
Appendix to

“Growth Uncertainty, Rational Learning, and
Option Prices”

Abstract

This appendix reviews the numerical solution methodology for the model with full
information and parameter uncertainty. We focus on the learning about parameters
economy with unknown transition probabilities, mean growth rates and volatilities of
productivity growth.1 For the unknown parameter case, we further provide numerical
solutions for anticipated utility pricing and priced parameter uncertainty.

1It might be instructive to consider simpler models with learning about transition probabilities or learn-
ing about transition probabilities and mean growth rates. Please refer to Babiak and Kozhan (2020) for details
about the numerical solution methodology in these two cases.
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A Full Information

Here, we offer details of how the continuation utility and the levered equity claim are

computed for the economy in which all parameters are known. This case simplifies to solv-

ing a standard rational expectations model in which the agent knows the true parameters

of the economy.

A.1 Solving for the Continuation Utility

Productivity growth is given by:

Δat = μst + σst · εt,

where εt
iid∼ N(0, 1), st is a two state Markov chain with transition matrix:

Π =

⎡
⎣ π11 1 − π11

1 − π22 π22

⎤
⎦ ,

where πii ∈ (0, 1). The regime switches in st are independent of the Gaussian shocks εt.

We define the following stationary variables:

{
C̃t, Ĩt, Ỹt, K̃t, Ũt

}
=

{
Ct

At
,

It

At
,

Yt

At
,

Kt

At
,

Ut

At

}

The household’s problem is:

Ũt = max
C̃t, Ĩt

⎧⎪⎪⎨
⎪⎪⎩(1 − β)C̃

1− 1
ψ

t + β

(
Et

[
Ũ1−γ

t+1 ·
(

At+1

At

)1−γ
]) 1− 1

ψ
1−γ

⎫⎪⎪⎬
⎪⎪⎭

1
1−ψ

(A.1)

subject to the constraints:

C̃t + Ĩt = K̃α
t N̄1−α (A.2)

eΔat+1K̃t+1 = (1 − δ)K̃t + ϕ

(
Ĩt

K̃t

)
K̃t (A.3)

Δat = μst + σst · εt, εt ∼ N(0, 1) (A.4)

C̃t ≥ 0, K̃t+1 ≥ 0 (A.5)

where the subscript t indicates the time, Et(·) denotes the expectation conditional on the

information available at time t. Because the true parameters are assumed to be known, st
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and K̃t are the only state variables in the economy. Ultimately, the recursive equation (A.1)

can be rewritten as:

Ũt(st, K̃t) (A.6)

= max
C̃t, Ĩt

⎧⎨
⎩(1 − β)C̃

1− 1
ψ

t + β
(

Et

[
Ũt+1

(
st+1, K̃t+1

)1−γ · e(1−γ)Δat+1
]) 1− 1

ψ
1−γ

⎫⎬
⎭

1
1−ψ

To solve the recursion (A.6), we use the the value function iteration algorithm. The numer-

ical algorithm proceeds as follows:

1. We find the de-trended steady state capital K̃ss, assuming the productivity growth

equals the steady state level predicted by a Markov-switching model. The state space

for capital normalized by technology is set at [0.1K̃ss, 2.6K̃ss]. We further use nk = 100

points on a grid for capital in the numerical computation. A denser grid does not

lead to significantly different results.

2. For any level of capital K̃t at time t, we construct a grid for Ĩt with uniformly dis-

tributed points between 0 and K̃α
t N̄1−α. Specifically, we use ni = 100 points.

3. For the expectation, we use Gauss-Hermite quadrature with ngh = 8 points. Using

the quadrature weights and nodes, we can calculate the expression on the right hand

side of the recursion (A.6).

4. We solve the optimization problem in the Bellman equation (A.6) subject to con-

straints (A.2)-(A.5) and update a new value function Ũt = Ũt(st, K̃t) given that the

old one is Ũt+1 = Ũt+1(st+1, K̃t+1).

5. We iterate Steps 2-4 by updating the continuation utility at each iteration until a suit-

able convergence is achieved. Specifically, the stopping rule is that the distance be-

tween the new value function and the old value function satisfies |Ũt+1 − Ũt|/|Ũt| <
10−12.

A.2 Solving for a Dividend Claim

The results of this paper are based on pricing an equity claim to calibrated stock market

dividends given by:

Δdt = gd + λΔct + σdεd
t , εd

t
iid∼ N(0, 1),

4



in which εd
t

iid∼ N(0, 1), λ is the leverage factor, and gd and σd are the dividend growth rate

and volatility. The equilibrium condition for the price-dividend ratio is given by:

PDt = Et

⎡
⎢⎢⎣β

(
C̃t+1

C̃t

)− 1
ψ
(

At+1

At

)− 1
ψ

⎛
⎝ Ũt+1 ·

(
At+1

At

)
Rt

(
Ũt+1 ·

(
At+1

At

))
⎞
⎠

1
ψ−γ (

Dt+1

Dt

)
(PDt+1 + 1)

⎤
⎥⎥⎦ .

Rewriting dividend growth in terms of the stationary consumption growth series, we can

rewrite the previous recursion in the following form:

PDt = Et

⎡
⎣βe

(
λ− 1

ψ

)
(Δc̃t+1+Δat+1)

(
Ũt+1 · eΔat+1

Rt
(
Ũt+1 · eΔat+1

)
) 1

ψ−γ

egd+0.5σ2
d · (PDt+1 + 1)

⎤
⎦ . (A.7)

To solve the recursion (A.7), we use the the value function iteration algorithm. The numer-

ical algorithm proceeds as follows:

1. We find the de-trended steady state capital K̃ss, assuming the productivity growth

equals the steady state level predicted by a Markov-switching model. The state space

for capital normalized by technology is set at [0.1K̃ss, 2.6K̃ss]. We further use nk = 100

points on a grid for capital in the numerical computation. A denser grid does not

lead to significantly different results.

2. For any level of capital K̃t at time t, we construct a grid for Ĩt with uniformly dis-

tributed points between 0 and K̃α
t N̄1−α. Specifically, we use ni = 100 points.

3. For the expectation, we use Gauss-Hermite quadrature with ngh = 8 points. Using

the quadrature weights and nodes, we can calculate the expression on the right hand

side of the recursion (A.7).

4. We solve the optimization problem in the Bellman equation (A.7) subject to con-

straints (A.2)-(A.5) and update a new value function ˜PDt = ˜PDt(st, K̃t) given an old

one ˜PDt+1 = ˜PDt+1(st+1, K̃t+1).

5. We iterate Steps 2-4 by updating the continuation utility at each iteration until a

suitable convergence is achieved. Specifically, the stopping rule is that the dis-

tance between the new value function and the old value function satisfies | ˜PDt+1 −
˜PDt|/| ˜PDt| < 10−12.
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B Anticipated Utility

In the anticipated utility case, the representative household learns about unknown pa-

rameters but ignores parameter uncertainty when making decisions. The numerical solu-

tion proceeds as follows. At each time t, the household holds his current beliefs and solves

for the continuation utility and the levered equity claim in the rational expectations model

in which the true parameter values in the productivity growth process are centered at the

time t posterior means. In the next period t + 1, the household updates his beliefs upon

observing new data and resolves the rational expectations economy in which the true pa-

rameters are centered at the time t + 1 posterior means. In sum, the numerical algorithm

reduces to applying the methodology for the full information case with a set of model

parameters, which are equal to the mean beliefs at each point in time t.

C Priced Parameter Uncertainty

The numerical solution for the case of priced parameter uncertainty consists of two

main steps.2 First, we solve for the equilibrium pricing ratios when true parameters are

actually known by the household (by assumption, these are learned at T = ∞). We find the

solution for this simplest limiting economy on a dense set of state variables by applying

the methods outlined in Appendix A. Second, we use the known parameters boundary

economy as a terminal value in the backward recursion to obtain the equilibrium model

solution at each time t. Here, we outline the details of the numerical solution for the

model with the unknown transition probabilities, mean growth rates and the volatility of

productivity growth.

C.1 Solving for the Continuation Utility

Productivity growth is given by:

Δat = μst + σst · εt,

2Johnson (2007) uses this solution methodology in a case with parameter learning and power utility.
Johannes, Lochstoer, and Mou (2016) and Collin-Dufresne, Johannes, and Lochstoer (2016) extend this ap-
proach to the case of Epstein-Zin utility in the endowment economy. We further extent the numerical solution
to the case of Epstein-Zin utility in the production economy.
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where εt
iid∼ N(0, 1), st is a two state Markov chain with transition matrix:

Π =

⎡
⎣ π11 1 − π11

1 − π22 π22

⎤
⎦ ,

where πii ∈ (0, 1). The regimes switches in st are independent of the Gaussian shocks εt.

The representative household does not know the true values of the transition proba-

bilities (π11, π22), the mean growth rates (μ1, μ2) and the volatilities (σ1, σ2) but observes

states (st) of the economy. At time t = 0, the household holds prior beliefs about unknown

parameters and updates beliefs each period upon the realization of new series and regimes.

We assume a conjugate prior for all parameters: the Beta distributed prior and the trun-

cated normal-inverse-gamma prior for the transition probabilities, the mean growth rates

and volatilities, respectively.

The Beta distribution has the probability density function of the form:

p(π|a, b) =
πa−1(1 − π)b−1

B(a, b)
,

where B(a, b) is the Beta function (a normalization constant), a and b are two positive shape

parameters. We are particularly interested in the expected value of the Beta distribution

defined by:

E[π|a, b] =
a

a + b
.

We use two pairs of hyper-parameters (a1, b1) and (a2, b2) for unknown transition proba-

bilities π11 and π22, respectively. At time t, the household uses Bayes’ rule and the fact

that states are observable to update hyper-parameters for each state i as follows:

ai,t = ai,0 + #(state i has been followed by state i), (C.8)

bi,t = bi,0 + #(state i has been followed by state j), (C.9)

given the initial prior beliefs ai,0 and bi,0. Once we find the limiting boundary economies
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in the first step, we perform a backward recursion using the following state variables

τ1,t = a1,t − a1,0 + b1,t − b1,0 (C.10)

λ1,t = Et[π11] =
a1,t

a1,t + b1,t
(C.11)

τ2,t = a2,t − a2,0 + b2,t − b2,0 (C.12)

λ2,t = Et[π22] =
a2,t

a2,t + b2,t
(C.13)

Next, we denote hyper-parameters of the truncated normal-inverse-gamma distributed

prior for the mean and variance of productivity growth in each state i by (μi,t, Ai,t) and

(bi,t, Bi,t). Formally, at time t the joint prior over the mean μi and variance σ2
i conditional

on the data Δat and the states of the economy st is:

p(μi, σ2
i |Δat, st) = p(μi|σ2

i , Δat, st)p(σ2
i |Δat, st),

where

p(σi|Δat, st) = IG
(

bi,t

2
,

Bi,t

2

)
,

p(μi|σ2
i , Δat, st) = N(μi,t, Ai,tσ

2
i ).

We update these hyper-parameters using the Bayes’ rule as follows:

μi,t+1 = μi,t + 1st+1=i
Ai,t

Ai + 1
(Δat+1 − μi,t) (C.14)

A−1
i,t+1 = A−1

i,t + 1st+1=i, (C.15)

bi,t+1 = bi,t + 1st+1=i, (C.16)

Bi,t+1 = Bi,t + 1st+1=i
(Δat+1 − μi,t)

2

1 + Ai,t
(C.17)

where i ∈ {1, 2}, 1 is an indicator function that equals 1 if the condition in the subscript is

true and 0 otherwise.

Note that since the hyper-parameters Ai,t’s and bi,t’s are a function of the time spent in

each period, the following 8-dimensional vector

Xt ≡ {τ1,t, λ1,t, τ2,t, λ2,t, μ1,t, μ2,t, B1,t, B2,t}
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is sufficient statistics for the priors. Thus, we can define Xt+1 using the equations (C.8)-

(C.13), (C.14)-(C.17), the next period regime, and sufficient statistics at time t :

Xt+1 = f (st+1, st, Xt).

We further define Xs
t ≡ {τ1,t, λ1,t, τ2,t, λ2,t} and XΔa

t ≡ {K̃t, μ1,t, μ2,t, B1,t, B2,t}, where the

superscripts s and Δa indicate that variables in the vectors Xs
t and XΔa

t are a function only

of the observed state realization st and a function of the realized productivity growth as

well. Thus, Xt =
[
Xs

t , XΔa
t
]

. Using these notations, we can rewrite

Ũt+1(st+1, Xt+1) = Ũt+1(st+1, st, Xs
t , Δat+1, XΔa

t )

to better indicate the dependence of state variables on specific shocks. Ultimately, the

recursive equation (A.1) is of the same form:

Ũt(st, Xt) (C.18)

= max
C̃t, Ĩt

⎧⎨
⎩(1 − β)C̃

1− 1
ψ

t + β
(

Et

[
Ũ1−γ

t+1

(
st+1, st, Xs

t , Δat+1, XΔa
t

)
· e(1−γ)Δat+1

∣∣∣st, Xt

]) 1− 1
ψ

1−γ

⎫⎬
⎭

1
1−ψ

,

where the expectation on the right hand side is equivalent to:

Et

[
Ũ1−γ

t+1

(
st+1, st, Xs

t , Δat+1, XΔa
t

)
· e(1−γ)Δat+1

∣∣∣st, Xt

]

=
2

∑
st+1=1

Et(πst+1,st |st, Xs
t ) ...

× Et

[
Ũ1−γ

t+1

(
st+1, st, Xs

t , Δat+1, XΔa
t

)
· e(1−γ)Δat+1

∣∣∣st+1, st, Xt

]
. (C.19)

In this case, we compute the conditional expectation in (C.19) by integrating over con-

ditional distribution of mean growth rates and volatilities as well as Gaussian distribution

of the error term in productivity growth. In particular:

Et

[
Ũ1−γ

t+1

(
st+1, st, Xs

t , Δat+1, XΔa
t

)
· e(1−γ)Δat+1

∣∣∣st+1, st, Xt

]

≈
J

∑
j=1

ωε(j)

[
K

∑
k=1

ωσ2
st+1

(k)
L

∑
l=1

ωμst+1
(l) · Ũ1−γ

t+1

(
st+1, st, Xs

t , Δa(j, k, l), XΔa
t

)
· e(1−γ)Δa(j,k,l)

∣∣∣st+1, st, Xt

]
,

(C.20)
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where ωε(j) is the quadrature weight corresponding to the quadrature node nε(j) used

for the integration of a standard normal shock εt+1 in productivity growth, ωσ2
st+1

(k) and

ωμst+1
(l) are the quadrature weights corresponding to the quadrature nodes nσ2

st+1
(k) and

nμst+1
(l) used for the integration of a truncated inverse gamma variable σ2

st+1
. and a trun-

cated standard normal variable μst+1 , respectively. The observed realized productivity

growth, Δa(j, k, l), and a state variable, K̃t+1(j, k, l), are updated as follows:

Δa(j, k, l) = nμst+1
(l) +

√
nσ2

st+1
(k) · nε(j) (C.21)

eΔa(j,k,l)K̃t+1(j, k, l) = (1 − δ)K̃t + ϕ

(
Ĩt

K̃t

)
K̃t, (C.22)

where

Ĩt = K̃α
t N̄1−α − C̃t. (C.23)

Finally, the numerical backward recursion can be performed by using (C.18)-(C.23).

The boundary conditions are defined by the limiting economies τ1,∞ and τ2,∞, in which the

transition probabilities π11 and π22, mean growth rates μ1 and μ2, volatilities σ1 and σ2, are

known.

C.2 Solving for a Dividend Claim

We also solve for the price-dividend ratio of the equity claim written on aggregate div-

idends, which are defined as a leverage to aggregate consumption. Exogenous aggregate

dividends are given by:

Δdt+1 = gd + λΔct+1 + σdεd,t+1,

where gd =
(

1 − λ
)(

E(P(s∞ = 1|π11, π22))μ1 + E(P(s∞ = 2|π11, π22))μ2

)
and P(s∞ =

i|π11, π22) is the ergodic probability of being in state i conditional on the transition proba-

bilities π11 and π22. Note that the long run mean of dividend growth, gd, is changing under

the household’s filtration, though the true long run growth is constant. The subjective be-

liefs about the true parameter values induce fluctuations in gd, which can be expressed as

gd = gd(st+1, st, Xt).

The equilibrium condition for the price-dividend ratio is given by (A.7). Similarly to the

solution for the value function, we rewrite all variables in the recursion (A.7) as a function

10



of the state variables and further use quadrature-type numerical methods to evaluate ex-

pectations on the right hand side of (A.7). Additionally, we update the long run dividend

growth, gd(st+1, st, Xt), which is in fact random. Consequently, the equilibrium recursion

used to solve the model is:

PDt(st, Xt)

= Et

⎡
⎢⎢⎣ βe

(
λ− 1

ψ

)
(Δc̃t+1+Δat+1)

(
Ũt+1·eΔat+1

Rt(Ũt+1·eΔat+1)

) 1
ψ−γ

...

× egd(st+1,st,Xt)+0.5σ2
d · (PDt+1

(
st+1, st, Xs

t , Δat+1, XΔa
t
)
+ 1
)
∣∣∣∣∣st, Xt

⎤
⎥⎥⎦

= Et

⎡
⎢⎢⎣Et

⎡
⎢⎢⎣ βe

(
λ− 1

ψ

)
(Δc̃t+1+Δat+1)

(
Ũt+1·eΔat+1

Rt(Ũt+1·eΔat+1)

) 1
ψ−γ

...

× egd(st+1,st,Xt)+0.5σ2
d · (PDt+1

(
st+1, st, Xs

t , Δat+1, XΔa
t
)
+ 1
)
∣∣∣∣∣st+1, st, Xt

⎤
⎥⎥⎦
∣∣∣∣∣st, Xt

⎤
⎥⎥⎦

=
2

∑
st+1=1

P(st+1|st, Xs
t ) ...

× Et

⎡
⎢⎢⎣ βe

(
λ− 1

ψ

)
(Δc̃t+1+Δat+1)

(
Ũt+1·eΔat+1

Rt(Ũt+1·eΔat+1)

) 1
ψ−γ

...

× egd(st+1,st,Xt)+0.5σ2
d · (PDt+1

(
st+1, st, Xs

t , Δat+1, XΔa
t
)
+ 1
)
∣∣∣∣∣st+1, st, Xt

⎤
⎥⎥⎦

=
2

∑
st+1=1

Et(πst+1,st |st, Xs
t ) ...

× Et

⎡
⎢⎢⎣ βe

(
λ− 1

ψ

)
(Δc̃t+1+Δat+1)

(
Ũt+1·eΔat+1

Rt(Ũt+1·eΔat+1)

) 1
ψ−γ

...

× egd(st+1,st,Xt)+0.5σ2
d · (PDt+1

(
st+1, st, Xs

t , Δat+1, XΔa
t
)
+ 1
)
∣∣∣∣∣st+1, st, Xt

⎤
⎥⎥⎦

Again, the conditional expectation of transition probabilities under the household’s filtra-

tion permits an analytical formula, while the inner expectation in the expression above can

be evaluated using the quadrature-type integration methods.

C.3 Limiting Economies - Boundary Values for General Case

The key assumption of the numerical numerical is that the household eventually learns

the true values of all uncertain parameters in productivity growth. Thus, the simplest lim-

iting economy is one in which all parameters are known, including both transition proba-

11



bilities π11 and π22, mean growth rates μ1 and μ2, volatilities σ1 and σ2. In this case, st and

Kt are the only state variables in the economy. We employ the numerical solution method-

ology outlined for all known parameters. Specifically, we find the continuation utility and

the price-dividend ratio of the equity claim for a set of parameter values π11, π22, μ1, μ2, σ1

and σ2.

D Existence of Equilibrium

Similarly to Collin-Dufresne, Johannes, and Lochstoer (2016) and Johannes, Lochstoer,

and Mou (2016), the existence of the equilibrium in our production-based economy relies

on the fact that the value function is concave and finite for all economies in which the

parameters are known. Therefore, we verify that these conditions are satisfied for all

limiting boundary economies.
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