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1 Introduction

Extensive empirical asset pricing literature has documented supportive evidence for equity

return predictability.1 With an ever increasing number of potential predictors, the practice

of applying machine learning methods to make the most accurate predictions using large

datasets is gaining further traction.2 This new literature demonstrates the superior perfor-

mance of machine learning approaches relative to the linear regression analysis researchers

have tended to favor.3 However, it is unclear whether sound statistical performance of ma-

chine learning leads to portfolio gains for an investor who applies these models of return

predictability when forming optimal portfolios. Indeed, the existing evidence on using

linear models indicates that an ensemble of additional features are required to improve

portfolio performance that stems from linear predictive regressions.4 This raises a question

whether exploiting predictability via machine learning generates any benefits to agents.

In this paper, we examine the economic value of non-linear machine learning methods,

such as neural networks (NNs), for an investor forming optimal portfolios. We study the

asset allocation of a long-horizon investor with a power utility choosing between a market

portfolio and a risk-free asset. Our optimal portfolio design exercise follows Johannes

et al. (2014) and our forecasting comparison follows Gu et al. (2020). Methodologically, we

consider univariate and multivariate linear regressions and a variety of machine learning

architectures including shallow and deep NNs, as well as long-short-term-memory (LSTM)

recurrent NNs. An LSTM is a specialized form of a neural network, which is capable of

1See, for example, Campbell (1987); Campbell and Shiller (1988); Fama and French (1988, 1989); Ferson
and Harvey (1991); Pesaran and Timmermann (1995); Lettau and Ludvigson (2001); Lewellen (2004) and Ang
and Bekaert (2007) among many others.

2See, for example, Rapach et al. (2010); Kelly and Pruitt (2013, 2015); Sirignano et al. (2016); Giannone
et al. (2017); Giglio and Xiu (2017); Heaton et al. (2017); Messmer (2017); Feng et al. (2018); Fuster et al.
(2018); Chen et al. (2019); Feng et al. (2019); Kelly et al. (2019); Bianchi et al. (2020); Freyberger et al. (2020);
Gu et al. (2020); Kozak et al. (2020).

3Goyal and Welch (2008) use around 20 financial and macroeconomic variables for the aggregate market
returns. Green et al. (2013) list more than 330 return predictive signals used by the existing literature over
the 1970-2010 period. Harvey et al. (2016) report 316 “factors” useful for predicting stock returns.

4Additional ingredients include learning about predictability with informative priors (Wachter and Waru-
sawitharana, 2009) and an ensemble of estimation risk and time-varying volatility (Johannes et al., 2014).
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learning extremely complex long-term temporal dynamics that a vanilla NN is unable to

learn. Our focus on the NNs is motivated by the fact that these machine learning methods

have proven to be the most useful in detecting predictable variations in a variety of financial

markets, particularly equity markets. Therefore, NNs are growing more popular with

portfolio managers.

Our contribution to the portfolio literature is threefold. First, we show that non-linear

machine learning methods are useful for the construction of optimal portfolios, as indi-

cated by economically significant gains. Specifically, we document that deviating from the

Expectations Hypothesis and using NNs to forecast excess returns results in three times

higher Sharpe ratios (SRs) and twice as high certainty equivalent returns (CERs). This

evidence contributes to the debate on the economic value of equity return predictability

(Goyal and Welch, 2008; Johannes et al., 2014; Rossi, 2018). Furthermore, our evidence on

the benefits of NNs is robust to alternative measures of portfolio performance (cumula-

tive return, maximum drawdown, and maximum one-month loss) and to the inclusion of

transaction costs, short-selling and borrowing constraints.

Moreover, dissecting the economic gains of NNs across subsamples, we find that, his-

torically, machine learning methods generate the highest CERs in each of the seven decades

in the post-WWII period. Interestingly, NNs generate on average twice larger SRs during

NBER recessions compared to the periods of expansion. In particular, we find that all NNs

are able to generate significant gains during the 2007-2008 Financial Crisis. Finally, an in-

vestor benefits more from NNs by rebalancing her portfolio more frequently, as opposed

to applying a passive strategy. We show that the gains are not eliminated by the increased

turnover.

Second, compared to the existing evidence for linear models, deep learning methods

provide a single “silver bullet” by generating out-of-sample gains without relying on addi-

tional ingredients. We demonstrate that portfolio performance when using NNs dominates

strategies using the linear predictive models even when time-varying return volatility is

omitted. Our evidence is consistent with Goyal and Welch (2008) and Johannes et al. (2014)
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in that we also do not identify benefits from from using linear models without estimation

risk and time-varying volatility. We contribute to the literature by showing that the em-

pirical evidence for the predictability of equity returns is economically significant even in

the absence of these additional ingredients, provided the investor uses non-linear machine

learning methods to detect this predictive variation.

Our third contribution is related to the properties of economic gains implied by NNs.

We find that increasing the complexity of deep learning architectures does not necessarily

translate into improved portfolio performance. We document that moving from shallow

settings with one hidden layer to deeper specifications does not result in additional gains.

This seems to be a surprising result, but finance and returns predictions in particular

operate in a challenging data environment that differs substantially from other domains

where deep learning results in large improvements. Specifically, returns predictions with

the goal of optimal portfolio construction is a small data problem with data facing very

low signal-to-noise ratio (Israel et al., 2020) and increased network complexity does not

necessarily help. Importantly, we document that inclusion of deep recurrent LSTM net-

works that capture important temporal dynamics improves performance according to all

portfolio performance measures we consider. In this respect, our paper contributes to the

evidence on economic information captured by NNs. Specifically, we extend the evidence

presented by Rossi (2018) for boosted regression trees and show that, apart from the impor-

tant non-linear relationship, long-term memory effects are particularly beneficial in short

samples.

The remainder of this paper is organized as follows. Section 2 discusses standard ap-

proaches to assessing expected return predictability, introduces non-linear machine learn-

ing methods we consider, describes the portfolio choice problem of an investor, and out-

lines a variety of performance measures. Section 3 describes the data and summarizes

the results. Section 4 dissects the economic gains from using NNs across subperiods and

provides robustness checks to using alternative performance measures or including trans-

action costs, borrowing and short-selling constraints. Section 5 concludes.
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2 Evaluating Predictability via Portfolio Performance

2.1 The Simple Linear Approach

The standard approach used to forecast excess equity returns is a linear model of the form

rt+1 = α + βxt + εr
t+1, (1)

where rt+1 are monthly log excess returns, α and β are coefficients to be estimated,

xt = (x1
t , ..., xn

t ) is a set of predictor variables, and εr
t+1 is a normal error term. A large

strand of empirical literature has examined linear regression models with multiple pre-

dictors including prominent variables such as the dividend yield, valuation ratios, various

interest rates and spreads, among others.5 Although researchers have proposed numerous

variables for predicting stock market returns, empirical evidence on the degree of pre-

dictability is mixed at best. Goyal and Welch (2008) find that most linear specifications

with multiple predictors perform poorly and remain insignificant even in-sample. They

further show that an investor using linear models to forecast equity returns would not be

able to improve portfolio performance compared to no predictability benchmark.

There are several reasons for the lack of robust evidence on the predictability equity

returns and its benefits for portfolio construction. The specification defined by Eq.(1) as-

sumes a linear and time-invariant relationship between log excess returns and predictors,

which is at odds with the theoretical and empirical evidence.6 Bayesian learning about

uncertain parameters in the linear regression has been proposed as a way to introduce

a time-varying relationship between the returns and predictor variables. However, se-

quential parameter learning leads to significant portfolio benefits only in the presence of a

5See, for example, Shiller (1981); Hodrick (1992); Stambaugh (1999); Avramov (2002); Cremers (2002); Fer-
son et al. (2003); Lewellen (2004); Torous et al. (2004); Campbell and Yogo (2006); Ang and Bekaert (2007);
Campbell and Thompson (2008); Cochrane (2008); Lettau and Van Nieuwerburgh (2008); Pástor and Stam-
baugh (2009).

6Leading examples of this literature include Menzly et al. (2004); Paye and Timmermann (2006); Santos
and Veronesi (2006); Lettau and Van Nieuwerburgh (2008); Henkel et al. (2011); Dangl and Halling (2012).
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highly informative prior (Wachter and Warusawitharana, 2009) or a combination of estima-

tion risk and time-varying volatility (Johannes et al., 2014). Thus, prior knowledge about

the nature of expected return predictability or careful modeling of its conditional features,

especially time variation in return volatility, are critical for generating economic gains.

This paper follows an alternative approach inspired by the recent development of ma-

chine learning in empirical asset pricing literature.7 Specifically, we apply neural networks

to approximate the functional association between the set of predictors and returns for

optimal portfolio construction. In doing so, we do not impose a known form of this rela-

tionship, but instead allow for flexible identification of potentially nonlinear interactions

from the data. Our choice of neural networks over other machine learning methods (for

instance, tree-based approaches) is motivated by the fact that they deliver the most ac-

curate statistical performance, as documented by the existing literature. The aim of this

paper is to revisit the evidence documented by Goyal and Welch (2008) and to show that,

unlike linear predictive regressions, sound statistical performance of neural networks in-

deed translates into substantial portfolio improvements for an investor using these novel

methods when dynamically forming an optimal portfolio.

2.2 From Linear Regression Towards Deep Learning

Machine learning has a long history in economics and finance (Hutchinson et al., 1994;

Kuan and White, 1994; Racine, 2001; Baillie and Kapetanios, 2007). At its core, one may

perceive machine learning as a general statistical analysis that economists can use to cap-

ture complex relationships that are hidden when using simple linear methods. Breiman

et al. (2001) emphasize that maximizing prediction accuracy in the face of an unknown

model differentiates machine learning from the more traditional statistical objective of es-

timating a model assuming a data generating process. Building on this, machine learning

seeks to choose the most preferable model from an unknown pool of models using innova-

7Leading studies include Giglio and Xiu (2017); Heaton et al. (2017); Feng et al. (2018, 2019); Chen et al.
(2019); Kelly et al. (2019); Freyberger et al. (2020); Gu et al. (2020); Kozak et al. (2020).
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tive optimization techniques. As opposed to traditional measures of fit, machine learning

focuses on the out-of-sample forecasting performance and understanding the bias-variance

tradeoff; as well as using data driven techniques that concentrate on finding structures in

large datasets.

While finance is focused on expected return predictability, the ability of machine learn-

ing techniques to find relationships in data seems well-suited for financial applications.

Further, if one dismisses the “black-box” view of machine learning as a misconception

(Lopez de Prado, 2019) it seems nothing should stop a researcher from exploring the power

of these methods in financial data. However, problems in finance differ from typical ma-

chine learning applications in many aspects. In order to enjoy the benefits of machine

learning, a user needs to understand key challenges brought by financial data.

Israel et al. (2020) note that machine learning applied to finance is challenged by small

sample sizes, naturally low signal-to-noise ratios making market behavior difficult to pre-

dict and the dynamic character of markets. Because of these critical issues, the benefits

of machine learning are not so obvious as in other fields and research into understanding

how impactful machine learning can be for asset management is just emerging. With the

surge in deep learning literature, machine learning applications in finance have begun to

emerge (Heaton et al., 2017; Feng et al., 2018; Bryzgalova et al., 2019; Bianchi et al., 2020;

Chen et al., 2020; Gu et al., 2020; Tobek and Hronec, 2020; Zhang et al., 2020). Here we

describe the core ideas we use for building deep learning models to predict the returns.

2.2.1 (Deep) Feedforward Networks. Deep feedforward networks, also often called feed-

forward neural networks, or multilayer perceptrons lie at heart of deep learning models

and are universal approximators that can learn any functional relationship between input

and output variables with sufficient data.

A feedforward network is a form of supervised machine learning that uses hierar-

chical layers to represent high-dimensional non-linear predictors in order to predict an

output variable. Figure 1 illustrates how ` ∈ {1, . . . , L} hidden layers transform input data
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Figure 1. (Deep) Feedforward Network

This figure illustrates a deep neural network model rt+1 = fW,b(xt) + εr
t+1 that predicts output return rt+1

using a set of predictor variables xt = (x1
t , ..., xn

t ). The network is deep, with a large number of hidden layers
L.
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xt = (x1
t , ..., xn

t ) in a chain using a collection of non-linear activation functions f (1), . . . , f (L).

More formally, we can define our prediction problem by characterizing excess equity re-

turns as:

rt+1 = fW,b(xt) + εr
t+1, (2)

where xt = (x1
t , ..., xn

t ) is a set of predictor variables that enter an input layer, and εr
t+1 is a

i.i.d. error term, fW,b is a neural network with L hidden layers such as

r̂t+1 := fW,b(xt) = f (L)
W(L),b(L) ◦ . . . ◦ f (1)

W(1),b(1)
(xt) , (3)

and W =
(

W(1), . . . , W(L)
)

and b =
(

b(1), . . . , b(L)
)

are weight matrices and bias vec-

tor. Any weight matrix W(`) ∈ Rm×n contains m neurons as n column vectors W(`) =

[w(`)
·,1 , . . . , w(`)

·,n ], and b(`) are a threshold or activation level which contribute to the output
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of a hidden layer, allowing the function to be shifted. Commonly used activation function

f (`)
W(`),b(`)

f (`)
W(`),b(`)

:= f`
(

W(`)xt + b(`)
)
= f`

(
m

∑
i=1

W(`)
i xt + b(`)i

)
(4)

are sigmoidal (e.g. f`(z) = 1/(1 + exp(−z))) or f`(z) = tanh(z), or rectified linear units

(ReLU) ( f`(z) = max{z, 0}). Note that in case functions f are linear, fW,b(xt) is a simple

linear regression, regardless of the number of layers L, and hidden layers are redundant.

For example with L = 2, the model becomes a reparametrized simple linear regression:

r̂t+1 = W(2)(W(1)xt + b(1)) + b(2) = βxt + α. In case fW,b(xt) is non-linear, neural network

complexity grows with increasing m, and with increasing the number of hidden layers L,

or growing deepness of the network, we have a deep neural network.

2.2.2 (Deep) Recurrent Networks. Many predictors used in finance are non-i.i.d., and

dynamically evolve in time, and hence traditional neural networks assuming independence

of data may not approximate relationships sufficiently well. Instead, a Recurrent Neural

Network (RNN) that takes into account time series behavior may help in the prediction

task. In addition, Long-Short-Term-Memory (LSTM) is designed to find hidden state pro-

cesses allowing for lags of unknown and potentially long time dynamics in the time series.

Figure 2 illustrates how the network structure additionally uses lagged information.

More formally, RNNs are a family of neural networks used for processing sequences of

data. They transform a sequence of input predictors to another output sequence introduc-

ing lagged hidden states as

ht = f (Whht−1 + Wxxt + b0). (5)

Intuitively, RNN is a non-linear generalization of an autoregressive process where lagged

variables are transformations of the lagged observed variables. Figure 2 depicts Wh using

dashed lines and Wx using solid lines. Nevertheless, this structure is only useful when the

immediate past is relevant. In case the time series dynamics are driven by events that are
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further back in the past, the addition of complex LSTMs is required.

2.2.3 Long-Short-Term-Memory (LSTM). An LSTM is a particular form of recurrent net-

works, which provides a solution to the short memory problem by incorporating memory

units (Hochreiter and Schmidhuber, 1997). Memory units allow the network to learn when

to forget previous hidden states and when to update hidden states given new information.

Specifically, in addition to a hidden state, LSTM includes an input gate, a forget gate, an

input modulation gate, and a memory cell. The memory cell unit combines the previous

memory cell unit, which is modulated by the forget and input modulation gates together

with the previous hidden state, modulated by the input gate. These additional cells enable

an LSTM to learn extremely complex long-term temporal dynamics that a vanilla RNN is

not capable of. Such structures can be viewed as a flexible hidden state space model for a

large dimensional system. Additional depth can be added to an LSTM by stacking them

on top of each other, using the hidden state of the LSTM as the input to the next layer.

More formally, at each step a new memory cell ct is created with current input xt

and previous hidden state ht−1 and it is then combined with a forget gate controlling the

amount of information stored in the hidden state as

ht = σ

W(o)
h ht−1 + W(o)

x xt + b(o)0︸ ︷︷ ︸
output gate

 ◦ tanh(ct) (6)

ct = σ

W(g)
h ht−1 + W(g)

x xt + b(g)
0︸ ︷︷ ︸

forget gate

 ◦ ct−1 + σ

W(i)
h ht−1 + W(i)

x + b(i)0︸ ︷︷ ︸
input gate

 ◦ tanh(kt). (7)

The term σ(·) ◦ ct−1 introduces the long-range dependence, and kt is new information flow

to the current cell. The states of forget and input gates control weights of past memory

and new information. In Figure 2, ct is the memory pass through multiple hidden states

in the recurrent network.
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Figure 2. (Deep) Recurrent Network

This figure illustrates a deep recurrent neural network model.
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2.2.4 Estimation, Hyperparameters, Details. Due to the high dimensionality and non-

linearity of the problem, estimation of a deep neural network is a complex task. Here,

we provide a detailed summary of the model architectures and their estimations. We

work with a variety of deep learning structures and compare them with a recurrent LSTM

network and regularized OLS. We consider NN1, NN2 and NN3 models that contain 16,

32–16 and 32–16–8 neurons in the one, two, and three hidden layer structures, respectively,

and an LSTM model which is a NN with 3 recurrent layers with 32-16-8 neurons in each

and LSTM cells introduced into the last layer.

To prevent the model from over-fitting and to the reduce large number of parameters,

we use dropout, which is a common form of regularization that has generally better per-

formance in comparison to traditional l1 or l2 regularization. The term dropout refers to

dropping out units in neural networks and can be shown to be a form of ridge regular-

ization. To fit the networks, we adopt a popular and robust adaptive moment estimation
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algorithm (Adam) with weight decay regularization introduced by Kingma and Ba (2014)

and we use the Huber loss function in the estimation.

Further, we follow the most common approach in the literature and select tuning pa-

rameters adaptively from the data in a validation sample. We split the data into training

and validation samples that maintain temporal ordering of the data and tune hyperparam-

eters with respect to the statistical and economic criteria. We search the optimal models in

the following grid of 100 randomly chosen combinations of the following hyperparame-

ters: learning rate ∈ [0.001, 0.02], decay regularization ∈ [0, 0.001], dropout ∈ [0%, 60%] of

weights and activation function ∈ {sigmoid, ReLU} with 1000 epochs with early stopping.

Since the sample at each window is rather small, and final models can depend on ini-

tial values in the optimization, we use ensemble averaging of five models with randomly

chosen initial values.8

2.3 Optimal Portfolios

We consider a portfolio choice problem of an agent with the investment horizon of T

periods in the future who maximizes her expected utility over the cumulative portfolio

return. There are two assets: a one-period Treasury bill and a stock index.9 If ωt+τ is the

allocation to the stock index at time t + τ, the investor solves the following optimization

problem at time t

max
ω

Et
[
U(rp,t+T)

]
(8)

8We have estimated our models on two servers with 48 core Intel R© Xeon R© Gold 6126 CPU@ 2.60GHz
and 24 core Intel R© Xeon R© CPU E5-2643 v4 @ 3.40GHz, 768GB memory and two NVIDIA GeForce RTX
2080 Ti GPUs. We have used Flux.jl with JULIA 1.4.0. for the model fitting. A complete rolling window
estimation with hyperparameter tuning takes around two days. We have confirmed that our estimation
results are robust to using a larger hyperparameter space. As a full hyperparameter search on a larger
hyperparameter space can easily take weeks or months even on our fast GPU cluster, we have selectively
tested further hyperparameters.

9Extending our analysis to multiple assets is straightforward; however, we consider a portfolio choice
problem with two assets as in Barberis (2000) and more recently Johannes et al. (2014) and Rossi (2018) to
make our results directly comparable to other studies.
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in which the end-of-horizon portfolio return rp,t+T is defined as

rp,t+T =
T

∏
τ=1

[
(1−ωt+τ−1) exp(r f

t+τ) + ωt+τ−1 exp(r f
t+τ + rt+τ)

]
, (9)

and r f
t+τ denotes a zero-coupon default-free log bond yield between t + τ − 1 and t + τ.

Following Johannes et al. (2014), we consider various choices of horizons T to assess the

impact of the length of the investment period. Specifically, we report the results for the

two cases of six months (T = 6) and two years (T = 24). Furthermore, we allow the in-

vestor to rebalance portfolio weights with different frequencies. The allocations between a

Treasury bill and a stock index are updated every three months, or once per year for the

shorter or longer investment horizons, respectively. These choices of horizons and rebal-

ancing periods allow us to compare two investment strategies. The former reflects a more

actively managed portfolio with frequent changes in the allocations, whereas the latter

corresponds to a relatively passive investment portfolio with less frequent rebalancing. We

further winsorize the weights for the stock index to −1 ≤ ωt+τ ≤ 2 to prevent extreme

investments. In the sensitivity analysis, we check the robustness of our results to alter-

native assumptions about the portfolio weights, particularly incorporating the borrowing

and short-selling constraints.

We also assume a power utility investor

U(rp,t+τ) =
r1−γ

p,t+τ

1− γ
,

where γ is the coefficient of risk aversion. The expected utility is defined by the predictive

distribution of cumulative portfolio returns rp,t+τ given by Eq.(9), which in turn depends

on the corresponding model used to predict future excess returns rt+τ and the law of

motion of predictor variables xt. For xt, we adopt a parsimonious AR(1) framework, that

is, each variable xi
t satisfies

xi
t = αxi

+ βxi
xi

t−1 + εxi

t .
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where αxi
and βxi

are coefficients, and εxi

t are normal error terms. To proxy for the joint

variance-covariance matrix of the error terms εt = (εr
t, εx

t ), we employ a sample variance

estimator Σ̂t = ε̂t ε̂
′
t, where εt are forecast errors. Finally, we set the risk aversion parameter

γ = 4 to compare our results to the existing literature (Johannes et al., 2014; Rossi, 2018).

In sum, the investor maximizes her expected utility and optimally rebalances her port-

folio weights quarterly or annually for investment horizons of six months and two years,

respectively. To compute her expected utility, she uses the distribution of returns predicted

by the linear regressions or the neural networks. To evaluate the impact of the investor’s

conditioning information, we consider different assumptions about the set of predictors

and sample periods used to estimate the models. In particular, we consider the following

specifications:

1. The no-predictability expectations hypothesis (EH) framework assumes a constant

mean and constant variance framework with no predictors in Eq.(1), that is, β = 0.

2. A simple linear regression of excess log returns with the dividend yield as a single

predictor and a “kitchen sink” linear regression with all available variables. For

each of the two cases, we further implement OLS regressions using all data up to

time t or over a 10-year rolling window, as in Johannes et al. (2014). The univariate

models with the expanding and rolling windows are denoted OLS1 and OLS2, and

the multivariate versions are OLS3 and OLS4.

3. A set of machine learning architectures including neural networks with 1 layer of 16

neurons (NN1), 2 layers of 32-16 neurons (NN2), 3 layers of 32-16-8 neurons (NN3)

and an LSTM model with 3 recurrent layers and 32-16-8 neurons and LSTM cells

introduced in the last layer. All NNs use a “kitchen sink” approach by utilizing all

available data to predict log excess returns and are trained on a 10-year rolling win-

dow to account for a time-varying relationship between the predictors and returns.

There are many dimensions that can be used to generalize our modelling approach.

More general specifications could add additional predictor variables (McCracken and Ng,

2016), parameter uncertainty (Wachter and Warusawitharana, 2009; Johannes et al., 2014;
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Bianchi and Tamoni, 2020), economic restrictions (Van Binsbergen and Koijen, 2010), or

consider a larger set of investable assests and alternative preferences (Dangl and Weis-

sensteiner, 2020) among other extensions. Most notably, modelling stochastic volatility via

a parsimonious mean-reverting process (Johannes et al., 2014) or more complex GARCH-

and MIDAS-type volatility estimators (Rossi, 2018) would certainly improve the perfor-

mance of our strategies. Instead, we consider all specifications with a constant volatility

setting to solely evaluate the impact of neural networks on the performance of dynamic

allocation strategies. Our aim is to demonstrate out-of-sample portfolio gains from using

deep learning in the most restrictive setting.

2.4 Performance Evaluation

In our analysis, we employ a number of metrics measuring the statistical accuracy of the

methods considered and their economic gains for the investor. With respect to the statis-

tical performance, we first consider a common measure of mean squared prediction error

(MSPE) defined as

MSPE =
1

T0 − t0 + 1

T0

∑
t=t0

(
rt − r̂Ms

t

)2
, (10)

where rt denotes the observed excess log return, r̂Ms
t is the return predicted by a particular

framework Ms, and t0 and T0 are the months of the first and last predictions. Notice

that the investor rebalances her allocations at varying frequency. Thus, we compute the

prediction errors only in those periods when she reoptimizes her portfolio.

As in Campbell and Thompson (2008), we compute the out-of-sample predictive R2
oos

R2
oos = 1−

∑T0
t=t0

(
rt − r̂Ms

t
)2

∑T0
t=t0

(
rt − r̄t

)2 ,

where r̄t is the historical mean of returns. By construction, the R2
oos statistic compares

the out-of-sample performance of the chosen model Ms relative to the historical average

forecast. Notice that we compute the historical mean over the same sample used to estimate
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Ms, which corresponds to either an expanding sample or a 10-year rolling window. The

positive value of R2
oos indicates that the model-implied forecast has smaller mean squared

predictive error compared to the error implied by the historical average forecast. Thus, we

perform a formal test of the null hypothesis R2
oos ≤ 0 against the alternative hypothesis

R2
oos > 0 by implementing the MSPE-adjusted Clark and West (2007) test. Note that we

calculate the Clark and West (2007) test only if R2
oos is positive.

After we compare different models in terms of the statistical accuracy of their predic-

tions, we assess whether superior statistical fit translates into economic gains. It is worth

noting that this relationship is non-trivial. Indeed, Campbell and Thompson (2008) and

Rapach et al. (2010) note that seemingly small improvements in R2
oos could generate large

benefits in practice. We start our investigation of the size of the improvements by cal-

culating the average Sharpe ratio of portfolio returns as a common measure of portfolio

performance used in finance. The drawback of this metric is that it does not take tail

behaviour into account. Consequently, we follow Fleming et al. (2001) and compute the

certainty equivalent return (CER) by equating the utility from CER to the average utility

implied by an alternative model. Finally, we visualize the performance of all specifications

by plotting the cumulative log portfolio returns over the sample period considered. This

allows us to clearly see the time intervals in which the investor benefits the most from

using different frameworks.

To evaluate the statistical significance of portfolio gains, we follow Bianchi et al. (2020)

and implement the test á la Diebold and Mariano (2002) . Specifically, we perform a pair-

wise comparison between the CERs generated by each framework under consideration and

those yielded by the EH specification.10 For each modelMs, we estimate the regression

UMs
t+T −U

EH
t+T = αMs + εt+T,

10For the significance of SRs, we first need to simulate artificial returns under a null model of no pre-
dictability, that is, a model with constant mean and constant volatility. For each simulation, we need to
obtain the forecasts for all models considered and construct optimal portfolios. Since a complete exercise of
hyperparameter tuning takes around 2 days on the supercomputer cluster, repeating it, say, 500 times will
increase cluster computing time proportionally. This makes the task computationally infeasible given the
current computing capacity, unless more resources for parallel computing become available.
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where UX
t+T =

(
rX

p,t+T

)1−γ

1−γ and rX
p,t+T is the cumulative portfolio return with the horizon T.

Testing for the difference in the CERs boils down to a test for the significance in αMs .

3 Empirical Results

3.1 Data and preliminary results

Our empirical analysis of the S&P 500 excess return predictability is based on the applica-

tions of a variety of linear models and non-linear machine learning methods as discussed

in Section 2.3. We use a set of economic predictor variables considered by Goyal and Welch

(2008) to make our results directly comparable to the literature. Specifically, we focus on

the monthly historical data of twelve predictors including dividend yield, log earning price

ratio, dividend payout ratio, book to market ratio, net equity expansion, treasury bill rates,

term spread, default yield spread, default return spread, cross-sectional premium, inflation

growth, and monthly stock variance.11

Table 1 reports the statistical accuracy of the models considered. Panels A and B show

the MSPEs and R2
oos based on those periods when quarterly and annual rebalancing is

occurring. As shown in Panel A, all linear regressions generate larger MSPEs compared to

the constant mean and constant volatility model, while neural networks provide the best

fit with the data.

A multivariate linear regression does not necessarily outperform a univariate model.

Indeed, a linear regression estimated on the rolling window (OLS3) is noisier and generates

a larger MSPE than regressions using only dividend yield (OLS1), whereas the “kitchen

sink” linear regression with an expanding window estimation (OLS4) slightly outperforms

a single predictor model (OLS2). Furthermore, consistent with Goyal and Welch (2008),

none of the linear regressions can beat the simple historical mean, as indicated by the

11The data are retrieved from Amit Goyal’s website and are available via the following link
http://www.hec.unil.ch/agoyal/docs/PredictorData2019.xlsx as of 26th August 2020.
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Table 1. Statistical Accuracy of Excess Return Forecasts

This table reports the mean squared prediction error and out-of-sample R2
oos obtained from using different

methodologies to predict future S&P 500 excess returns as outlined in Section 2.3. We compute the out-of-
sample R2

oos in comparison to the expectations hypothesis using the historical mean to predict returns. Panel
A shows the results when the investor maximizes a 6-month portfolio return and changes the allocations
quarterly. Panel B demonstrates the results for a 2-year horizon and annual rebalancing. We compute
statistical accuracy measures in those periods when the investor reevaluates her allocations with quarterly or
annual frequency. We also report a p-value (in parentheses) of the null hypothesis R2

oos ≤ 0 following Clark
and West (2007). We report statistical significance only if R2

oos is positive. The forecast starts in February
1955. The sample period spans from January 1945 to December 2018.

EH OLS1 OLS2 OLS3 OLS4 NN1 NN2 NN3 LSTM

Panel A: 6-month horizon and quarterly rebalancing

MSPE×104 17.4 18.0 18.2 18.9 18.0 16.3 16.6 16.6 17.3
R2

oos 0.5% -2.5% -3.6% -8.0% -2.5% 7.1% 5.1% 5.6% 1.6%
p-value (0.152) (0.006) (0.007) (0.002) (0.002)

Panel B: 2-year horizon and annual rebalancing

MSPE×104 14.2 15.0 14.7 16.7 19.9 12.2 11.1 11.9 12.1
R2

oos 2.2% -2.8% -0.8% -15.0% -36.9% 16.0% 23.8% 17.6% 17.2%
p-value (0.171) (0.001) (0.014) (0.007) (0.008)

negative R2
oos. In contrast, we find that deep learning methods achieve the positive R2

oos,

indicating the statistical benefits of accounting for the nonlinear relationship between stock

market returns and predictors, similarly to Feng et al. (2018) and Rossi (2018). A formal

test confirms that expected return predictability generated by NNs is statistically different

from a naive historical mean forecast. In unreported results, we verify that the performance

of all machine learning methods is statistically the same. Panel B also shows the results in

favor of NNs in a setting with less frequent rebalancing.

3.2 Portfolio Results

Table 2 provides a summary of annualized CERs and monthly SRs of portfolio returns for

each model assuming a 6-month (Panel A) and 2-year (Panel B) investment horizon. The

summary statistics in each panel are computed for the whole sample and for recession and

expansion periods as defined by the NBER recession indicator. The risk aversion parameter

is γ = 4.

For traditional methods, we recover a standard result: linear regressions do not generate

18



out-of-sample improvements as measured by the CERs compared to the constant mean

and constant volatility model. In terms of model-generated SRs, linear models perform

slightly better than the expectations hypothesis model, with higher Sharpe ratios in case

of more predictor variables. The rolling-window estimation introduces time-varying slope

coefficients and leads to modest improvements. However, ignoring the estimation risk

and stochastic volatility of returns results in lower CERs relative to a constant mean and

volatility specification, which is consistent with Johannes et al. (2014).

Turning to NNs, we observe that the improved R2
oos obtained using machine learn-

ing methods directly translate into economic gains for an investor. Specifically, the best-

performing NN – the LSTM model – generates more than two- and three-fold increases

in the annual CER (around 10% vs 4.7%) and monthly SR (0.175 vs 0.049) relative to the

model ignoring expected return predictability. The LSTM model, which is a three-layer

network, is directly comparable to NN3 in terms of its structure complexity. Nevertheless,

LSTM dominates a standard network, emphasizing the importance of learning complex

long-term temporal dynamics in addition to non-linear predictive relationships. In gen-

eral, comparing NN1 through NN3, we observe that increasing the complexity of NNs

does not necessarily improve portfolio performance, although all machine learning struc-

tures remain statistically equivalent to each other. A formal one-sided test confirms that,

except for NN3, the portfolio performance of NNs is significantly better than the perfor-

mance generated by the EH model. Further, a comparison of the results in Panels A and

B demonstrates that the investor benefits more from using NNs when she manages her

portfolio more actively. Overall, these results indicate that expected return predictabil-

ity generated by applying nonlinear methods provides valuable information for portfolio

construction.

We dissect this superior performance by looking at portfolio return statistics in periods

of expansion and recession. Table 2 shows that economic gains generated by NNs are large

during both regimes and are especially pronounced in recessions. For instance, the annu-

alized CER generated by the LSTM is, on average, around 8% in good times, which is more
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Table 2. Certainty Equivalent Returns and Sharpe Ratios

This table reports the annualized certainty equivalent returns and monthly Sharpe ratios for different models
outlined in Section 2.3. Panel A shows the results when the investor maximizes a 6-month portfolio return
and changes the allocations quarterly. Panel B shows the results for a 2-year horizon and annual rebalancing.
Each panel computes the statistics for the whole sample, with expansion and recession periods as defined by
NBER. For the statistical significance of CERs, we report a one-sided p-value (in parentheses) of the test á la
Diebold and Mariano (2002). In particular, we regress the difference in utilities for each modelMs and EH

UMs
t+T −U

EH
t+T = αMs + εt+T ,

where UX
t+T =

(
rX

p,t+T

)1−γ

1−γ and rX
p,t+T is the cumulative portfolio return with the horizon T. Testing for the

difference in the CERs boils down to a test for the significance in αMs . We flag in bold font CER values that
are significant at the 10% confidence level. The portfolio construction starts in February 1955. The sample
period spans from January 1945 to December 2018.

EH OLS1 OLS2 OLS3 OLS4 NN1 NN2 NN3 LSTM

Panel A: 6-month horizon and quarterly rebalancing

1955-2018

CER 4.737 2.643 -0.030 2.781 2.491 7.295 6.984 5.491 10.007
p-value (1.000) (1.000) (0.935) (0.954) (0.027) (0.032) (0.292) (0.000)

SR 0.049 0.046 0.062 0.088 0.095 0.166 0.157 0.144 0.175

Expansions

CER 4.948 3.073 -0.173 4.598 2.045 5.873 5.280 5.304 7.998
p-value (0.998) (1.000) (0.654) (0.982) (0.258) (0.398) (0.403) (0.000)

SR 0.100 0.077 0.048 0.092 0.108 0.149 0.143 0.135 0.149

Recessions

CER 3.311 -0.274 1.401 -9.079 6.752 19.024 20.806 6.936 26.770
p-value (0.995) (0.648) (0.944) (0.221) (0.000) (0.000) (0.200) (0.000)

SR -0.193 -0.182 0.154 0.091 0.036 0.284 0.255 0.204 0.358

Panel B: 2-year horizon and annual rebalancing

1955-2018

CER 4.542 1.068 0.040 0.923 -0.067 6.342 6.879 6.437 5.622
p-value (1.000) (1.000) (0.999) (0.997) (0.000) (0.000) (0.000) (0.012)

SR 0.048 0.044 0.046 0.083 0.081 0.138 0.136 0.129 0.118

Expansions

CER 4.448 0.826 0.514 0.321 0.231 6.051 6.390 5.913 5.537
p-value (1.000) (1.000) (0.999) (0.987) (0.002) (0.000) (0.000) (0.011)

SR 0.100 0.076 0.037 0.097 0.137 0.136 0.149 0.132 0.112

Recessions

CER 5.235 2.866 -2.924 5.930 -2.138 8.611 10.975 10.836 6.353
p-value (0.997) (1.000) (0.262) (1.000) (0.006) (0.000) (0.000) (0.284)

SR -0.190 -0.170 0.102 0.017 -0.104 0.160 0.111 0.149 0.154
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Table 3. Portfolio Return Statistics

This table reports mean, standard deviation, skewness, and kurtosis of optimal portfolio returns for different
models as outlined in Section 2.3. All statistics are expressed in monthly terms. Panel A shows the results
for the case when the investor maximizes a 6-month portfolio return and changes the allocations quarterly.
Panel B shows the results for a 2-year horizon and annual rebalancing. The portfolio construction starts in
February 1955. The sample period spans from January 1945 to December 2018.

EH OLS1 OLS2 OLS3 OLS4 NN1 NN2 NN3 LSTM

Panel A: 6-month horizon and quarterly rebalancing

Mean 0.937 2.213 4.138 4.676 6.762 10.728 9.605 9.533 11.715
St.dev. 5.504 13.871 19.122 15.353 20.502 18.601 17.641 19.121 19.343
Skew -0.472 -0.615 -0.893 -0.332 -0.881 -0.844 -0.816 -0.786 -0.046
Kurt 4.353 8.609 10.400 7.631 9.182 11.707 12.237 11.172 4.860

Panel B: 2-year horizon and annual rebalancing

Mean 0.978 2.184 3.058 5.093 4.908 7.333 5.634 4.445 7.722
St.dev. 5.849 14.443 19.189 17.655 17.512 15.331 11.937 9.916 18.87
Skew -0.452 -0.492 -1.058 -0.989 -0.787 -0.275 0.469 0.799 -0.013
Kurt 4.386 7.104 10.566 13.550 10.737 9.113 10.416 14.775 6.433

than the 5% predicted by the EH model. In bad times, the difference in performance is

extremely large, with around 26% and 3% CERs in the LSTM and EH models, respectively.

A pairwise test confirms that the improvement of LSTM over EH is statistically significant

during both expansions and recessions. In contrast, the portfolio returns of NN1 through

NN3 are indistinguishable from EH in expansions, while shallower networks exhibit sig-

nificantly better performance in recessions.

The investor who ignores expected return predictability experiences, on average, around

-19% Sharpe ratios in recessions. In contrast, the LSTM model helps generate significant

portfolio gains around 36% SRs, with other NNs generating at least 20% SRs on a monthly

basis. Further, all NNs outperform linear regressions across good and bad times. The exist-

ing evidence for equities (Rapach et al., 2010; Dangl and Halling, 2012) indicates that return

predictability is concentrated in bad times.12 Our findings extend the existing literature by

showing that, unlike linear models, NNs help the investor to effectively convert predictive

variation in stock market returns into substantial economic gains across different business

cycle conditions.

12Gargano et al. (2019) report a similar result for bond returns. Recently, Bianchi et al. (2020) show that
bond return predictability is also present in expansions when machine learning methods are employed.
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Figure 3. Cumulative Returns

This figure illustrates the cumulative log returns of optimal portfolio strategies from different models out-
lined in Section 2.3. The left panel shows the results when the investor maximizes a 6-month portfolio return
and changes the allocations quarterly. The right panel shows the results for a 2-year horizon and annual re-
balancing. The shaded areas denote recession periods as defined by NBER. The portfolio construction starts
in February 1955. The sample period spans from January 1945 to December 2018.

(a) 6-month horizon and quarterly rebalancing (b) 2-year horizon and annual rebalancing

Table 3 presents additional statistics of portfolio returns for different methodologies.

The models using NNs generate out-of-sample returns with significantly larger means.

Intuitively, this occurs because machine learning methods specifically excel in risk pre-

mium prediction, that is, the conditional expectation of returns. The linear regressions and

vanilla NNs do not take the time-varying volatility of returns into account and hence these

models predict negative skewness and excess kurtosis (since they ignore a fat-tailed return

distribution). Interestingly, although an LSTM network does not consider time variation

in return volatility, it is able to identify the periods of high return variance using the long-

term memory of its cells (including realized return variance as one of the predictors also

helps). This results in better skewness and lower excess kurtosis. The statistics for the

longer horizon portfolio are improved for the standard neural networks, where properties

remain largely the same or slightly deteriorate for other models.

We visually summarize the previous results in Figure 3, which shows the cumulative

sum of log portfolio returns. The left panel shows that NNs outperform other models

by a large margin. The LSTM dominates remaining networks by the end of the period
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considered, with a particularly pronounced difference in the second half of the sample. In

relation to specific historical events, all NNs produce steady positive portfolio performance

during the 2007-2008 Financial Crisis. Interestingly, the LSTM network additionally avoids

a largely unexpected stock market crash, Black Monday, on October 19, 1987. Figure 3 also

shows that weaker statistical performances for the passive strategy with annual rebalancing

leads to lower cumulative returns across all models.

4 Further Analysis

This section dissects the performance of portfolio returns constructed in the previous sec-

tion across seven decades in the post-WWII period considered. Further, this section con-

nects economic gains of the best-performing model to common drivers of asset prices.

Finally, it also provides the robustness of our conclusions to alternative measures of port-

folio performance, transaction costs, borrowing and short-selling constraints, and a larger

size of a rolliing window used to train NNs.

4.1 Subsample Analysis

We start by examining whether superior portfolio performance implied by NNs varies over

subsamples other than expansions and recessions. Table 4 shows the certainty equivalent

yields and Sharpe ratios computed separately for each decade in our sample. For the

CERs, we extend the main finding of the paper: NNs, particularly LSTM, outperform the

expectations hypothesis model in most cases. Specifically, the table shows that, except

for the last decade, the LSTM network generates certainty equivalent values above those

implied by no predictability framework. Interestingly, the formal test indicates that the

improvement of LSTM over EH is significant during the first three decades, while higher

CERs in later periods are statistically equivalent to those from the EH model.

The linear models perform well across the 1990s and 2010s during which the stock
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market grew steadily. Also, the rolling-window linear regressions tend to perform better

than those using the expanding-window estimation, emphasizing the role of time-varying

betas and changing information sets. For instance, Goyal and Welch (2008) show that

dividend-yield exhibited a strong predictive power for stock market returns from 1970 to

mid-1990, with a weaker but mostly positive out-of-sample performance during the first

two decades after World War II. In contrast, it produced large prediction errors during the

1995-2000 and 2000s. As a result, Table 4 shows that the OLS3 model generates high CERs

from 1955 to 1989, exhibiting statistically better performance than EH in some case, but

the model is weaker in later years when the forecast based on dividend yield had strong

underperformance.

Turning to the SRs, NNs provide the investor with substantially higher Sharpe ratios

with the exception of the 1990s and 2010s when they perform slightly worse. These results

are consistent with our previous findings. Indeed, the U.S. stock market was strongly

bullish in these two decades, which are marked by prolonged stock market expansions. In

contrast, the Black Monday crash occurred in 1987 and the S&P 500 index recovered slowly,

only by the end of the 1980s. Further, the beginning of the new millennium experienced

two major crashes driven by the burst of the dot-com bubble and the subprime mortgage

crisis. Table 4 shows that NNs perform significantly better than other specifications during

decades with major stock bear markets and provide statistically equal results during bull

markets, which is consistent with our previous results across expansions and recessions.

4.2 Drivers of Portfolio Performance

This section explores the link between the economic gains implied by the best-performing

machine learning framework and prominent drivers of asset prices. In particular, we focus

on the portfolio choice problem of the investor with a 6-month investment horizon and

quarterly rebalancing who uses the LSTM to forecast future stock market returns. For-

mally, we establish this link by running a set of univariate regressions of the investor’s
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Table 4. Portfolio Performance across Subsamples

This table reports the annualized certainty equivalent returns and monthly Sharpe ratios for different models
outlined in Section 2.3. The table shows the results when the investor maximizes a 6-month portfolio return
and changes the allocations quarterly. The table computes the statistics for each of the seven decades since
WWII. For the statistical significance of CERs, we report a one-sided p-value (in parentheses) of the test á la
Diebold and Mariano (2002). In particular, we regress the difference in utilities for each modelMs and EH

UMs
t+T −U

EH
t+T = αMs + εt+T ,

where UX
t+T =

(
rX

p,t+T

)1−γ

1−γ and rX
p,t+T is the cumulative portfolio return with the horizon T. Testing for the

difference in the CERs boils down to a test for the significance in αMs . We flag in bold font CER values that
are significant at the 10% confidence level. The portfolio construction starts in February 1955. The sample
period spans from January 1945 to December 2018.

EH OLS1 OLS2 OLS3 OLS4 NN1 NN2 NN3 LSTM

1955-1959
CER 5.467 4.376 3.219 9.495 5.545 15.611 12.220 23.120 15.455
p-value (0.631) (0.707) (0.149) (0.490) (0.000) (0.017) (0.000) (0.001)
SR 0.225 0.188 0.209 0.258 0.154 0.319 0.278 0.431 0.341

1960-1969
CER 4.197 0.580 -4.193 8.354 0.619 7.498 7.608 5.627 14.015
p-value (0.959) (0.991) (0.024) (0.931) (0.094) (0.042) (0.360) (0.000)
SR 0.062 0.064 0.030 0.157 0.067 0.164 0.148 0.181 0.241

1970-1979
CER 3.312 0.599 0.223 9.275 8.580 17.750 15.690 13.618 20.658
p-value (1.000) (0.847) (0.015) (0.026) (0.000) (0.000) (0.000) (0.000)
SR -0.107 -0.097 0.005 0.149 0.180 0.274 0.248 0.224 0.309

1980-1989
CER 9.215 7.243 -3.130 11.276 -1.450 3.315 1.216 2.603 10.241
p-value (0.992) (0.983) (0.148) (0.969) (0.820) (0.906) (0.864) (0.282)
SR 0.048 -0.005 0.072 0.139 0.055 0.166 0.123 0.142 0.112

1990-1999
CER 8.101 11.808 13.704 -4.393 12.085 10.817 10.301 6.429 9.815
p-value (0.002) (0.002) (1.000) (0.039) (0.052) (0.099) (0.842) (0.202)
SR 0.222 0.185 0.219 -0.168 0.218 0.168 0.172 0.100 0.150

2000-2009
CER 0.000 -7.445 -7.091 -15.834 -10.520 -3.889 -0.205 -7.991 1.726
p-value (1.000) (0.990) (0.998) (0.998) (0.869) (0.531) (0.995) (0.238)
SR -0.091 -0.125 -0.055 -0.039 -0.040 0.028 0.060 -0.062 0.084

2010-2018
CER 4.230 6.268 0.997 9.757 9.508 6.642 5.690 7.241 2.074
p-value (0.000) (0.999) (0.000) (0.000) (0.004) (0.049) (0.023) (0.842)
SR 0.237 0.220 -0.020 0.255 0.161 0.150 0.175 0.213 0.096
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Table 5. Drivers of Portfolio Performance

This table reports the regression estimates, Newey-West p-values (in parentheses) and R2 of economic gains
on a set of selected variables determining risk premia. Economic gains are computed for portfolio returns
for the best performing model employing the LSTM prediction of stock market returns. The independent
variables proxy for real disagreement DiB(g), nominal disagreement DiB(π), economic uncertainty UNbex,
risk aversion via consumption growth −Surplus or financial variables RAbex, the VIX index VIX, and re-
alized stock market volatility σ. The variables on the left and right sides are standardized. We flag in bold
font regression estimates that are significant at the 10% confidence level.

DiB(g) DiB(π) UNbex −Surplus RAbex VIX σ R2(%)

(i) 0.198 3.907
(0.002)

(ii) 0.188 3.523
(0.019)

(iii) 0.115 1.318
(0.127)

(iv) 0.037 0.141
(0.561)

(v) 0.098 0.962
(0.144)

(vi) 0.104 1.084
(0.177)

(vii) 0.004 0.002
(0.908)

utility from future portfolio returns on the set of structural determinants of risk premia.

Our choice of variables is motivated by existing studies. For instance, a large strand of

the literature (see Buraschi and Jiltsov (2007) and Dumas et al. (2009) among others) em-

phasizes the importance of disagreement for asset prices. In our analysis, we employ the

Survey of Professional Forecasters to proxy for real disagreement (DiB(g)) and nominal

disagreement (DiB(π)), which are constructed as the interquartile range of 6-month-ahead

forecasts of GDP and CPI growth. Motivated by the well-established link between as-

set prices and uncertainty, we employ a novel measure of economic uncertainty (UNbex)

constructed from financial variables at high frequencies (Bekaert et al., 2019).

We next examine the relationship between portfolio gains and time-varying risk aver-

sion of investors. Following Wachter (2006), we approximate risk aversion via the neg-

ative weighted average of consumption growth rates over a moving window of 10 years

(−Surplus). We compare the results to an alternative measure of risk aversion extracted

from financial variables (Bekaert et al., 2019). Finally, we relate portfolio utilities to stock
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market volatility by using the risk-neutral volatility (VIX) as measured by the VIX index

and by using the realized volatility (σ) as measured by the root of the intra-month sum of

squared daily S&P500 returns.

Table 5 presents the regression results. Overall, the relationship between future real-

ized portfolio gains and most structural risk factors is rather weak. Indeed, we document

that only dispersion in beliefs about a real or nominal growth is positively and statistically

significantly linked to the investor’s utilities. Intuitively, this result is expected since ma-

chine learning methods significantly outperform competing models during recessionary

periods, when uncertainty and disagreement in forecasts are large. The third panel in Ta-

ble 5 further confirms this positive association between economic uncertainty and portfolio

gains, however, the link is statistically weaker compared to disagreement measures. Except

for realized stock market volatility, we obtain positive coefficients on the remaining risk

factors.

4.3 Alternative Measures of Performance

Although certainty equivalent yields and Sharpe ratios are common measures of portfolio

performance considered in the literature, the investor may use alternative statistics to eval-

uate their investment strategies, including maximum drawdown, maximum one-month

loss, and average monthly turnover. For each modelMs, we define maximum drawdown

Max DD = max
t0≤t1≤t2≤T0

[
r̂t1,Ms

t0
− r̂t2,Ms

t0

]
, (11)

in which r̂t,Ms
t0

denotes the cumulative portfolio return from time t0 through t, while t0 and

T0 are the months of the first and last predictions. The maximum one-month loss measures

the largest portfolio decline during the period considered. The average monthly turnover

is defined as

Turnover =
1

T0 − t0

T0

∑
t=t0+1

∣∣∣ωt −ωt−1 · r̂Ms
t−1

∣∣∣, (12)
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Table 6. Drawdowns, Maximum Loss, and Turnover

This table reports alternative out-of-sample performance measures — maximum drawdown, maximum 1-
month loss, and turnover — of optimal portfolio returns for different methodologies used to predict future
S&P 500 excess returns as outlined in Section 2.3. All statistics are expressed in percentages. Panel A shows
the results when the investor maximizes a 6-month portfolio return and changes the allocations quarterly.
Panel B demonstrates the results for a 2-year horizon and annual rebalancing. The portfolio construction
starts in February 1955. The sample period spans from January 1945 to December 2018.

EH OLS1 OLS2 OLS3 OLS4 NN1 NN2 NN3 LSTM

Panel A: 6-month horizon and quarterly rebalancing

Max DD 22.795 76.236 74.251 144.760 100.956 74.572 68.248 82.72 45.995
Max 1M Loss 7.795 33.325 57.974 31.756 57.974 57.974 57.974 57.974 35.011
Turnover 0.506 4.286 10.968 17.890 34.531 23.008 23.407 29.616 32.814

Panel B: 2-year horizon and annual rebalancing

Max DD 25.002 90.896 83.370 123.279 145.663 74.972 34.562 25.136 64.433
Max 1M Loss 8.036 29.431 57.974 57.974 38.862 34.375 24.419 25.136 35.011
Turnover 0.584 4.289 8.804 10.773 11.329 11.352 8.725 6.771 17.459

where ωt−1 is the weight of the stock index.

Table 6 shows the results for alternative performance statistics. We first focus on ac-

tively managed portfolios with quarterly rebalancing and then move to more passive in-

vestment strategies with annual rebalancing. The maximum drawdown experienced by

NN1 through NN3 is between 68% and 83% on the monthly basis. The linear models

predict comparable or even larger drawdowns, whereas the constant mean and constant

volatility model delivers a mild loss of around 23%. In contrast, the maximum drawdown

for LSTM is around 46%, the mildest decline among the predictive models. Panel A further

shows a similar picture for the maximum one-month loss of the portfolio: linear models

and NNs tend to generate the worst one-period performance, while the LSTM strategy

experiences a milder loss. Thus, the LSTM specification is the most successful in avoiding

large losses over short- and long-term periods, even though it comes at the expense of the

higher turnover.

Panel B in Table 6 shows that the investor engaging in less frequent portfolio rebal-

ancing is generally less efficient in forming the optimal portfolio if he relies on the linear

regressions. Interestingly, the benefits of deep learning methods remain similar and even

improve in some cases. For instance, the maximum one-month and drawdown losses tend
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to increase from 83% to more than 140% for the linear models, while NNs produce the

largest declines, from 25% to 35% per month. Furthermore, as the portfolio weights are

kept unchanged for longer investment periods, the turnover is reduced. Thus, the passive

investor who is mainly interested in reducing his short- and long-term tail risks would still

find NNs useful, while he does not benefit from linear predictive models.

In sum, exploiting expected return predictability via NNs for portfolio construction

leads to riskier investments. It also generates increased turnover, especially for the best-

performing model using the LSTM network. A natural question arises if these benefits are

offset by the large transaction costs implied by more aggressive buying and selling stocks

4.4 Portfolio Performance with Transaction Costs

This subsection extends the main analysis by accounting for the effect of transaction costs.

Specifically, we consider low and high transaction costs that are equal to the percentage

paid by the investor for the change in value traded. Let τ denote a transaction cost param-

eter. Then the transaction-costs adjusted returns are defined as

r̂τ,Ms
t = r̂Ms

t − τ
∣∣ωt −ωt−1 · r̂Ms

t−1

∣∣,
where τ can attain one of the two possible values τl = 0.1% or τh = 0.5%.

Table 7 presents summary statistics of the out-of-sample portfolio returns with low

(Panels A and B) and high (Panels C and D) transaction costs. The results show that:

(1) portfolio performance is monotonically decreasing in terms of the percentage paid

in transaction costs (2) the key findings reported in the main analysis remain the same;

that is, the NNs consistently outperform the traditional linear predictive regressions and

the expectations hypothesis framework by generating substantially higher CER and SR

values; and (3) among the NNs considered, the LSTM architecture remains a dominant

specification. Quantitatively, the annualized CERs for all NNs decline by less than 0.5%

and 2.1% for the low and high transaction cost parameters, respectively. In terms of SRs,
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Table 7. Portfolio Performance with Transaction Costs

This table reports the annualized certainty equivalent returns and Sharpe ratios for different models outlined
in Section 2.3. The top and bottom sections of the table compute optimal returns with low (τ = 0.1%) and
high (τ = 0.5%) transaction costs. Panels A and C show the results when the investor maximizes a 6-
month portfolio return and changes the allocations quarterly. Panel B and D show the results for a 2-year
horizon and annual rebalancing. Each panel computes the statistics for the whole sample. For the statistical
significance of CERs, we report a one-sided p-value (in parentheses) of the test á la Diebold and Mariano
(2002). In particular, we regress the difference in utilities for each modelMs and EH

UMs
t+T −U

EH
t+T = αMs + εt+T ,

where UX
t+T =

(
rX

p,t+T

)1−γ

1−γ and rX
p,t+T is the cumulative portfolio return with the horizon T. Testing for the

difference in the CERs boils down to a test for the significance in αMs . We flag in bold font those CER
values that are significant at the 10% confidence level. The portfolio construction starts in February 1955.
The sample period spans from January 1945 to December 2018.

EH OLS1 OLS2 OLS3 OLS4 NN1 NN2 NN3 LSTM

Low Transaction Costs

Panel A: 6-month horizon and quarterly rebalancing

CER 4.731 2.589 -0.171 2.548 2.036 6.996 6.689 5.115 9.592
p-value (1.000) (1.000) (0.953) (0.978) (0.045) (0.054) (0.391) (0.000)

SR 0.049 0.045 0.060 0.084 0.089 0.162 0.153 0.139 0.169

Panel B: 2-year horizon and annual rebalancing

CER 4.535 0.998 -0.085 0.765 -0.241 6.191 6.783 6.366 5.413
p-value (1.000) (1.000) (0.999) (0.998) (0.001) (0.000) (0.000) (0.033)

SR 0.048 0.043 0.044 0.081 0.079 0.135 0.134 0.127 0.115

High Transaction Costs

Panel C: 6-month horizon and quarterly rebalancing

CE 4.706 2.370 -0.736 1.609 0.193 5.791 5.501 3.592 7.910
p-value (1.000) (1.000) (0.990) (0.999) (0.214) (0.263) (0.784) (0.000)

SR 0.048 0.041 0.053 0.068 0.066 0.145 0.134 0.117 0.145

Panel D: 2-year horizon and annual rebalancing

CE 4.506 0.717 -0.586 0.129 -0.943 5.579 6.396 6.080 4.563
p-value (1.000) (1.000) (1.000) (0.999) (0.022) (0.000) (0.000) (0.453)

SR 0.047 0.039 0.038 0.073 0.070 0.125 0.123 0.117 0.102

the decline in performance never exceeds 2% and 3% on a monthly basis for basic NNs

and LSTM. However, despite a slightly detrimental effect of transaction costs, the best-

performing models (NN1 and LSTM) with an actively managed portfolio generate more

than two- and three-fold increases in the CERs and SRs compared to the scenario in which

expected return predictability is ignored. The formal test shows that the CER gains are

also statistically significant.
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4.5 Borrowing and Short-selling Constraints

We consider an additional robustness check of the alternative assumptions about the port-

folio weights. The main analysis allows the investor to borrow the money or to short-sell

the stock by considering the weights in the interval −1 ≤ ωt ≤ 2. In this subsection, we

perform a two-step analysis: we first impose borrowing constraints by restricting the opti-

mal weight on the risk-free investment to be non-negative and then additionally imposing

short-selling constrains with the weights 0 ≤ ωt ≤ 1.

Table 8 reports the results for the two scenarios. We focus on the quarterly rebalanc-

ing case reported in Panels A and C. The corresponding results for the passive portfolios,

which are shown in Panels B and D, remain qualitatively similar. Several observations

are noteworthy. First, winsorizing the weights to narrower intervals leads to ambiguous

conclusions about the performance of linear predictive models. On the one hand, the

constraints prevent optimal investments and hence lead to smaller out-of-sample Sharpe

ratios. On the other hand, using the certainty equivalent as a measure of portfolio per-

formance, the linear specifications consistently generate improved results, with the CERs

above 3.5% in all cases. Thus, constraints on the optimal weights result in higher CERs.

The reason for this seemingly counterintuitive result is that such restrictions prevent the

expected utility from achieving unbounded large values (Johannes et al., 2014) and, there-

fore, avoid extreme investments based on unstable predictions of linear regressions (Goyal

and Welch, 2008). Since the certainty equivalent measure takes tail behaviour of returns

into account, less extreme investments ultimately yield improved results.

Second, unlike the linear regressions, we document a negative impact of imposing

borrowing and short-selling constraints on portfolio performance implied by NNs. For

instance, Panels A and B in Table 8 demonstrate a decline in both CERs and SRs for all

NNs, with a larger drop in performance measures in response to more stringent assump-

tions about the weights. Nevertheless, despite weaker performance of machine learning

methods, the table confirms the key results of the main analysis. Specifically, traditional
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Table 8. Portfolio Performance with Borrowing and Short-Selling Constraints

This table reports the annualized certainty equivalent returns and Sharpe ratios for different models outlined
in Section 2.3. The top section of the table imposes borrowing constrains, while the bottom section addition-
ally assumes short-selling constraints. Panels A and C show the results when the investor maximizes a
6-month portfolio return and changes the allocations quarterly. Panels B and D show the results for a 2-year
horizon and annual rebalancing. For the statistical significance of CERs, we report a one-sided p-value (in
parentheses) of the test á la Diebold and Mariano (2002). In particular, we regress the difference in utilities
for each modelMs and EH

UMs
t+T −U

EH
t+T = αMs + εt+T ,

where UX
t+T =

(
rX

p,t+T

)1−γ

1−γ and rX
p,t+T is the cumulative portfolio return with the horizon T. Testing for the

difference in the CERs boils down to a test for the significance in αMs . We flag in bold font CER values that
are significant at the 10% confidence level. The portfolio construction starts in February 1955. The sample
period spans from January 1945 to December 2018.

EH OLS1 OLS2 OLS3 OLS4 NN1 NN2 NN3 LSTM

Borrowing Constraint

Panel A: 6-month horizon and quarterly rebalancing

CER 4.737 3.662 3.371 4.149 4.560 9.122 7.632 6.900 8.560
p-value (0.999) (0.958) (0.770) (0.591) (0.000) (0.000) (0.003) (0.000)

SR 0.049 0.046 0.061 0.074 0.080 0.176 0.146 0.135 0.157

Panel B: 2-year horizon and annual rebalancing

CER 4.542 2.780 2.936 2.974 1.560 4.964 5.336 5.275 5.321
p-value (1.000) (1.000) (1.000) (1.000) (0.147) (0.007) (0.008) (0.033)

SR 0.048 0.044 0.051 0.049 0.013 0.101 0.094 0.087 0.100

Borrowing and Short-Selling Constraints

Panel C: 6-month horizon and quarterly rebalancing

CER 4.737 3.704 4.707 5.353 5.708 7.500 6.758 7.128 7.775
p-value (0.998) (0.528) (0.080) (0.004) (0.000) (0.000) (0.000) (0.000)

SR 0.049 0.047 0.066 0.093 0.093 0.146 0.129 0.138 0.150

Panel D: 2-year horizon and annual rebalancing

CER 4.542 2.780 3.757 4.261 5.010 5.809 5.320 5.408 6.117
p-value (1.000) (1.000) (0.859) (0.004) (0.000) (0.000) (0.000) (0.000)

SR 0.048 0.044 0.054 0.054 0.071 0.107 0.109 0.098 0.107

predictive models barely generate a positive value for the investor, whereas there is robust

statistical evidence of substantial improvements from using NNs.

4.6 Different Rolling Window Sizes

The subperiod analysis presented in Table 4 reveals a slightly declining performance of

NNs by the end of the sample. In particular, the LSTM generates higher CERs than the
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EH model, however, the difference proves to be statistically indistinguishable over the last

four decades. This raises the question whether the evidence in this paper holds for more

recent data. This subsection demonstrates that the main conclusions of this paper indeed

remain intact.

Table 9 reports summary statistics of the out-of-sample portfolio returns, which are

obtained for the subperiod from February 1969 to December 2018 as in Rossi (2018). In

relation to the models using the rolling-window estimation, we assume a 20-year hori-

zon to assess the impact of longer history on the performance of different methodologies,

particularly machine learning methods that are assumed to work better with larger sam-

ples. Notice that the quantitative predictions of this exercise are not directly comparable

to the previous results due to difference in the historical data. In particular, the period

from February 1969 to December 2018 is characterized by slightly weaker market perfor-

mance, which ultimately translates into a less favorable opportunity set for the investor.

The returns statistics in Table 9 are consistent with this intuition. The average Sharpe

ratio implied by the model with no predictability shrinks to half the size of that in the

benchmark analysis. The linear models experience comparable deterioration in results.

For NNs with quarterly rebalancing, we document several interesting observations.

First, despite a weaker performance of the stock market during the period considered,

monthly Sharpe ratios implied by NNs decrease marginally, with the drop approximately

equal to 0.01 to 0.03 relative to the main results. Second, comparing NN1 through NN3

in terms of certainty equivalent returns, NNs yield statistically the same results. Although

deeper networks generate slightly lower CERs than those predicted by shallower networks,

the p-values indicate that these model-based values remain in the same equivalence class.

Third, the LSTM still produces the most significant economic gains. Specifically, the an-

nualized certainty equivalent yield is above 7% and monthly Sharpe ratios remain as high

as 0.165. Finally, unlike weak statistical evidence of the main results with recent data,

the formal test of the results in this subsection demonstrates strong statistical evidence in

favor of NNs. The reason is that NNs use a 20-year rolling window for hyperparameter
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Table 9. Portfolio Performance from Feb 1969:02 to Dec 2018: 20-year rolling window

This table reports the annualized certainty equivalent returns and Sharpe ratios for different models outlined
in Section 2.3. The rolling window estimation uses 20 years of recent data. Panel A shows the results when
the investor maximizes a 6-month portfolio return and changes the allocations quarterly. Panel B shows the
results for a 2-year horizon and annual rebalancing. Each panel computes the statistics for the whole sample,
expansion and recession periods as defined by the NBER. For the statistical significance of CERs, we report a
one-sided p-value (in parentheses) of the test á la Diebold and Mariano (2002). In particular, we regress the
difference in utilities for each modelMs and EH

UMs
t+T −U

EH
t+T = αMs + εt+T ,

where UX
t+T =

(
rX

p,t+T

)1−γ

1−γ and rX
p,t+T is the cumulative portfolio return with the horizon T. Testing for the

difference in the CERs boils down to a test for the significance in αMs . We flag in bold font CER values that
are significant at the 10% confidence level. The portfolio construction starts in February 1969.

EH OLS1 OLS2 OLS3 OLS4 NN1 NN2 NN3 LSTM

Panel A: 6-month horizon and quarterly rebalancing

1969-2018

CER 4.600 1.763 0.791 1.025 3.707 6.762 6.601 6.236 7.253
p-value 1.000 1.000 0.984 0.811 0.018 0.053 0.061 0.016

SR 0.025 0.010 0.018 0.059 0.057 0.135 0.140 0.132 0.165

Expansions

CER 5.038 3.158 2.479 4.551 5.846 7.237 7.314 5.673 6.734
p-value 0.999 0.997 0.694 0.158 0.008 0.022 0.335 0.039

SR 0.090 0.059 0.045 0.070 0.068 0.139 0.138 0.141 0.161

Recessions

CER 1.846 -6.771 -9.496 -18.688 -8.560 3.819 2.347 4.423 17.657
p-value 1.000 0.999 0.985 0.980 0.345 0.465 0.287 0.002

SR -0.251 -0.253 -0.123 0.034 0.023 0.123 0.156 0.061 0.226

Panel B: 2-year horizon and annual rebalancing

1969-2018

CER 4.530 0.508 -2.573 -2.558 2.080 5.788 5.136 7.038 6.477
p-value (1.000) (1.000) (1.000) (1.000) (0.026) (0.068) (0.000) (0.000)

SR 0.023 0.008 -0.002 0.008 0.025 0.126 0.084 0.117 0.135

Expansions

CER 4.448 0.246 -2.160 -2.174 3.324 5.465 4.675 6.739 6.185
p-value (1.000) (1.000) (1.000) (0.992) (0.076) (0.297) (0.000) (0.001)

SR 0.089 0.059 0.035 0.008 0.021 0.108 0.054 0.100 0.127

Recessions

CER 5.089 2.275 -5.061 -4.914 -4.333 8.133 8.538 9.073 8.409
p-value (0.999) (1.000) (1.000) (1.000) (0.023) (0.004) (0.003) (0.009)

SR -0.248 -0.259 -0.194 0.010 0.045 0.216 0.211 0.210 0.181
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tuning, which helps them to better learn non-linear relationships, and short- and long-term

dependencies (in case of LSTM) from the data.

5 Conclusion

In this paper, we evaluate the economic gains of using deep learning methods for the

construction of optimal portfolios. We study the portfolio allocation of a long-horizon

investor who uses neural networks to predict future returns when choosing an optimal

allocation between a market portfolio and a risk-free asset. We propose and compare

various architectures of neural networks including shallow and deep NNs as well as the

LSTM specification, which is capable of learning the long-term relationships. Three key

findings emerge from our investigation.

First, we demonstrate that sound statistical performance of non-linear machine learning

methods, such as neural networks, leads to large and significant out-of-sample portfolio

gains. These gains are robust to a variety of portfolio performance measures, the inclu-

sion of transaction costs, and borrowing and short-selling constraints. Second, we find

that employing the forecasts of deeper networks does not necessarily translate into larger

economic gains. In order to identify and benefit from a complex non-linear predictive re-

lationship, the investor needs to harvest more data, while shallower NNs might be a better

option in a setting with small samples. In terms of NNs, we further show that the novel

LSTM is the best-performing specification. This emphasizes the critical role of short- and

long-term order dependencies in predicting stock returns, in addition to approximating the

non-linear relationship. Finally, we document that NNs perform well even in the absence

of additional ingredients, such as time-varying return volatility, which are commonly pro-

posed by the literature studying linear predictive regressions. Our results show that NNs

are capable of identifying these complex features from the data in a non-parametric way

and without any specific modelling assumptions.

Our analysis can be extended in a number of ways. It would be interesting to exam-
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ine the interaction between NNs and alternative preference specifications. In particular,

it is not clear whether an investor with a tail sensitive utility function or a preference

for early resolution of uncertainty would be able to generate comparable economic gains.

Van Binsbergen and Koijen (2010) present evidence that additional economic restrictions

can actually improve the model’s performance. Our results point out a negative impact of

restricting portfolio weights on the gains of the NNs. It would be interesting to examine

if our evidence holds in a setting with other restrictions, in particular those proposed by

Van Binsbergen and Koijen (2010). Finally, extending our analysis to multiple assets is a

straightforward exercise, which would shed light on the economic significance of forecast-

ing returns of different asset classes via NNs.
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Abstrakt 

 

Zkoumáme dynamickou volbu portfolia investorem, který investuje s dlouhým horizontem 
investic a využívá při tom metod hlubokého učení k předpovědím akciových výnosů při 
vytváření portfolia. Naše výsledky ukazují statisticky i ekonomicky významný přínos použití 
metod hlubokého učení při vytváření portfolií s hodnocením založeném na využití Sharpeových 
poměrech a jistotně-ekvivalentních výnosů.  Předpovídání výnosů s použitím hlubokého učení 
také generuje podstatně lepší výkonnost portfolií napříč různými podvýběry, konkrétně pak 
během ekonomických krizí. Tyto zisky jsou robustní k zahrnutí transakčních nákladů, nákladů 
na krátký prodej a omezení půjček.  
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