for the first log
difference of US CPI index.
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Figure 7: A plot of rejection probabilities for DM, IM, ADM, and AIM tests at level 0.05 for the log of
US CPI index.
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Abstrakt 

 

Časová řady jsou často rozdělovány na estimační a evaluační část za účelem odhadnutí kvality 
předpovědí produkovaných daným statistickým modelem. Navrhujeme alternativní estimátor 
kvality předpovědí který, navzdory intuici, využívá pro estimaci kvalitu předpovědí jak 
z estimační, tak z evaluační části dat, a to pomocí specifického systému afinních vah. 
Dokážeme, že navrhovaný estimátor je optimální ve třídě nestranných lineárních estimátorů, a 
tudíž nabízí vyšší přesnost než konvenční estimátor. Aplikace navrhovaného estimátoru v 
Diebold-Mariano testech prediktivní schopnosti vede k vyšší síle testů při zachování stejné míry 
zkreslení v malých vzorcích. Evaluace navrhovaného estimátoru na časových řadách ze soutěže 
M4 potvrzuje superioritu vůči konvenčnímu estimátoru, a navíc ukazuje, že navrhovaný 
estimátor je poměrně robustní vůči porušení klíčového předpokladu stacionarity. 
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