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Abstract

We propose a general strategy for estimating treatment effects, in contexts where the
only source of exogenous variation is a sequence of aggregate time-series shocks. We start
by arguing that commonly used estimation procedures tend to ignore the crucial time-series
aspects of the data. Next, we develop a graphical tool and a novel test to illustrate the
issues of the design using data from influential studies in development economics [Nunn
and Qian, 2014] and macroeconomics [Nakamura and Steinsson, 2014]. Motivated by these
studies, we construct a new estimator, which is based on the time-series model for the
aggregate shock. We analyze the statistical properties of our estimator in the practically
relevant case, where both cross-sectional and time-series dimensions are of similar size.
Finally, to provide causal interpretation for our estimator, we analyze a new causal model
that allows taking into account both rich unobserved heterogeneity in potential outcomes
and unobserved aggregate shocks.
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1 Introduction

Changes in aggregate variables are commonly used to evaluate economic policies. The most

popular design of this type is an “event study”, where a one-time aggregate shock, e.g., a new

law, affects a subpopulation of units, which one observes over time. To quantify the effects

of these shocks, practitioners use either difference in differences or, more recently, synthetic

control methodology (e.g., Card and Krueger [1993], Abadie and Gardeazabal [2003], Abadie

et al. [2010]). Often, when both outcome and treatment variable are unit-specific, this approach

is used as a first stage, and the aggregate change effectively plays the role of an instrument.

In the absence of a single aggregate shock, researchers often employ more general time-series

variation to establish causal links between unit-specific policy and outcome variables. In a

typical application, outcomes are observed at some geographical level over time (e.g., Dube and

Vargas [2013], Nakamura and Steinsson [2014], and Nunn and Qian [2014]). To address potential

endogeneity problems, researchers use aggregate time-series shocks as instruments. A standard

econometric tool employed to analyze such data is a two-stage least-squares (TSLS) regression

with unit and time fixed effects (see Arellano [2003] for a textbook treatment).

In this paper, we propose an algorithm that can be used to answer causal questions using

exogenous aggregate shocks. In other words, our strategy can be applied whenever the sole source

of exogenous variation comes from the time-series dimension. Our novel approach has three key

steps: first, researchers should report a simple graphical representation of the data, along with

a formal test. Next, researchers should construct a time-series model for the aggregate shock.

Finally, using the information from the first two steps, researchers should estimate a particular

panel model. We show that this strategy, once implemented correctly, delivers meaningful

policy-relevant parameters under flexible assumptions about the underlying causal model.

In particular, let Yit be the outcome variable, Wit the endogenous regressor, and Zt the

aggregate instrument. To establish a causal link between Yit and Wit, the following regression

is estimated by TSLS:

Yit = αi + θt + τWit + εit, (1.1)

using DiZt as an instrument. Here, Di is a measure of “exposure” of unit i to the aggregate

shock, and τ is the parameter of interest. For example, in Nunn and Qian [2014] Zt is the amount
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of wheat produced in the United States in the previous year, Wit is the amount of food aid that

country i received, and Yit is a measure of local conflict. In this example, Di is not directly

available, but instead is constructed for each country using the whole vector (Wi1, . . . ,WiT ).

The TSLS algorithm uses Di to aggregate outcomes over units, and it is straightforward to

show that τ̂TSLS is a ratio of two OLS coefficients in the following time-series regressions:

Yt = α + δZt + εt

Wt = β + πZt + ut,
(1.2)

whereWt and Yt are weighted averages ofWit and Yit, with the weights proportional toDi−E[Di].

These weights average to zero across units to balance away time fixed effects.

Representation (1.2) is the starting point of our analysis. Properties of the aggregate errors

(εt, ut) depend crucially on the type of moment restrictions that one is willing to assume. These

restrictions are rarely explicitly stated in applied papers, so we start with a cross-sectional

model that justifies commonly used estimation and inference procedures. In this model, (1.2)

effectively reduces to the following error-free time-series model:

Yt ≈ α + δZt

Wt ≈ β + πZt.
(1.3)

Importantly, this is true even in cases where the number of periods is large, e.g., T is of the

same order as n. This representation suggests that we can simply plot Yt and Wt versus Zt

as functions of time to check whether (1.3) holds. In fact, this is equivalent to the standard

event-study plot if Zt = {t ≥ Ttreat} is a one-time aggregate shock. In addition to this graphical

evidence, we construct a formal test that can be used to find out whether (1.3) holds. Our test is

straightforward to implement and is consistent both in the regime where T is small relative to n

and when T has the same magnitude as n. We apply these tools to two empirical applications and

find compelling evidence against (1.3). While this does not necessarily invalidate the analysis,

it makes it more subtle; in particular, time-series properties of Zt start to play an important

role. These results constitute the first contribution of this paper.

If data rejects (1.3), then it is natural to ask whether something can still be done using

this design, or whether one has to resort to a different identification strategy altogether. At
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this point, we go back to (1.2) and argue that if εt and ut are not negligible, then we need to

understand what precisely these errors represent. For this purpose, we consider a more general

econometric model that combines both time-series and cross-sectional aspects of the data. In this

model, we allow Di to be unobserved and construct it using the data. We also explicitly model

the process for Zt and show how its properties should be used in estimation. Our algorithm can

be implemented as the following TSLS regression:

Yit = αi + η>i ψ(t) + θt + τWit + εit, (1.4)

with D̃iZt as an instrument. Here, ψ(t) are user-specified functions of time, such as trends or

cycles, and D̃i is the constructed measure of exposure. Regression (1.4) is done on a subsample

of the data that is not used for constructing D̃i. We analyze the properties of this estimator in

the high-dimensional regime where T and n can be of the same order. This is important because

in the empirical applications n is of the same magnitude as T (e.g., n = 51 and T = 40). We

also prove that the distribution of the estimator can be uniformly approximated by a normal

distribution. These statistical results constitute the second contribution of this paper.

Certain aspects of our econometric model are restrictive. There is no heterogeneity in treat-

ment effects, and errors have a particular structure. As a result, one might worry that the

estimator does not have a general causal interpretation under misspecification and is only appli-

cable in a narrow case. To address this issue, we construct a causal model and provide conditions

under which our procedure identifies a convex combination of treatment effects. We also use

this model to clarify the sources of endogeneity that researchers need to address to conduct

valid causal inference. Our model emphasizes different roles that unit weights and aggregate

shocks Zt play for identification. Unit weights are used to integrate the individual outcomes in

such a way that the aggregates are still affected by Zt, but are not exposed to other potential

confounders. After the aggregation, the problem reduces to a time-series IV regression with Zt

as an instrument. At this point, time-series properties of Zt start playing a crucial role. This

model and related identification results constitute the third contribution of this paper.

Finally, we compare our algorithm for unit weights with those currently used in empirical

practice. We show that commonly used procedures might perform poorly in applications with

a moderate number of periods, especially if the instruments are weak. Even with an entirely

irrelevant instrument Zt, the TSLS estimator converges to a concentrated limit. In practice,
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this means that one would see small confidence intervals and strong first-stage results even with

irrelevant instruments. The combination of a small number of periods and an almost perfect

first stage is a manifestation of overfitting, and thus using sample-splitting methods of the type

that we are proposing is natural in this context. We confirm this intuition in a series of Monte

Carlo simulations that are based on the data from Nunn and Qian [2014]. In particular, we

show that the estimator that uses the full sample is biased and has asymmetric distribution. In

contrast, our estimator performs well both in terms of bias and shape.

Our model is related to shift-share designs (or “Bartik” instruments, after Bartik [1991]),

but this relationship is more formal than conceptual. Standard application with the shift-share

design has both an outcome and an endogenous treatment that are measured on a location

level and instruments that are measured on an industry level. Using industry-specific weights,

researchers transform endogenous variables to industry levels and then use IV for estimation

(see, e.g., Adão et al. [2018], Borusyak et al. [2018], and Goldsmith-Pinkham et al. [2018] for

discussion and details). In our model, the outcome and treatment for every unit, as well as

the aggregate shocks, are observed over time. As a result, researchers do not need to transform

the outcomes to construct a standard IV estimator. The motivation for aggregating the data

is different — researchers are worried about potential unobserved aggregate shocks that are

correlated with the instrument.

The paper proceeds as follows: in Section 2, we consider a cross-sectional model that is

motivated by the applied work, clarify exactly what (1.3) means, construct a formal test, and

use it for two empirical applications. In Section 3, we present a general econometric model,

construct a new estimator, and analyze its properties. In Section 4, we present a theoretical

causal model and derive identification results. In Section 5, we discuss how our approach is

related to current empirical practice, compare our causal model to the recent literature on shift-

share designs, and show the results from the Monte Carlo simulations. Section 6 concludes.

2 Cross-sectional Approach

In this section, we consider a cross-sectional model that is motivated by estimation and inference

algorithms currently used in empirical work. We argue that this model implies a restrictive

time-series representation of the data, and we show that it can be directly tested. We look at
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two empirical applications and find strong evidence refuting the cross-sectional model. To us,

these results indicate that the time-series dimension should play a central role in identification,

estimation, and inference.

2.1 Econometric Model

A common algorithm for estimating causal effects with aggregate shocks is a TSLS regression:

Yit = α̃i + θ̃t + τWit + εit, (2.1)

with DiZt as an instrument. Here Wit is the policy variable of interest, Yit is the outcome, Zt

is the aggregate shock (instrument) and Di measures the exposure of unit i to Zt. In practice,

Di is usually a function of {(Wit, Zt)}t≤T , but in this section we abstract away from this and

simply treat it as given. The object of interest is τ , and τ̂TSLS is the TSLS estimator.

Regression 2.1 can be split into two parts – the reduced form and the first stage:

Yit = αi + θt + δDiZt + εit

Wit = βi + γt + πDiZt + uit,
(2.2)

where αi := α̃i + τβi, θt := θ̃t + δγt, and δ = τπ. Standard logic implies that a TSLS estimator

is a ratio of two OLS estimators:

τ̂TSLS =
δ̂OLS
π̂OLS

. (2.3)

Alternatively, one can represent the same estimator as a ratio of two OLS estimators from the

following time-series regressions:

Yt = α + δZt + ε̌t

Wt = β + πZt + ǔt,
(2.4)
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where the aggregate variables are defined below:

Yt :=
1

n

∑
i≤n

Yit

(
Di −D
V̂[Di]

)
, Wt :=

1

n

∑
i≤n

Wit

(
Di −D
V̂[Di]

)
,

ε̌t :=
1

n

∑
i≤n

εit

(
Di −D
V̂[Di]

)
, ǔt :=

1

n

∑
i≤n

uit

(
Di −D
V̂[Di]

)
,

α :=
1

n

∑
i≤n

αi

(
Di −D
V̂[Di]

)
, β :=

1

n

∑
i≤n

βi

(
Di −D
V̂[Di]

)
.

(2.5)

We aggregate Yit,Wit with the weights that sum up to zero, and thus time fixed effects are not

present in (2.4).

To understand the properties of δ̂OLS, π̂OLS, and by extension τ̂TSLS, we need to make as-

sumptions about the underlying statistical model. Let Di := {(Yi1, . . . , YiT ), (Wi1, . . . ,WiT ), Di}
– all data available for unit i. We make the following assumption:

Assumption 2.1. (Cross-sectional Model) Outcomes are generated by the following model:

Yit = αi + θt + δDiZt + εit,

Wit = βi + γt + πDiZt + uit,

E

 1

Di

 (uit, εit)|{Zl}l≤T

 = 0,

(2.6)

and, conditionally on {Zl}l≤T , individual-level variables {Di}ni=1 are i.i.d.

We call this model cross-sectional, because it imposes cross-sectional restrictions on the errors

conditionally on the whole sequence {Zt}t≤T . It is easy to see that in this model parameters δ

and π are identified with just two periods as long as there is any variation in Zt. This model

is a direct generalization of the standard difference in differences (two-way fixed effects) model

that is routinely used in applied work. There is no heterogeneity in τ and π, which is a clear

restriction, because in practice we expect treatment effect to vary across units. We make this

assumption for expositional purposes, and as long as heterogeneity is cross-sectional, it does not

affect the results that we present below. Of course, the interpretation of τ̂TSLS changes.
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To derive statistical results, we need to impose restrictions on the error terms. The structure

of the errors is motivated by our causal model in Section 4. In addition to this assumption we

impose a technical condition on the behavior of the tails of the relevant errors, which we state

formally in Appendix A.

Assumption 2.2. (Factor errors) The errors have a factor representation:

εit = µε,tν
(1)
i + ν

(2)
ε,it,

uit = µu,tν
(1)
i + ν

(2)
u,it,

(2.7)

where µε,t, µu,t ∈ R2k. Also (ν
(1)
i , Di) is independent of (ν

(2)
ε,it, ν

(2)
u,it)t≤T

In the model (2.6), there are 2T + 4 parameters (time fixed effects, (π, δ), and projections

of αi, βi on Di) and 4T moment conditions that we can use to estimate them. As a result,

there are 2(T −2) moment restrictions that can be used to test the model. Representation (2.4)

can be used to visualize these restrictions: as we show below under current assumptions ε̌t, ǔt

essentially scale as 1√
n

and thus should be negligible as long as n is sufficiently large. As a result,

a simple time-series plot of Yt and Wt versus their OLS projection on Zt and a constant can

be used as direct graphical evidence to support the model (2.6). In fact, it is a straightforward

generalization of standard “parallel trends” plots that are routinely reported in the applied work.

We summarize this logic in the following proposition:

Proposition 2.1. (Graphical evidence) Suppose Assumptions 2.1,2.2, A.1, A.2, A.3 hold.

Then the following is true with the probability at least 1− 1
n

max
t
|ǔt| .

1

V[Di]

(
max
t
‖µu,t‖2

√
log(nk)

n
+

√
log(nT )

n

)

max
t
|ε̌t| .

1

V[Di]

(
max
t
‖µε,t‖2

√
log(nk)

n
+

√
log(nT )

n

)
,

(2.8)

This proposition shows that ǔt, ε̌t converge to zero uniformly as n goes to infinity. Crucially,

this still holds even if T is large (e.g., of the order of n) as long as ‖µu,t‖2, ‖µε,t‖2 are bounded

(over t). From the practical point of view, this says that as long as n is large and factors are

not extremely strong, then the aggregate errors in (2.4) are negligible.
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2.2 Testing

Plotting Yt, and Wt versus Zt is a simple, direct way of assessing (2.6). It is not entirely

satisfactory, because in practice we need to have a sense of the size of the error that we can

tolerate before rejecting the model (2.6). Proposition 2.1 quantifies this error but does not tell

us how we can compute it in practice. To address this issue, we construct a formal test for

moment restrictions (2.6). Specifically, we test E[ν
(1)
i Di] = 0 versus ‖E[ν

(1)
i Di]‖2 > 0. Our

results allow for an empirically relevant case where T is of the same order as n. In this section,

we describe the testing procedure informally, leaving the details for Appendix B.1.

We are testing that E[ν
(1)
i Di] = 0 and ν

(1)
i is present in the model only if µε,t, µu,t are not

equal to zero. As a result, we need to restrict their size. Let µ>ε := (µε,1, . . . , µε,T ), and similarly

define µu. Let Z be T×2 matrix, such that (Z)t = (1, Zt) and define PZ⊥ := IT−Z
(
Z>Z

)−1
Z>.

We make the following assumption regarding the strength of the factors:

Assumption 2.3. (Visible factors) Factors satisfy the following restriction:

min{‖PZ⊥µε‖, ‖PZ⊥µu‖} ≥ cµ
√
T . (2.9)

This restriction is satisfied if µε,t, µu,t are functions of time that are not fully predictable by

Zt. Alternatively, it is satisfied with high probability if µε,t, µu,t are realizations of a stationary

time-series.

Our test focuses on the sample versions of (2.6). We estimate all the parameters in the model

(2.2) by OLS and construct the residuals:

ε̂it := Yit − α̂i,OLS − θ̂t,OLS − δ̂OLSDiZt

ûit := Wit − β̂i,OLS − γ̂t,OLS − π̂OLSDiZt.
(2.10)

Let ε̂i := (ε̂i1, . . . , ε̂iT ), ûi := (ûi1, . . . , ûiT ), and define the following random vectors:

ξ̂ε :=
1

n

∑
i≤n

(Di −D)ε̂i

ξ̂u :=
1

n

∑
i≤n

(Di −D)ûi.
(2.11)
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Under the null hypothesis that moment restrictions in (2.6) hold, these aggregated residuals

should be close to zero. Our test is based on the scaled norm of this object:

L̂n(α) :=

√
n

(T − 2)

√
α‖ξ̂ε‖2

2 + (1− α)‖ξ̂u‖2
2, (2.12)

where α ∈ [0, 1] is a user-specified parameter. In practice, Yit and Wit can have very different

scales, and thus it is natural to use either α ∈ {0, 1}, or α = V̂[Wit]

V̂[Wit]+V̂[Yit]
. To compute the

distribution of this statistic under the null, we use a wild bootstrap scheme, which we describe

in detail in Appendix B.2. Let L̂
(b)
n (α) be the bootstrap version of the test statistic and define

its bootstrap distribution:

FL̂(b),α(x) := E(b)[{L̂(b)
n (α) ≤ x}]. (2.13)

The following theorem compares the properties of FL̂(b),α(x) with the distribution FL̂,α(x) of

L̂n(α):

Theorem 2.2. (Test for cross-sectional model) Suppose Assumptions 2.1, 2.2,2.3, A.1,

A.2, A.3 hold, and rank(Z) = 2. In addition, suppose that either both T and k are fixed, or
log(n)
√

log(n)+k
√
T

= o(1) and k
7
4 log3(n)√

n
= o(1). Then for any α ∈ [0, 1], the following is true:

sup
x

∣∣∣FL̂(b),α(x)− FL̂,α(x)
∣∣∣ = op(1). (2.14)

This theorem describes two different regimes. In the first one, T is fixed and the fact that

bootstrap works is expected. At the same time, in our empirical applications n is at most three

times larger than n, so the second regime is more relevant. In the second regime, T can be as

large as n (or even larger). One could be surprised that bootstrap works in this regime, because

it is known that standard central limit theorem approximation fails (e.g., Belloni et al. [2018]).

Here things are different because the factors dominate the remaining part of the error.

We can construct a p-value:

p̂ := 1− FL̂(b),α(L̂n) (2.15)

and use it to evaluate the strength of evidence against the cross-sectional model. If p̂ is close to
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zero (say below 10%), then Assumption 2.1 is questionable, and thus alternative models should

be considered for estimation and inference. Formally, we have the following result:

Proposition 2.3. (Consistency) Suppose all the assumptions of Theorem 2.2 are satisfied,

except ‖E[ν
(1)
i Di]‖ > 0. Then p̂ = op(1).

We do not formally investigate local power properties of our test, but heuristically the size

of alternatives that are hard to detect scales as 1√
n
. Under current assumptions, the standard

errors of (δ̂OLS, π̂OLS) scale as 1√
n
, so it is natural to consider local alternatives of this order. As

long as OLS results are available, our test is extremely simple to construct, it does not require

any additional estimation, and it can be used to quantify the evidence against the cross-sectional

model.

2.3 Empirical Illustrations

In this section, we give two examples from the empirical literature, which use aggregate variables

as instruments. We illustrate our point with graphical evidence, and then apply our test from

the previous subsection.

The first example is based on Nunn and Qian [2014] — a study of causal effect of foreign

aid on the onset and length of civil conflicts. The authors use U.S. wheat production as a

time-series instrument Zt for the U.S. foreign aid Wit. The foreign-aid example allows us to plot

the graphs that correspond to (1.3) — an aggregate representation of the model. We discover

that the behavior of the aggregate (Yt,Wt) series is not the same as suggested by (1.3), or, more

formally, it is not in line with Proposition 2.1. Motivated by this fact, we examine the behavior

of residuals’ vectors (ξ̂ε, ξ̂u). Namely, our bootstrap procedure finds strong evidence against

the null hypothesis, and hence against the aggregate model (1.3). Overall, the combination of

graphical evidence and formal testing suggests that time-series aspects play an important role in

this example and should not be ignored for purposes of identification, estimation, and inference.

The second example comes from the Nakamura and Steinsson [2014] study of fiscal multipliers

in the U.S. economy. The aggregate instrument Zt, in this case, is fluctuation in federal military

buildups. Regional variation in the military share of GDP allows running TSLS the way we

discussed in the Introduction. We point out that both our graphical approach and our formal

test are highly in favor of rejecting the aggregate model (1.3). In other words, time-series aspects

are of the first order in this application as well.
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Figure 1: Aggregated Time Series Yt, Ŷt Along with ξ̂ε, Nunn and Qian [2014]
Notes: Panel A shows the aggregated series from the observed data. Yt is defined in equation (2.4), and Ŷt is a
predicted value from a regression of Yt on Zt. The lower graph in Panel A portrays ξε as defined in (2.10). Panel
B shows data, simulated from Yt = α+ δZt + εt, where εt satisfies Proposition 2.1.

2.3.1 Foreign Aid and Civil Conflict

In this subsection, we turn to studies in development economics that link endowment shocks to

the onset and length of civil conflicts. Frequently, these studies use instrumental variables to

achieve causal interpretation of the results [Miguel et al., 2004]. A popular approach is to use

aggregate fluctuations such as changes in commodity prices [Dube and Vargas, 2013] or changes

in outside production [Nunn and Qian, 2014] as a source of exogenous variation.

Specifically, Nunn and Qian [2014] examine how U.S. food aid affects conflict in non-OECD

recipient countries. The primary motivation is a long-lasting debate among aid workers on

whether food aid provides relief for populations in poverty or leads to negative spillovers, and

whether those spillovers can be large enough to defeat the purpose of aid. Potentially the main

such spillover is an increased probability and length of civil conflict due to aid looting and

fighting over it.

Nunn and Qian [2014] develop a strategy to estimate the effect of U.S. wheat aid to non-

OECD countries using time variation in U.S. wheat production, which is arguably exogenous to

the conditions in the recipient country. A fundamental feature of the setting is that while U.S.

aid varies in cross-section and in time, wheat production fluctuates only over time. Hence, the

authors need to interact aid intensity with cross-sectional variation in the country’s likelihood

12
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Panel B: Simulated Data

Figure 2: Aggregated Time Series Wt, Ŵt Along with ξ̂u, Nunn and Qian [2014]
Notes: Panel A shows the aggregated series from the observed data. Wt is defined in equation (2.4), and Ŵt is
a predicted value from a regression of Wt on Zt. The lower graph of Panel A portrays ξu as defined in (2.10).
Panel B shows data simulated from Wt = β + πZt + ut, where ut satisfies Proposition 2.1.

of being a recipient to construct a meaningful instrument for aid.

Formally, a generic cross-sectional observation i is a country, while t is a year. Yit are

various conflict-related outcomes: incidence, duration, and the onset of both interstate and civil

conflicts. For this section, we concentrate on the definition of conflict as an indicator that equals

one if there is conflict in country i at year t, similar to the baseline specification of Nunn and

Qian [2014].

Next, we denote Wit as the quantity of wheat aid shipped from the United States to recipient

country i in a year t. The main instrument in the original paper, which we denote as Zt is the

amount of U.S. wheat production in the previous year, and it varies only over time. What the

authors call an “instrument” instead is a variable that varies both by time and in a cross-section:

Zt−1 × D̄i, where D̄i = (1/36)
∑2006

t=1971{Wit > 0}. That is, D̄i is the fraction of years in which

the country received the U.S. food aid in the whole study period.

As the main exercise of this subsection, we follow (1.3) and Proposition 2.1 and plot the

outcome Yt together with its predicted value Ŷt f, and residuals ξ̂ε. Then, we repeat the exercise

for the first stage and Wt instead of Yt. We show simulated data as a benchmark, where εit and

uit are drawn so they satisfy Assumption 2.1, while Zt is taken from the data. For parameters

in simulations, we use the estimates from the original paper (see Section 5.3 for details).

13



Figure 1 shows the results for Yt. Panel A plots the observed data, while Panel B shows the

simulated data. The deviations between Yt and Ŷt in the observed data are noticeably larger

than in the simulated data. By definition, it translates into the behavior of residuals, as depicted

in the lower graph of Panels A and B. Specifically, the fluctuation in simulated errors is smaller

than in the observed data.

The same is true if we turn to Figure 2 and show the behavior of the endogenous variable in

the observed data and the simulated data. Again, for the simulated data, the deviations of Wt

and Ŵt are smaller, and so are the residuals. Moreover, the deviations of simulated errors for

the first stage are also lower than in the simulated reduced form. The reason for it is that Yit is

binary, and the two-way fixed-effect model does not give a good fit, even with simulated data.

A natural next step is to apply our bootstrap procedure and examine the p-values for the

null that the aggregate model is the correct one. We run our bootstrap procedure separately for

the reduced form and the first stage. The p-values are reported in the first two columns of Table

1, Panel A. The p-values in both cases are quite low, which is highly suggestive of rejecting the

null hypothesis that Assumption 2.1 holds. The p-value for the first stage is specifically low,

which is in line with the patterns from Panels A of Figures 1 and 2. The fit for the first stage

is much worse in Figure 2 than in Figure 1.

Using bootstrap only for the reduced form or first stage corresponds to picking extreme

values of the weight α in equation 2.10. One can ask what happens if we pick an intermediate

value of α. We report the resulting p-value in the last column of Panel A, Table 1. The p-value

of 0.017 is lower than both of the p-values for the reduced form and for the first stage. Overall,

our bootstrap exercise suggests that one should switch to a more general model. We specify and

discuss this model in Section 3.

2.3.2 Government Spending Multipliers

In this subsection, we replicate an influential study by Nakamura and Steinsson [2014] on the

fiscal multiplier for the U.S. economy. A crucial feature of the authors’ setting is that they are

interested in an open economy relative multiplier. That is, they compare different U.S. states,

and study their reaction to fluctuations in aggregate military spending in a panel setting. This

strategy allows them to control for common shocks such as monetary policy. It also allows them

to account for potential endogeneity of local procurement spending.
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Table 1: Empirical Illustrations: Bootstrap

Reduced form Yt First-Stage: Wt Weighted
α = 1 α = 0 α = 0.5

Panel A: Nunn and Qian [2014]
p-value 0.185 0.025 0.017
n 98 98 98
T 36 36 36

Panel B: Nakamura and Steinsson [2014]
p-value 0.073 0.187 0.066
n 51 51 51
T 39 39 39

Notes: p-values are calculated based on B = 100, 000 bootstrap repetitions. Panel A: Yit is conflict incidence in
country i at year t, Wit is U.S. wheat aid to country i at year t. Panel B: Yit is two-year state GDP growth,
Wit is two-year growth in per capita military procurement spending in state i in year t, normalized by output.

The last column corresponds to p̂ = 1− FL̂(b),α(L̂n), where L̂n(α) :=
√
n/(T − 2)

√
α‖ξ̂ε‖22 + (1− α)‖ξ̂u‖22 with

α = 0.5. We use standardized outcomes and treatments Yit, Wit, but it only matters for the p-value in the case
of α = 0.5, and is identical to the non-standardized variables case in the first two columns.

In their baseline specification, Nakamura and Steinsson [2014] interact state fixed effects with

the fluctuations in aggregate military spending and use this interaction as an IV for state-level

military procurement. To illustrate their approach, we introduce some notations. For a generic

observation — a state — i, and a generic time period t, we denote per capita output growth in

state i from year t− 2 to t by Yit.
1 Similarly, we denote two-year growth in per capita military

procurement spending in state i in year t, normalized by output, in year t− 2, by Wit. Finally,

we use Zt changes in total national procurement from year t−2 to t as an aggregate instrument.

Our main empirical exercise in this paper is described by the following model:

Yit = αi + θt + τWit + εit

Wit = βi + γt + πiZt + uit,
(2.16)

where (αi, βi, θt, γt, πi) are fixed effects. This strategy is equivalent to using unit weights of

a specific form and constructing aggregate variables. However, as we argue in more detail in

Section 5, these weights yield inconsistent estimators for any fixed T .

We draw plots that are similar to Figures 1 and 2. Namely, Figure 3 shows the aggregated

outcome and the fitted values for observed and simulated data together with the residuals ξ̂ε.

1The authors advocate for using two-year changes instead of one-year changes together with leads and lags
by arguing that a fully dynamic specification does not change the results much.
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Panel B: Simulated Data

Figure 3: Aggregated Time Series Yt, Ŷt Along with ξ̂ε, Nakamura and Steinsson [2014]
Notes: Panel A shows the aggregated series from the observed data. Yt is defined in equation (2.4), and Ŷt is a
predicted value from a regression of Yt on Zt. The lower graph in Panel A portrays ξε as defined in (2.10). Panel
B shows data, simulated from Yt = α+ δZt + εt, where εt satisfies Proposition 2.1.

As before, the residuals for the observed data are much larger than for the simulations. The

fit is much better in the first stage plotted in Panel A of Figure 4, which is the opposite of the

Nunn and Qian [2014] example considered above. However, even for the first stage, one can

conjecture that the fit is drastically different than in the simulated data based on Assumption

2.1. We rerun the bootstrap test and report the results in Panel B of Table 1.

Panel B of Table 1 shows that the p-values are low — all of them are lower than 0.2. Indeed,

the p-value for the first stage is now larger, which confirms the graphical evidence. The p-value

0.066 from the weighted combination of residuals is again lower than both of the p-values for

the extreme cases.

3 Joint Approach

In this section, we consider a general econometric model that combines time-series and cross-

sectional aspects. The model is motivated by the fact that in empirical applications, there is

strong evidence that time dimension plays an important role. We also address the question that

was ignored in Section 2: where do unit exposures Di come from? As we showed in Section

2.3, the answer to this question varies across applications. We propose a unified approach and
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Panel B: Simulated Data

Figure 4: Aggregated Time Series Wt, Ŵt Along with ξ̂u, Nakamura and Steinsson [2014]
Notes: Panel A shows the aggregated series from the observed data. Wt is defined in equation (2.4), and Ŵt is
a predicted value from a regression of Wt on Zt. The lower graph of Panel A portrays ξu as defined in (2.10).
Panel B shows data simulated from Wt = β + πZt + ut, where ut satisfies Proposition 2.1.

describe the assumptions under which it leads to consistent estimation.

3.1 Econometric Model

We start by specifying a model for the unit-level outcomes and treatments:

Assumption 3.1. (General model) For each unit i outcomes are generated in the following

way:

Yit = αi + θt + τπiZt + εit,

Wit = βi + γt + πiZt + uit,
(3.1)

where we observe (Yit,Wit, Zt). Errors εit, uit have the following factor structure:

εit = µ>ε,tν
(1)
i +Htν

(2)
ε,it,

uit = µ>u,tν
(1)
i +Htν

(2)
u,it

E[ν
(1)
i ] = 0,

E[(ν
(2)
ε,it, ν

(2)
u,it)] = 0,

(3.2)
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where ν
(1)
i ∈ R2k, and (ν

(1)
i , πi) is independent of {ν(2)

ε,it, ν
(2)
u,it}t≤T . Sequence {αi, βi, πi, ν(1)

i , ν
(2)
i }ni=1

is i.i.d. and is independent of {Ht, Zt}t≤T .

This structure is different from the one specified by Assumptions 2.1 and 2.2 in several

important ways. First, we do not assume that πi = δDi where Di is observed; instead πi is

completely unrestricted. Next, errors do not satisfy a cross-sectional restriction E[πi(εit, uit)] = 0.

The model for errors εi, ui is similar to the one specified in Assumption 2.2. The key difference

is that now we explicitly state that errors are affected by some unobserved aggregate shock Ht.

Assumption 3.1 specifies a complicated panel model with many components: factor errors,

unobserved aggregate shocks, and additional independence restrictions. It should be contrasted

with the cross-sectional model specified in Assumptions 2.1, which appears to be much simpler.

This simplicity is deceiving: Assumption 2.1 does not describe the joint behavior of unit-level

outcomes and aggregate shocks. As long as this behavior is important for identification, esti-

mation, or inference, one has to take a stand on the joint model. This particular specification

is motivated by a causal model that we describe in Section 4

Our next assumption restricts the process Zt:

Assumption 3.2. Zt has the following representation:

Zt = η
(0)
Z + η

(1)
Z ψ(t) + Z̃t

E[Z̃t] = 0,
(3.3)

where ψ(t) ∈ Rp is a known function of time.

In a stationary case η
(1)
Z ≡ 0, and E[Zt] = η

(0)
Z , but in general we can allow the mean to be a

function of time, as long as this function — ψ(t) is known. In practice ψ(t) can include trends,

cyclical components, and other aggregate series, as long as they can be regarded as fixed for the

purpose of the empirical exercise.

3.2 Estimation

Our approach to estimation follows the same TSLS logic that we outlined at the beginning of

Section 2.1. We aggregate units across cross-sectional dimension using some weights, run two

time-series OLS regressions, and take the ratio of the OLS coefficients. There are two important
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challenges in this process. First, we need to deal with the fact that πi is not observed, as

opposed to the simple case, when it is proportional to observed Di. Second, because our weights

can be correlated with idiosyncratic errors, the aggregate behavior of outcomes can be quite

complicated. Thus we need to exploit the structure of Zt given by Assumption 3.2 and run

appropriate OLS regressions.

Our estimation algorithm has the following steps:

1. Fix T0 =
⌊
T
2

⌋
and estimate π̂i by running the following OLS regression for each unit i

using first T0 periods:

Wit = βi + πiZt + ηiψ(t) + uit, (3.4)

2. Construct unit weights D̂i := π̂i − π̂ and aggregate the outcomes:

Wt :=
1

n

n∑
i=1

WitD̂i, Yt :=
1

n

n∑
i=1

YitD̂i. (3.5)

3. Run the following two regressions using data for periods t > T0:

Yt = η(0)
y + η(1)

y ψ(t) + δZt + εt,

Wt = η(0)
w + η(1)

w ψ(t) + πZt + ut.
(3.6)

4. Construct the estimator for the treatment effect:

τ̂TS :=
δ̂OLS
π̂OLS

. (3.7)

This estimator can be computed simply by running a TSLS regression with D̂iZt as an

instrument for Wit using only data for t > T0:

Yit = αi + θt + η>i ψ(t) + τWit + εit. (3.8)

This algorithm is different from those that are currently used in empirical applications: first,

Di is not observed but rather constructed from the data in a disciplined way; second, ψ(t) is
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included in the regression to extract mean-zero innovations from Zt; and finally, only half of the

periods are used to run the regression.

To describe the properties of τ̂TS, we need to make additional statistical assumptions. The

first assumption specifies the structure of Z̃t:

Assumption 3.3. (Innovations) Innovations Z̃t are independent and satisfy the following

condition:

E[Z̃2
t ] = σ2

Z . (3.9)

This assumption makes two restrictions: it forbids any dependence between errors, and it

assumes that the variance of innovations is constant over time. The latter restriction does not

play an important role and can be safely dropped as long as we assume that the variances are

bounded from above and below. The first restriction is important but can be substantially

weakened (at some technical cost). In particular, we can allow Z̃t to be a martingale difference

sequence. We also need to make other technical assumptions on tail behavior of relevant errors,

which we state in Appendix A.

To state the formal result, we need to make additional definitions. We define the following

sequence:

µt := µ>ε,tE[ν
(1)
i πi], (3.10)

and we let µ̃t be the residuals in the following OLS regression:

µt = η(0)
µ + η(1)

µ ψ(t) + et, (3.11)

where t > T0. Conceptually µ̃t quantifies the size of the relevant aggregate error that affects the

time-series behavior of the estimator. The following theorem makes this precise.

Theorem 3.1. (Statistical properties) Suppose Assumptions 3.1, 3.2, 3.3, A.4 hold. Ad-

ditionally suppose that T
n

= O(1) and p
T

= o(1). Then the following inequality holds with
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probability of at least 1− 1
T

+ 1
n

:

|τ̂TS − τ | .
log(T )

√
log(n)

σZT
+

log(T )‖E[ν
(1)
i πi]‖2

σZV[πi]
√
T

(3.12)

If, in addition ‖E[ν
(1)
i πi]‖2 > c, then the following statement is true:

sup
x

∣∣∣∣E [ τ̂TS − τσest
≤ x

]
− E[N (0, 1) ≤ x]

∣∣∣∣ . log(T )
√

log(n)

σZV[πi]
√
T

(3.13)

where σest :=

√∑
t>T0

µ̃2t
σZV[πi](T−T0−p−1)

This theorem describes the behavior of the estimator in the practically relevant regime where

T ≈ n. The first part of the theorem says that if ‖E[ν
(1)
i πi]‖2 is small (e.g., equal to zero) then

the estimator behaves as Op
(

1√
nT

)
. This is important because this is the rate that one would

get from the best estimator in a simple two-way model without any time-series complications.

When ‖E[ν
(1)
i πi]‖2 is not small, the time-series dimension dominates and the estimator behaves

as N (0, σest), where σest = O( 1√
T

).

Of course, this result is valid under quite restrictive time-series assumptions on Z̃t. Given

that the assumptions are restrictive, we view it as describing the first-best case for our estimator.

All additional complications that can arise in practice are likely to make the result weaker. This

is particularly important if one wants to use this result for inference.

3.3 Discussion of Inference

We leave the formal approach to inference in this model for future investigation. Theorem 3.1

can be used to construct a variance estimator and conduct normal-based inference. In practice,

this is problematic for two reasons: first, the time-series process for Z̃t can be more complicated,

and second, it is not robust to weak instruments. As a practical recommendation, we suggest

that applied researchers use the robust t-test procedure developed in Ibragimov and Müller

[2010], or the permutation-based test developed in Canay et al. [2017].

The standard approach to weak inference in the literature assumes that the first-stage and

reduced-form estimators have a joint normal distribution with known variances and build a test

based on this information (see Andrews et al. [2019] for a recent overview). In practice, these
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variances are not known, but with i.i.d. data they can be easily consistently estimated. For time

series, consistent estimation of such variance is a much harder problem: many different solutions

are proposed in the literature. While consistent estimation is possible in certain models, e.g.,

using HAC-type estimators (e.g., Newey and West [1986]), there is a common understanding

that it does not work very well, especially with moderate T (see Müller [2014] for a discussion).

Another complication with time-series data is that the distribution of most statistics is not

known under the null hypothesis. Sometimes the distribution contains parameters that cannot

be consistently estimated (see Müller and Watson [2008, 2015]). As a result, to be fully robust

one has to specify a class of time-series models and build a test that efficiently incorporates

this information (see Elliott et al. [2015] for a general treatment). We believe that this is the

first-best approach, but fully developing it for our model is beyond the scope of this paper.

4 Causal Model with Exogenous Aggregate Shocks

In this section, we present a parsimonious causal model that captures both cross-sectional and

time-series aspects of the problem. Our primary goal is to motivate the econometric model we

presented in Section 3. The secondary goal is to prove an identification result for the model

with general heterogeneity in the first stage and in the treatment effects. We also use this model

to clarify the sources of endogeneity that researchers need to address to conduct valid causal

inference.

4.1 Framework

We observe n units (i being a generic one) over T periods (t is a generic period). For each unit,

we observe an outcome variable Yit, an endogenous policy variable Wit, and an aggregate shock

Zt. Our goal is to estimate a causal relationship between Yit and Wit. We abstract away from

additional unit-specific time-invariant covariates: they can be incorporated in a straightforward

way.

To formalize what we mean by causality, we start with a model of potential outcomes. In

addition to wt (potential value of Wit) and zt (potential value of Zt), we also introduce ht

— an unobserved aggregate shock which causally affects both outcome variables. We define

wt := (. . . , w1, . . . , wt), z
t := (. . . , z1, . . . , zt), and ht := (. . . , h1, . . . , ht), and make the following
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assumption:

Assumption 4.1. (Potential outcomes)

Potential outcomes are generated in the following way:

Yit(w
t, ht) := αit + τitwt + θitht

Wit(h
t, zt) = βit + πitzt + γitht.

(4.1)

As a result, the observed outcomes behave in the following way:

Yit = αit + τitWit + θitHt

Wit = βit + πitZt + γitHt.
(4.2)

This assumption imposes multiple restrictions on the structure of potential outcomes: (a)

there are no dynamic effects, only current values of shocks and endogenous variable matter; (b)

the model is linear in wt, zt, and ht with no interaction terms; and (c) there is an exclusion

restriction for zt — it is only present in the second equation. Linearity in (zt, ht) can be relaxed,

even though it plays a role in estimation. Separability between zt and ht is crucial for our results.

Finally, the exclusion restriction emphasizes the role of Zt as an instrument.

Our first identification assumption describes the relation between the aggregate shocks and

the potential outcomes:

Assumption 4.2. (Exogeneity)

Aggregate shocks are independent of potential outcomes:

{Zt, Ht}Tt=1 ⊥⊥ {τit, αit, βit, θit, πit, γit}Tt=1. (4.3)

The importance of this assumption depends on the type of application one is considering.

In standard event studies, Zt is an indicator of the postreatment period – {t ≥ Ttreat} – and is

fixed. In this case, Assumption 4.2 trivially holds if we assume that the support of {Zt, Ht}Tt=1

is a singleton, or, to put if differently, if we condition on {Zt, Ht}Tt=1. This type of reasoning

is predominant in event studies and other applications that use the difference in differences

methodology. A notable exception is the model of staggered adoption considered in Athey and

Imbens [2018], but there the shocks are unit-specific, not aggregate. In other applications, Zt
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and Ht are shocks that are determined on a macro level and are treated as random variables (in

time-series sense). The model in this paper is designed for these applications, not event studies,

although some insights apply there as well.

Assumption 4.2 becomes restrictive once it is combined with Assumption 4.1. To understand

why this is the case, it is natural to think about an economic model where Zt is determined in an

equilibrium together with unit-level outcomes and is therefore endogenous. At the same time,

Zt is an aggregate variable and thus can be correlated with unit-level outcomes only if those

are subject to some aggregate shocks that are correlated with Zt. In principle, Assumption 4.2

allows for this as long as these shocks are captured by Ht, but at the same time Assumption

4.1 restricts the role Ht can play. It follows that Assumption 4.2 is more natural if (Zt, Ht)

is determined outside of the economic model for unit-level outcomes, or in other words, if the

aggregate shocks are exogenous. Overall this assumption is conceptually different from design

assumptions that are made in experimental or observational studies, e.g., random assignment

or unconfoundedness (see Imbens and Rubin [2015]).

It follows from Assumptions 4.1 and 4.2 that the main problem for causal inference in the

current model is unobserved Ht. Indeed, if {Ht}Tt=1 were known then one could have treated each

unit separately and the cross-sectional dimension would have been redundant for identification

purposes. At the same time, in applications, it is natural to assume that we cannot fully control

for aggregate uncertainty that affects the outcome of interest. For example, in the application

that we described in Section 2.3, Wit is the amount of food aid from the U.S. that a country i

receives, Yit is local conflict and Zt is the amount of wheat produced in the U.S. in the previous

year. Here Ht can be another aggregate shock that affects conflict (e.g., climate change) and is

also correlated with production in the United States.

In the panel regressions Ht typically enters as a time fixed effect. In our framework, we treat

Ht as a a random variable. To understand why it is important, consider an alternative formu-

lation where it is treated as fixed. In this case, we need to model the conditional distribution

of {Zt}Tt=1 given {Ht}Tt=1, which can be quite complicated, e.g., the mean of Zt will depend on

the unobserved {Hl}Tl=1. This can easily render identification impossible. These problems do

not arise if we treat Ht as random and assume that the marginal distribution of the observed

stochastic process is simple. This logic motivates our next identification assumption, which is

a high-level restriction on what is known about Zt. First, we define the conditional mean of Zt
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for all t > l (some fixed period):

µt|l := E[Zt|Zl, Zl−1, . . . , Z1] (4.4)

and make the following assumption:

Assumption 4.3. (Policy process)

For any fixed l µt|l is a known function, and Zt is not completely predicted by Z l:

E[(Zt − µt|l)2|Il] = E[(Zt − µt|l)2] > 0. (4.5)

We can construct a de-meaned process Z̃t|l for all t > l:

Z̃t|l := Zt − µt|l. (4.6)

Assumption 4.3 is another restriction on the design that we need for identification (along with

Assumption 4.2). Conceptually, it is similar to assumptions on the form of propensity-score

model that one would make in observational studies. One can think of time and past values of

Zt as covariates that we need to control for. The second condition in Assumption 4.3 (positive

variance) is similar to the standard overlap condition one needs for identification in observational

studies (see Imbens and Rubin [2015]).

So far, we left the potential outcomes defined in Assumption 4.1 completely unrestricted.

Since Ht is not observed, one has to make an assumption that distinguishes it from Zt thus

restricting the potential outcomes. In the standard regression model, one assumes that all units

have the same exposure to unobserved aggregate shocks (“parallel trends”) and that treatment

effects are constant. In our model, we can allow for much more general heterogeneity.

Assumption 4.4. (Restricted heterogeneity)

The process for πit satisfies the following restrictions for all t, t′:

cov[πit, πit′ ] > c > 0. (4.7)
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There exists a known l such that: (a) the process (θit, γit) has the following representation:

(θit, γit) = (θt, γt) + εit

E[εit|It−l] = 0,
(4.8)

and (b) treatment effects are conditionally independent of innovations εit:

τit ⊥⊥ εit|It−l, (4.9)

where It includes all information up time t.

This assumption restricts the dependence over t in (θit, γit), πit, and τit. We assume that

the process for πit is persistent and its autocorrelations for all lags are bounded from below. In

contrast, we assume that the process for (θit, γit) has a short memory, and its innovations are

orthogonal to a sufficiently distant past2We also require treatment effects to be independent of

innovations as long as we condition on the past. Examples below show that Assumption 4.4 is

flexible enough to capture multiple practically relevant models. Heuristically, the main tradeoff

with this assumption is that the conditional independence (4.8) is more plausible for l as small as

possible, whereas the conditional orthogonality (4.9) is more plausible for l as large as possible.

Example 4.1. (Factor model) Potential outcomes have the following structure:

(αit, βit, πit, τit) = (αiµ
α
t , βiµ

β
t , πi, τ)

(θit, γit) = (θt, γt) + εit

εit =
l−1∑
k=1

νit−kρk + νit,

(4.10)

where νit is a sequence of independent innovations. The permanent coefficients have a factor

representation, and (πi, τi) do not change over time. With these restrictions, we can express

2This approach is similar to one Griliches and Hausman [1986] use to deal with the measurement error.
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observed outcomes as a two-way model:

Yit = α̃i + θ̃t + τiWit + u
(1)
it ,

Wit = β̃i + γ̃t + πiZt + u
(2)
it ,

(4.11)

where parameters have the following definition:

u
(1)
it := (αi − E[αi])(µ

α
t − µα) + εit(Ht, 0)>,

u
(2)
it := (βi − E[βi])(µ

β
t − µβ) + εit(0, Ht)

>

α̃i := αiµα, θ̃t := θtHt + E[αi](µ
α
t − µα),

β̃i := βiµβ, θ̃t := θtHt + E[βi](µ
β
t − µα).

(4.12)

Standard OLS has two problems in this model: first, components of εit can be correlated between

each other — the endogeneity problem. On top of that, we have a misspecification problem:

because potential outcomes have a factor structure, errors u
(k)
it are correlated as long as αi, βi

are correlated. This model would satisfy Assumption 2.1 if πi = πDi, and πi is uncorrelated

with (αi, βi). In general, there is no reason to expect that πi is not correlated with (αi, βi), and

thus this model satisfies Assumption 3.1.

4.2 Construction of Unit Weights

In this section, we construct unit weights that filter out the unobserved aggregate shocks. We

show that under Assumption 4.4, our algorithm successfully deals with Ht. We fix a period T0

and define the following random variable:

Di :=
1

T0

T0∑
t=1

Z̃t|0Wit (4.13)

Under Assumption 4.3, this construction involves only observable quantities and thus is readily

available. We define unit weights ωi as centered versions of Di:

ωi := Di − E[Di|{Zt}T0t=1], (4.14)
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Using these weights, we define the aggregated outcomes for t > T0:

Wt := E[ωiWit|Z1, . . . , ZT ]

Yt := E[ωiYit|Z1, . . . , ZT ]
(4.15)

and aggregate parameters:

αt|t′ := E[ωi(αit + τitβit)|{Zl}t
′

l=1], βt|t′ := E[ωiβit|{Zl}t
′

l=1],

πt|t′ := E[ωiπit|{Zl}t
′

l=1], δt|t′ := E[τitωiπit|{Zl}t
′

l=1].
(4.16)

The properties of aggregated outcomes are summarized in the following proposition:

Proposition 4.1. Suppose Assumptions 4.1, 4.2, 4.3, and 4.4 hold. Then aggregate outcomes

have the following representation for all t ≥ T0 + l:

Yt = αt|0 + E[δt|T0µt|T0 ] + δt|0Z̃t|T0 + εy,t,

Wt = βt|0 + E[πt|T0µt|T0 ] + πt|0Z̃t|T0 + εw,t,
(4.17)

where errors have the following form:

εy,t :=
(
αt|T0 − αt|0

)
+
(
δt|T0µt|T0 − E[δt|T0µt|T0 ]

)
+
(
δt|T0 − δt|0

)
Z̃t|T0 ,

εw,t :=
(
βt|T0 − βt|0

)
+
(
πt|T0µt|T0 − E[πt|T0µt|T0 ]

)
+
(
πt|T0 − πt|0

)
Z̃t|T0 .

(4.18)

Also πt|0 > 0 for all t ≥ T0 + l.

This proposition shows that once we aggregate the outcomes using appropriate weights, the

problem is reduced to a time-series IV regression with time-dependent deterministic parameters

and stochastic errors. The key feature of the weights ωi is that they integrate the unobserved

shocks Ht away but keep Z̃t|T0 (all πt|0 are positive).
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4.3 Aggregate Model

Given the results of Proposition 4.1 together with Assumption 4.3, we end up with the following

time-series model for t ≥ T0 + l:

Yt = αt|0 + E[δt|T0µt|T0 ] + δt|0Z̃t|T0 + εy,t,

Wt = βt|0 + E[πt|T0µt|T0 ] + πt|0Z̃t|T0 + εw,t,

E
[
Z̃t|T0 × (αt|0, βt|0,E[δt|T0µt|T0 ],E[πt|T0µt|T0 ], εy,t, εw,t)

]
= 0.

(4.19)

Using (4.19), we construct aggregate moments:

πt|0E[Z̃2
t|T0 ] = E[WtZ̃t|T0 ]

δt|0E[Z̃2
t|T0 ] = E[YtZ̃t|T0 ].

(4.20)

Summing up these moments and taking the ratio, we define the following parameter:

τ :=

∑T
t=T0+l E[YtZ̃t|T0 ]∑T
t=T0+l E[WtZ̃t|T0 ]

. (4.21)

Our next proposition summarizes the properties of τ :

Proposition 4.2. Suppose Assumptions 4.1, 4.2, 4.3, and 4.4 hold. Then τ has the following

representation:

τ =
T∑

t=T0+l

ςt

(
δt|0
πt|0

)
, (4.22)

where ςt > 0 and τ is an affine combination of treatment effects. If, in addition, for all t ≥ T0 + l

τit is independent of {πil}tl=1, then
δt|0
πt|0

= E[τit] and τ is a convex combination of treatment effects.

This proposition tells us that τ can be interpreted as a weighted average of treatment effects

τit with the weights being non-negative under an additional independence assumption. We

observe that the time weights νt are always positive. If there is no heterogeneity in treatment

effects across units and τit ≡ τt, then τ is a convex combination of τt. This might not be the case

if there is cross-sectional heterogeneity in treatment effects.. Intuitively, this happens because
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we use {πit}T0t=1 as instruments and they are not randomly assigned. If negative weights is a first-

order concern in a given application, then one has to introduce additional application-specific

structure to deal with this problem.

5 Discussion

5.1 Alternative Weights

In this section, we briefly discuss alternative weighting schemes that are currently used in empir-

ical practice, compare them with the one proposed in Section 4.2, and illustrate their potential

problems both in theory and in simulations. Below, we focus on a simple model for the poten-

tial outcomes, but the insights apply to more general models as well. We make the following

restrictions on the potential outcomes:

(αit, βit, πit, τit) = (αi, βi, πi, τi)

(θit, γit) = (θ, γ) + εit,
(5.1)

where εit is a stationary white-noise process independent of (αi, βi, πi, τi). For simplicity, we also

assume that τi is independent of πi. Observed variables thus have the following representation:

Yit = αi + θHt + τiWit + εit(Ht, 0)>

Wit = βi + γHt + πiZt + εit(0, Ht)
>.

(5.2)

5.1.1 Many Fixed Effects

The first scheme that we focus on is based on estimating the following regression model by

TSLS:

Yit = αi + θt + τWit + εit

Wit = βi + γt + πiZt + uit

(5.3)

Treating (αi, βi, θt, γt, πi) as fixed parameters. For example, this approach has been used in

Nakamura and Steinsson [2014]. Given the structure (5.2), this approach makes perfect sense
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and bypasses explicit construction of unit weights ωi.

At the same time, running this regression is equivalent to using unit weights ω̃i that have

the following form:

ω̃i = (πi − E[π]) +

∑T
t=1 εit,2Ht

(
Zt − 1

T

∑T
l=1 Zl

)
∑T

t=1 Zt

(
Zt − 1

T

∑T
l=1 Zl

) . (5.4)

This can lead to a problem, especially if πi are small (and Zt is a weak instrument). In this

case, ω̃i is dominated by the noise, and when we construct a product of ω̃i with Wit and Yit part

of this noise is squared. In the limit when n goes to infinity, one can show that the following is

true for any fixed T :

τ̂TSLS = E[τi] + ν
E[εit,1εit,2]

E[ε2
it,2]

ν :=

E[ε2
it,2]

∑T
t=1H

2
t (Zt− 1

T

∑T
l=1 Zl)

2

(
∑T
t=1 Zt(Z̃t− 1

T

∑T
l=1 Zl))

2

V[πi] + E[ε2
it,2]

∑T
t=1H

2
t (Zt− 1

T

∑T
l=1 Zl)

2

(
∑T
t=1 Zt(Z̃t− 1

T

∑T
l=1 Zl))

2

.

(5.5)

For any fixed T , the TSLS estimator converges to a convex combination of the true parameter

of interest and a bias term. Parameter α of this combination is random in general but is always

less than 1. In other words, the estimator is always inconsistent. In particular, if πi = 0 then

ν = 0 and the estimator converges to a fixed quantity (for any fixed T ).

This behavior is quite different from the well-understood behavior under a single weak in-

strument, where the estimator converges to a random variable which is centered at the OLS

limit (e.g., Bekker [1994]). From the practical point of view, the difference is crucial, because

it means that the estimator is very stable, or, in other words, the first stage is very strong. In

fact, this is a manifestation of the standard overfitting problem that arises because all the fixed

effects are estimated (Angrist and Krueger [1992], Stock and Yogo [2002], Hahn and Hausman

[2003]). Our procedure bypasses this problem using sample splitting — we estimate the weights

on one part of the sample and then apply it to the second one. To summarize, TSLS estimation

based on (5.3) is a very natural procedure that nevertheless suffers from certain econometric

problems and thus should be used with care.
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5.1.2 Functions of Wit

A different weighting scheme that is used in some applications starts by constructing the measure

of exposure of Wit to Zt in the following way:

Di :=
1

T0

T0∑
t=1

f(Wit), (5.6)

where f(·) is some fixed function. Nunn and Qian [2014] use this approach with an indicator

function f(x) := {x > 0}.3With D̃i, one can construct the corresponding unit weights in the

same way as before. This is a flexible approach that can be useful in many settings, in particular

if there is a conceptual model that justifies it. Nunn and Qian [2014] interpret D̃i as a probability

of receiving treatment, which is then multiplied by the size of the aggregate shock.

There are two concerns with this algorithm. First, it uses Wit in levels and thus D̃i is strongly

correlated with unit-level intercepts. This is not a problem per se, but it potentially makes D̃i

only weakly correlated with πi. Of course, in a given application the levels can be strongly

correlated with the slopes, and D̃i will work relatively well.

Second, the construction above does not use Zt in any way and thus does not directly capture

the relationship between the aggregate instrument and the endogenous variable. This appears

to be wasteful, because the main goal of D̃i is to measure the strength of the effect of Zt on unit

i. Hence, as we illustrate below, not using all of the information on the relationship between

the instrument and the treatment will yield a less efficient estimator.

5.2 Shift-share Designs

In this section, we want to discuss a relationship between our model and models from the shift-

share, or “Bartik” instruments, literature (Adão et al. [2018], Borusyak et al. [2018], Goldsmith-

Pinkham et al. [2018]). We start by considering an extension of our original framework. Assume

that instead of a single aggregate shock, we have |S| of them. In a typical application, these will

correspond to industry-level shocks. Potential outcomes are now determined by the following

3In fact, Nunn and Qian [2014] do not stop at T0; and they use all the periods for construction of D̃i. This
potentially creates an overifitting problem similar to one that we have discussed above.
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equations:

Yit = αit + τitWit +
∑
s∈S

θitsHts

Wit = βit +
∑
s∈S

πitsωitsZts +
∑
s∈S

γitsHts,
(5.7)

where s is a generic industry, and we observe {ωits}i,t,s, {Wit, Yit}it, {Zts}t,s, and
∑

i ωits = 1. It

is straightforward to see that our model is a special case of this with |S| = 1.

The model considered in the shift-share literature is a special case of (5.7) with T = 1,

and two additional assumptions: (a) for every s, Hts is uncorrelated with {Zts}s∈S, and (b)

E[Zts] = µ and Zts are uncorrelated over s. Identification is now achieved exploiting variation

over industries (see Borusyak et al. [2018]). In applications, T is usually not equal to 1, and

often the model in differences is considered. At the same time, the identification argument does

not exploit the time dimension and focuses on the variation over industries.

One can immediately see that these two models are non-nested, both formally and concep-

tually: we are focusing on the case, with a single aggregate shock, motivated by the applications

reviewed in Section 2.3. In these applications, correlation between observed and unobserved

aggregate shocks is the key problem one has to deal with to make causal claims. Shift-share

literature, on the other hand, focuses on the case where the main source of endogeneity is the

cross-sectional correlation between αit and βit that typically arises because of simultaneity issues

(e.g., when Yit is wage and Wit is a labor supply).

We believe that models of the type (5.7) can be promising, because they allow for a combi-

nation of two identification arguments: one that is based on the variation over time, and one

that is based on the variation over s. In applications, both s and t tend to be small (especially,

if we want shocks to be independent over s), and thus it is natural to use both sources of varia-

tion. Also, using a time-series dimension, one can estimate correlations between Zs and adapt

inference to this case. Full development of these arguments is beyond the scope of this paper:

we leave it for future research.
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5.3 Monte Carlo Simulations

In this section, we consider the performance of our test from Section 2 and our estimator from

Section 3 in Monte Carlo simulations that are based on real data. Simulations confirm our

theoretical results, as well as the intuition from Section 5.1.

5.3.1 Performance of the Test

We take the data from the baseline specification in Nunn and Qian [2014] and estimate the

following two regressions by OLS:

Yit = αi + θt + δDiZt + εit

Wit = βi + γt + πDiZt + uit

(5.8)

and keep all the parameters {α̂i, β̂i, θ̂t, γ̂t, δ̂, π̂}i,t. We also construct an empirical covariance

matrix:

Σ̂ε,u :=
1

n

∑
i≤n

 ε̂i
ûi

 (ε̂>i , û
>
i ). (5.9)

For each simulation draw s, we construct the outcomes as follows:

Y
(s)
it := α̂

(s)
i + θ̂t + δ̂D

(s)
i Zt + ε

(s)
it

W
(s)
it := β̂

(s)
i + γ̂t + π̂D

(s)
i Zt + u

(s)
it ,

(5.10)

where (α̂
(s)
i , β̂

(s)
i , D

(s)
i ) are sampled independently from (α̂i, β̂i, Di), and ε

(s)
i , u

(s)
i are sampled

from N (0, Σ̂ε,u). Panel A in Figure 5 shows the cumulative distribution function of the p̂-value

(2.15) versus the CDF of the uniform distribution across S = 200 simulations. The CDFs are

close, and overall the approximation works well. It is not surprising, given that the errors are

normally distributed.
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Figure 5: Performance of the Test

Next, we examine power properties of our test and consider the following design:

Y
(s)
it := α̂

(s)
i + θ̂t + δ̂D

(s)
i Zt + λD

(s)
i Z⊥t + ε

(s)
it

W
(s)
it := β̂

(s)
i + γ̂t + π̂D

(s)
i Zt + λD

(s)
i Z⊥t + u

(s)
it ,

(5.11)

where Z⊥ is a vector orthogonal to (1, Zt) (first vector of QR decomposition) such that ‖Z
⊥‖2√
T

= 1.

We set λ = c

√
‖Σ̂ε,u‖
nT

and vary c. Panel B in Figure 5 shows the power of the test from S = 200

simulations (independent across points) for the size of 0.1. We see that once c > 5, the test

perfectly detects the alternatives.
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5.3.2 Performance of the Estimator

First, we estimate the ARMA model for Zt:

Zt := µ+ ρ1Zt−1 + νt, (5.12)

and we simulate Z
(s)
t from this model using normal distribution of innovations. We consider two

designs. In the first one, the outcomes are generated as follows:

Y
(s)
it := α̂

(s)
i + θ̂t + δ̂D

(s)
i Z

(s)
t + 0.15× ε̂(s)it

W
(s)
it := β̂

(s)
i + γ̂t + π̂D

(s)
i Z

(s)
t + 0.15× û(s)

it .
(5.13)

In the second design, the outcomes are generated as follows:

Y
(s)
it := α̂

(s)
i + θ̂t + δ̂D

(s)
i (Z

(s)
t − 0.5E(s)[Zt]) + 0.15× ε̂(s)it

W
(s)
it := β̂

(s)
i + γ̂t + π̂D

(s)
i (Z

(s)
t − 0.5E(s)[Zt]) + 0.15× û(s)

it .
(5.14)

Note that we do not simulate the errors from the normal distribution and instead sample the

original residuals. The difference between these two designs is the level of information in the

mean of Zt. As we discussed before, this information is important for the original estimator used

in Nunn and Qian [2014], so we want to investigate how it affects the performance. We compute

three estimators: the one that was used by Nunn and Qian [2014], the one that was used by

Nakamura and Steinsson [2014], and ours. We need to scale the original noise to 15%, since

otherwise it completely overwhelms any signal in the data. In Figure 6, we plot the densities of

three estimators over S = 2, 000 simulations. We also report the quantiles of |τ̂
(s)−τ |
|τ | for three

estimators for both designs in Table 2.

The results confirm the intuition from Section 5.1: the estimator based on the full sample is

biased and is dominated by our estimator in terms of quantiles of absolute bias. As expected, the

original estimator wins if we do not change the mean of Z, but it is dominated by our estimator

once we scale the mean by 50%. If we de-mean the process for Z
(s)
t and use Z

(s)
t − E(s)[Zt] in

5.14, our estimator will substantially outperform the one of Nunn and Qian [2014].
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Table 2: Estimator Performance–Quantiles of |τ̂
(s)−τ |
|τ |

25% 50% 75% 25% 50% 75%

Design I, (5.13) Design II, (5.14)
Nakamura and Steinsson [2014] estimator 0.07 0.16 0.34 0.07 0.16 0.35
Nunn and Qian [2014] estimator 0.04 0.10 0.19 0.07 0.17 0.31
Our estimator 0.05 0.13 0.27 0.06 0.13 0.27

Note: τ = 3.7, n = 98, S = 2, 000, T = 36.

6 Conclusion

Aggregate shocks are a natural source of exogenous variation for unit-level outcomes. As a

result, many researchers use them to evaluate local-level policies. In this paper, we argue that

this exercise has two critical steps: aggregation of unit-level variation and time-series analysis of

the aggregated data. We illustrate that both of these steps should be done correctly. In essence,

aggregation should deal with unobserved shocks, while time-series analysis should acknowledge

that aggregate shocks, while exogenous, are not randomly assigned and thus should be modeled.

We show how this can be done under particular assumptions. Of course, many questions remain

open, both conceptually and practically: (a) How does dynamics affect these derivations? (b)

What is the best way for conducting the inference? (c) What is the most efficient estimator in

the current setup? We will explore these questions in future research.
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Appendices

A Assumptions

Assumption A.1. Errors have the following representation:εi
ui

 =

µε
µu

 ν
(1)
i +

Ωε

Ωu

 ν
(2)
i , (1.1)

where µε, µu ∈ RT×2k, ν
(1)
i ∈ R2k, ν

(2)
i ∈ R2T , and Ωε,Ωu are fixed symmetric T × 2T matrices; vector νi :=

(ν
(1)
i , ν

(2)
i ) has independent components, E[νi] = 0, E[νiν

>
i ] = I2(k+T ) and ‖νi‖ψ2

≤ K; let µ :=

µε
µu

 and

assume that ‖µ‖ ≤ cµ
√
T ; let Ω :=

Ωε

Ωu

 and assume that max{‖Ω‖, ‖Ω−1‖} ≤ K.

Assumption A.2. ‖Di−E[Di]‖ψ2
≤ K, (Di, ν

(1)
i ) is independent of ν

(2)
i , the covariance matrix Σ := cov ((Di − E[Di])νi)

is invertible, and trace (Σ) .
√

(T + k).

Assumption A.3. The following moment restriction holds:

E[ν
(1)
i Di] = 0. (1.2)

Assumption A.4. The following tails conditions are satisfied: maxt |Ht| ≤ C, ‖Z̃‖ψ2 ≤ K, ‖Di−E[Di]‖ψ2 ≤ K.

Errors have the following structure:εi
ui

 =

µε
µu

 ν
(1)
i +

HΩε

HΩu

 ν
(2)
i , (1.3)

where µε, µu ∈ RT×2k, ν
(1)
i ∈ R2k, ν

(2)
i ∈ R2T , Ωε,Ωu are fixed symmetric T × 2T matrices and H :=

diag{H1, . . . ,Ht}; vector νi := (ν
(1)
i , ν

(2)
i ) has independent components, E[νi] = 0, E[νiν

>
i ] = I2(k+T ) and

‖νi‖ψ2
≤ K; let µ :=

µε
µu

 and assume that ‖µ‖ ≤ cµ
√
T ; let Ω :=

Ωε

Ωu

 and assume that max{‖Ω‖, ‖Ω−1‖} ≤

K. (Di, ν
(1)
i ) is independent of ν

(2)
i .
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B Formal Description of the Testing Procedure

B.1 Formal Statement of the Testing Problem

We assume that outcomes are generated by the following model:

Yit = αi + θt + δDiZt + εit

Wit = βi + γt + πDiZt + uit,
(2.1)

where (Di, εit, uit) satisfy Assumptions A.1, A.2, and {(Di, εi, ui)}i≤n is an i.i.d. sequence conditional on {Zt}t≤T .

We are testing Assumption A.3; formally H0 : E[ν
(1)
i Di] = 0 and H1 : ‖E[ν

(1)
i Di]‖2 > 0.

B.2 Bootstrap Details

Let Z be T × 2 matrix, such that (Z)t = (1, Zt), and let PZ⊥ be the orthogonal projector on the subspace

orthogonal to columns of Z. We generate B bootstrap replications; for each of them, we generate n i.i.d. binary

random variables ei ∈ {−1, 1}, such that E[ei] = 0, and we construct the bootstrap version of the statistic:

ξ̂(b)
ε := PZ⊥

 1

n

∑
i≤n

(ei − e)(Di −D)ε̂i

 , ξ̂(b)
u := PZ⊥

 1

n

∑
i≤n

(ei − e)(Di −D)ûi

 ,

ξ̂(b) :=

 ξ̂ε
ξ̂u

 , L̂(b)
n (α) :=

√
n

(T − 2)

√
α‖ξ̂(b)

ε ‖22 + (1− α)‖ξ̂(b)
u ‖22.

(2.2)

The oracle test is defined as follows:

ξε := PZ⊥

 1

n

∑
i≤n

(Di − E[Di])εi

 , ξu := PZ⊥

 1

n

∑
i≤n

(Di − E[Di])ui


ξ :=

ξε
ξu

 , Ln(α) :=

√
n

(T − 2)

√
α‖ξε‖22 + (1− α)‖ξu‖22,

Fα(x) := E[{Ln ≤ x}].

(2.3)

42



C Auxiliary Lemmas

Everywhere below, c refers to a universal constant that does not depend on the underlying DGP.

Lemma C.1. Suppose Assumptions A.1,A.2 holds. Then conditionally on {ei}ni=1, we have the following with

probability at least 1− 1
n :

‖Pnηi‖2 .
‖µ‖HS + ‖Ω‖HS + ‖µ‖

√
log(n)√

n

|E[Di]− PnDi| .
√

log(n)

n

‖PnηiDi‖2 . ‖µ‖
√
k + log(n)

n
+ ‖Ω‖

√
T + log(n)

n

‖Pnei(Di − E[Di])| .
√

log(n)

n

‖Pneiηi‖2 .
‖µ‖HS + ‖Ω‖HS + ‖µ‖

√
log(n)√

n

Pn‖νi(Di − E[Di])‖p2 . 2p
(√

(T + k) log(n)
)p

∣∣Pn(Di − E[Di])
2 − V[Di]

∣∣ .√ log(n)

n
.

(3.1)

Also, conditionally on {(Di, ηi)}ni=1 we have the following probability at least 1− 1
n :

|Pnei| .
√

log(n)

n
. (3.2)

Proof. The proofs are straightforward applications of standard results for sug-Gaussian and sub-exponential

random vectors (e.g., Vershynin [2018]), Hanson-Wright inequality (Theorem 1.1 in Rudelson et al. [2013]).

Lemma C.2. Suppose Assumptions A.1,A.2 holds. Then the following inequality holds conditionally on {Di}ni=1

with probability at least 1− 1
n :

∣∣∣∣∥∥∥PZ⊥ΩPnν(2)
i (Di − E[Di])

∥∥∥2

2
− Pn(Di − E[Di])

2

n
‖PZ⊥Ω2PZ⊥‖2HS

∣∣∣∣ .
√

log(n)

n
‖PZ⊥Ω2PZ⊥‖HS‖Di − E[Di]‖2∞∣∣∣∣(PZ>µPnν(1)

i (Di − E[Di])
)> (

PZ>ΩPnν(2)
i (Di − E[Di])

)∣∣∣∣ . ‖µ‖‖Di − E[Di]‖∞
√

log(n)(log(n) + k)

n

(3.3)

Proof. The first result follows from conditional application of Hanson-Wright inequality, along with the following
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two simple facts:

E
[∥∥∥PZ⊥ΩPnν(2)

i (Di − E[Di])
∥∥∥2

2
|{Di}i≤n

]
=

Pn(Di − E[Di])
2

n
‖PZ⊥Ω2PZ⊥‖HS

‖Pnν(2)
i (Di − E[Di])|{Di}i≤n‖ψ2

≤ ‖ν
(2)
i ‖ψ2

‖Di − E[Di]‖∞√
n

.

(3.4)

The second result follows from first conditioning on
(
Di, ν

(1)
i

)
i≤n

and then applying standard inequalities.

Lemma C.3. Suppose Assumptions A.1,A.2 are satisfied. Then we have the following with probability at least

1− 1
n :

sup
A∈A

∣∣∣∣E(b) [{Pnνi(Di − E[Di])ei ∈ A}]− E
[{

1√
n
N (0,Σn) ∈ A

}]∣∣∣∣ . (k + T )
7
4

√
n

log3(n)

sup
A∈A

∣∣∣∣E(b)
[{

Pnν(1)
i (Di − E[Di])ei ∈ A

}]
− E

[{
1√
n
N (0,Σn,1) ∈ A

}]∣∣∣∣ . k
7
4

√
n

log3(n),

(3.5)

where A is a set of all measurable convex sets of relevant dimension.

Proof. Define Σ1 := E[ν
(1)
i (ν

(1)
i )>(Di − E[Di)

2]. We have the following inequality (using Theorem 4.7.1 in

Vershynin [2018]) with probability at least 1− 1
n :

‖Pnνiν>i (Di − E[Di])
2 − Σ‖ . ‖Di − E[Di]‖2∞

(√
T + k + log(n)

n
+
T + k + log(n)

n

)

‖Pnν(1)
i (ν

(1)
i )>(Di − E[Di]

2)− Σ1‖ . ‖Di − E[Di]‖2∞

(√
k + log(n)

n
+
k + log(n)

n

)
.

(3.6)

We define the following covariance matrices:

Σn := Pn(νi(νi)
>(Di − E[Di)

2)

Σn,1 : Pn(ν
(1)
i (ν

(1)
i )>(Di − E[Di)

2).
(3.7)

Using multidimensional Berry-Esseen theorem conditionally on {(νi, Di)}i≤n and Lemma C.1, we get the follow-

ing:

sup
A∈A

∣∣∣∣E(b) [{Pnνi(Di − E[Di])ei ∈ A}]− E
[{

1√
n
N (0,Σn) ∈ A

}]∣∣∣∣ . (k + T )
7
4

√
n

log3(n)

sup
A∈A

∣∣∣∣E(b)
[{

Pnν(1)
i (Di − E[Di])ei ∈ A

}]
− E

[{
1√
n
N (0,Σn,1) ∈ A

}]∣∣∣∣ . k
7
4

√
n

log3(n).

(3.8)

We also have the following inequality for multivariate normals with the same mean and different variances:

sup
A∈A
|E [{N (0,Σ) ∈ A}]− E [{N (0,Σ′) ∈ A}]| . ‖Σ−1‖HS‖Σ− Σ′‖. (3.9)
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Applying this inequality to Σ,Σn, and Σ1,Σ1,n we get the following bounds with probability at least 1− c
n :

sup
A∈A
|E [{N (0,Σn) ∈ A}]− E [{N (0,Σ) ∈ A}]| .

√
T + k‖Di − E[Di]‖2∞

(√
T + k + log(n)

n
+
T + k + log(n)

n

)

sup
A∈A
|E [{N (0,Σ1,n) ∈ A}]− E [{N (0,Σ1) ∈ A}]| .

√
k‖Di − E[Di]‖2∞

(√
k + log(n)

n
+
k + log(n)

n

)
.

(3.10)

As a result, we get the following:

sup
A∈A

∣∣∣E(b)
[{√

nPnνi(Di − E[Di])ei ∈ A
}]
− E

[{
Σ

1
2N (0, I2(T+k)) ∈ A

}]∣∣∣ . (k + T )
7
4

√
n

log3(n)

sup
A∈A

∣∣∣E(b)
[{√

nPnν(1)
i (Di − E[Di])ei ∈ A

}]
− E

[{
Σ

1
2
1N (0, I2(k)) ∈ A

}]∣∣∣ . k
7
4

√
n

log3(n),

(3.11)

which proves the claim.
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D Proofs for Section 2

Proof of Proposition 2.1:

Proof. From Assumptions A.1,A.2 we have that the following holds with probability at least 1− 1
n (using standard

inequalities for sub-Gaussian vectors inequalities):

|V̂[Di]− V[Di]| .
√

log(n)

n

|E[Di]− Pn[Di]| .
√

log(n)

n

‖Pnεi‖∞ ≤ ‖µεPnν(1)
i ‖∞ + ‖ΩεPnν(2)

i ‖∞ . sup
t
‖µε,t‖

√
log(nk)

n
+

√
log(nT )

n

‖Pnui‖∞ . sup
t
‖µε,t‖

√
log(nk)

n
+

√
log(nT )

n

‖PnDiui‖∞ . sup
t
‖µε,t‖

√
log(nk)

n
+

√
log(nT )

n
.

(4.1)

Combining these inequalities, we get the following with the same probability:

‖ε̌‖∞ . sup
t
‖µε,t‖

√
log(nk)

n
+

√
log(nT )

n

‖ǔ‖∞ . sup
t
‖µu,t‖

√
log(nk)

n
+

√
log(nT )

n
,

(4.2)

which concludes the proof.
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Proof of Proposition 2.2: In this proof, we focus on the case where α = 1
2 ; the proof for the general

case is the same.

Proof. Define the infeasible bootstrap variables:

ξ(b)
ε := PZ⊥

 1

n

∑
i≤n

ei(Di − E[Di])εi

 , ξ(b)
u := PZ⊥

 1

n

∑
i≤n

ei(Di − E[Di])ui

 ,

ξ(b) :=

ξ(b)
ε

ξ
(b)
u

 , L(b)
n :=

√
n

2(T − 2)
‖ξ(b)‖2.

(4.3)

Below, we will abuse the notation and let PZ⊥ to denote the following matrix:PZ⊥ 0T×T

0T×T PZ⊥ .

 (4.4)

Step 1: Define λ̂ := (θ̂t, γ̂t). We have the following representation:

r := (E[Di]− PnDi)PZ⊥Pnηi

r(b) := −PZ⊥Pnηi (Pnei(Di − EDi) + (EDi − PnDi)Pnei) + (EDi − PnDi)PZ⊥Pneiηi

ξ̂ = ξ + r

ξ̂(b) = ξ(b) − Pneiξ̂ + r(b).

(4.5)

By triangular inequality, we have the following:

|L̂(b)
n − L(b)

n | ≤
√

n

2(T − 2)
(‖r(b)‖2 + |Pnei|‖r‖2 + |Pnei|‖ξ‖2). (4.6)

Using lemma C.1, we get that the following inequality holds with probability 1− 1
n :

|L̂(b)
n − L(b)

n | .
‖µ‖√
T

(√
k + log(n)

)√ log(n)

n
=: r1,n

|L̂n − Ln| . r1,n.

(4.7)

Step 2: Our goal is to show that the random distribution L
(b)
n and the fixed distribution L̂n with high

probability are close in Kolmogorov-Smirnov distance with high probability. To do this, we show that both of

them are close to a convex function of a multivariate normal distribution. We consider two different normal

distributions: one is based on fixed T approximation, and another one is based on a large T approximation.
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Below we define these two normal distributions and bound relevant distances.

ζfixed :=
1√

2(T − 2)

(
PZ⊥µΣ

1
2
1 ζ

(1) + PZ⊥Ω
√
V[π]ζ(2)

)
ζlimit :=

1√
2(T − 2)

(
PZ⊥µΣ

1
2
1 ζ

(1)
)
,

(4.8)

where (ζ(1), ζ(2)) ∼ N (0, I2(T+k)) and Σ1 := E
[
(Di − E[Di])

2ν
(1)
i (ν

(1)
i )>

]
. The following inequalities are imme-

diate consequences of a multivariate Berry-Essen central limit theorem (e.g., Raič et al. [2019]) :

sup
A∈A

∣∣∣∣E [{√ n

2(T − 2)
PZ⊥Pn(Di − E[Di])ηi ∈ A

}]
− E[ζfixed ∈ A}]

∣∣∣∣ . (2k + T )
7
4

√
n

sup
A∈A

∣∣∣∣E [{√ n

2(T − 2)
PZ⊥µPn(DI − E[Di])ν

(1)
i ∈ A

}]
− E[ζlimit ∈ A}]

∣∣∣∣ . (2k)
7
4

√
n
,

(4.9)

where A is a set of all measurable convex sets of relevant dimension. The following inequalities follow from

Lemma C.3 with probability at least 1− 1
n :

sup
A∈A

∣∣∣∣E(b)

[{√
n

2(T − 2)
PZ⊥Pnei(Di − E[Di])ηi ∈ A

}]
− E[ζfixed ∈ A}]

∣∣∣∣ . (2k + T )
7
4

√
n

log3(n)

sup
A∈A

∣∣∣∣E(b)

[{√
n

2(T − 2)
PZ⊥µPnei(DI − E[Di])ν

(1)
i ∈ A

}]
− E[ζlimit ∈ A}]

∣∣∣∣ . (2k)
7
4

√
n

log3(n).

(4.10)

Step 3: Using Lemma C.2, we get the following inequality with probability 1− 1
n :

∣∣∣∣∣∣∣(Ln)2 − V[πi]‖PZ⊥Ω2PZ⊥‖2HS
2(T − 2)

−
n
∥∥∥PZ>µPnν(1)

i (Di − E[Di])
∥∥∥2

2

2(T − 2)

∣∣∣∣∣∣∣ .
‖Di − E[Di]‖∞

√
log(n)

(
‖µ‖

√
(log(n) + k) + ‖Di − E[Di]‖∞‖PZ⊥Ω2PZ⊥‖HS

)
T

=: r2
2,n (4.11)

The same holds conditionally on {ei}i≤n for L
(b)
n . Specifically, with conditional probability at least 1− c

n :

∣∣∣∣∣∣∣(L(b)
n )2 − V[πi]‖PZ⊥Ω2PZ⊥‖2HS

2(T − 2)
−
n
∥∥∥PZ>µPneiν(1)

i (Di − E[Di])
∥∥∥2

2

2(T − 2)

∣∣∣∣∣∣∣ . r2
2,n. (4.12)

48



Using elementary inequality |
√
x −√y| ≤

√
|x− y|, we can conclude the following with conditional probability

at least 1− c
n :

∣∣∣∣∣∣∣∣Ln −
√√√√V[πi]‖PZ⊥Ω2PZ⊥‖2HS

2(T − 2)
+
n
∥∥∥PZ⊥µPnν(1)

i (Di − E[Di])
∥∥∥2

2

2(T − 2)

∣∣∣∣∣∣∣∣ . r2,n

∣∣∣∣∣∣∣∣L
(b)
n −

√√√√V[πi]‖PZ⊥Ω2PZ⊥‖2HS
2(T − 2)

+
n
∥∥∥PZ⊥µPneiν(1)

i (Di − E[Di])
∥∥∥2

2

2(T − 2)

∣∣∣∣∣∣∣∣ . r2,n.

(4.13)

Step 4: Now we can combine the bounds.. Let f1 be the density function of ‖ζfixed‖2. Note that ‖f1‖∞ ≤ C.

Using ζfixed, we get the following with probability at least 1− 1
n :

sup
x

∣∣∣E(b)[{L̂(b)
n ≤ x}]− E[{L̂n ≤ x}]

∣∣∣ . 1

n
+

(2k + T )
7
4

√
n

log3(n) + r1,n‖f1‖∞. (4.14)

Let f2 be the density of
√
‖ζlimit‖22 +

V[πi]‖PZ⊥Ω2P
Z⊥‖2HS

2(T−2) . As long as ‖µ‖ ≥ c
√
T , we have that ‖f2‖∞ ≤ C.

Using ζlimit, we get the following with probability at least 1− 1
n :

sup
x

∣∣∣E(b)[{L̂(b)
n ≤ x}]− E[{L̂n ≤ x}

∣∣∣ . 1

n
+

(2k)
7
4

√
n

log3(n) + (r1,n + r2,n)‖f2‖∞. (4.15)

The first inequality delivers the result when T is fixed, while the second one delivers the result when T is going

to infinity and factors are bounded from below.

Proof for Proposition 2.3

Proof. It is easy to see that L̂
(b)
n is invariant with respect to E[(Di−EDi])ηi), and thus its approximation remains

unchanged. At the same time, |L̂n − Ln| . r1,n (using the notation from the previous proof), and clearly Ln

converges to inifinity as long as ‖E[ν
(1)
i (Di − E[Di])]‖2 > c
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E Proofs for Section 3

Proof. We define the following two matrices:

PL :=

IT −Ψ
(
Ψ>Ψ

)−1
Ψ> 0T×T

0T×T 0T×T


PR :=

0T×T 0T×T

0T×T IT −Ψ
(
Ψ>Ψ

)−1
Ψ>.

 (5.1)

Under Assumption 3.1, the estimator has the following representation:

τ̂TS − τ =
Z̃>PLPn(Wi − PnWi)ε

>
i PRZ̃

Z̃>PLPn(Wi − PnWi)W>i PRZ̃
. (5.2)

We start the proof by stating several facts. For arbitrary fixed matrices A1, A2, and arbitrary random matrix

A3, we have the following with probability at least 1− 1
T :

|Z̃>A1Z̃ − σ2
Ztrace(A)| . σ2

Z‖Z‖2ψ2

√
log(T ) max{

√
log(T )‖A1‖, ‖A1‖HS}

‖Z̃>A2‖ . σZ‖Z‖2ψ2
‖A2‖

(√
rank(A2) + C

√
log(T )

)
|Z̃>A3Z̃| . σ2

Z‖A3‖T,

(5.3)

where c1 is a fixed constant. This follows directly from Assumption 3.3 and from the Hanson-Wright inequality.

We define the sample covariance matrix of νi:

Σn,ν := Pn(νi − Pnνi)ν>i . (5.4)

The following inequality holds with probability at least 1− 1
n :

‖Σn,ν − I2(T+K)‖ . α :=
T

n

|Pnπi(πi − Pnπi)− V[πi]| .
√

log(n)

n
‖πi‖2ψ2

.

(5.5)

This follows directly from Assumption A.4, Bernstein’s inequality, and standard results on covariance matrices

for sub-Gaussian random vectors (Theorem 6.5 in Wainwright [2019]). Using these facts, we get that the following
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inequalities hold with probability at least 1− 1
n −

1
T :

Z̃>PLΣuPRZ̃ = Z̃>PLµuµ
>
uPRZ̃ + Z̃>PLHΩ2

uHPRZ̃ . σ2
Z‖Z‖2ψ2

log(T )‖µu‖2 + σ2
Z‖H‖2‖Ωu‖2T

Z̃>PL

(
Σ̂u − Σu

)
PRZ̃ . ασ2

Z

(
‖Z‖2ψ2

log(T )‖µu‖2 + ‖Z‖4ψ2

√
T‖Ωu‖‖H‖2‖µu‖

√
log(T ) + ‖H‖2‖Ωu‖2T

)
Z̃>PLΣu,εPRZ̃ . σ2

Z‖Z‖2ψ2
log(T )‖µu‖‖µε‖+ σ2

Z‖H‖2‖Ωu‖‖Ωε‖T

max{|Z̃>PLZ̃|, |Z̃>PLZ̃|} . σ2
ZT

max{|Z̃>PLµuE[ν
(1)
i πi]|, |Z̃>PRµuE[ν

(1)
i πi]|} . σZ‖Z‖2ψ2

‖µu‖‖E[ν
(1)
i πi]‖2

√
log(T )

|Z̃>PRµεE[ν
(1)
i πi]| . σZ‖Z‖2ψ2

‖µε‖‖E[ν
(1)
i πi]‖2

√
log(T )

(5.6)

Z̃>PL(Σ̂u,ε − Σu,ε)PRZ̃ . ασ2
Z‖Z‖2ψ2

log(T )‖µu‖‖µε‖+ ασ2
Z‖Z‖4ψ2

√
T‖Ωu‖‖H‖2‖µε‖

√
log(T )+

ασ2
Z‖Z‖4ψ2

√
T‖Ωε‖‖H‖2‖µu‖

√
log(T ) + ασ2

Z‖H‖2‖Ωu‖‖Ωε‖T (5.7)

|Pnπi(πi − Pnπi)Z̃>PLZ̃Z̃
>PRZ̃ − σ4

ZV[πi]trace(PR)trace(PR)| .

V[πi]σ
4
Z‖Z‖4ψ2

log(T )‖PL‖HS‖PR‖HS +
√
ασ4

Z

√
log(n)‖πi‖2ψ2

T
3
2 (5.8)

|Z̃>PR (Pnεi(πi − Pn[πi])− E[εi(πi − E[πi])]) | . kσZ‖Z‖2ψ2
‖µε‖‖ν(1)

i ‖ψ2
‖‖πi − E[π]‖ψ2

√
log(n)

n
log(T )+

ασZ‖Z‖2ψ2
‖H‖‖Ωε‖‖ν(2)

i ‖‖(πi − E[πi])‖ψ2 log(n) (5.9)

|Z̃>PL (Pnui(πi − Pn[πi])− E[ui(πi − E[πi])]) | . kσZ‖Z‖2ψ2
‖µu‖‖ν(1)

i ‖ψ2
‖‖πi−E[π]‖ψ2

√
log(n)

n
log(T )+

ασZ‖Z‖2ψ2
‖H‖‖Ωu‖‖ν(2)

i ‖‖(πi − E[πi])‖ψ2 log(n). (5.10)

We define two errors:

enum := Z̃>PLΣ̂W,Y PRZ̃ − σ2
ZZ̃
>PRµεE[ν

(1)
i πi]trace(PL)

eden := Z̃>PLΣ̂WPRZ̃ − σ4
ZV[πi]trace(PR)trace(PL).

(5.11)

We can express the estimator as follows:

τ̂TS − τ =
enum + σ2

ZZ̃
>PRµεE[ν

(1)
i πi]trace(PL)

eden + σ4
ZV[πi]trace(PR)trace(PL)

. (5.12)
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Using the results above, we have the following bounds:

|enum| . σ2
Z(1 + α) log(T )T + σ3

Zα log(T )
√

log(n)T + σ3
Z log(T )T‖E[ν

(1)
i π‖2

|eden| . σ2
Z(1 + α) log(T )T + σ3

√
log(T )T (1 + α

√
log(n) log(T )) +

√
ασ4

ZT
3
2 .

(5.13)

In the regime where α is constant, we get the following with probability at least 1− 1
n −

1
T :

|τ̂TS − τ | .
log(T )

V[π]σ2
ZT

+
log(T )

√
log(n)

σZT
+

log(T )‖E[ν
(1)
i πi]‖2

σZV[πi]
√
T

σzV[πi]trace(PR)

‖PLµεE[ν
(1)
i πi]‖2

∣∣∣∣∣τ̂TS − τ − Z̃>PLµεE[ν
(1)
i πi]

σ2
ZV[πi]trace(PL)

∣∣∣∣∣ . log(T )

σZV[π]
√
T

(√
log(n) +

1

‖E[ν
(1)
i πi]‖2

)
.

(5.14)

We define the following variables:

ξest :=
Z̃>PLµεE[ν

(1)
i πi]

σ2
ZV[πi]trace(PL)

ξlim ∼ N (0, 1)

σest :=
‖PLµεE[ν

(1)
i πi]‖2

σzV[πi]trace(PL)
.

(5.15)

The rest follows from standard arguments (Berry-Esseen’s theorem):

sup
x

∣∣∣∣E [{ τ̂TS − τσest
≤ x

}]
− E [{ξlim ≤ x}]

∣∣∣∣ ≤
c1
T

+
c2
n

+ 3 sup
x

∣∣∣∣E [{ξlim ≤ x}]− E
[{

ξest
σest

≤ x
}]∣∣∣∣+ sup

x
|E [{ξlim ≤ x}]− E [{ξlim ≤ x+ rT }]| .

log(T )

σZV[π]
√
T

(√
log(n) +

1

‖E[ν
(1)
i πi]‖2

)
. (5.16)
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F Proofs for Section 4

Proof for Proposition 4.1 We need to prove that Ht is not present in the aggregate model, but this

follows directly from Assumption 4.4, because E[εit|It−l] = 0 and the weights average up to zero. We also need

to prove that πt|0 > 0. This follows from the fact that Di − E[Di] = 1
T0

∑
t≤T0

(πit − E[πit])Z̃
2
t|0 + noise, where

E[noise× πit] = 0. Then the result follows from the first part of Assumption 4.4.

Proof for Proposition 4.2 The result follows from the fact that αt|T0
, βt|T0

, δt|T0
, πt|T0

, µt|T0
are functions

of {Zl}l≤T0
and thus are uncorrelated with Z̃t|T0

. Also E[πt|T0
Z̃2
t|T0] = E[πt|T0

E[Z̃2
t|T0|IT0

]] = E[πt|T0
E[Z̃2

t|T0]] =

πt|0E[Z̃2
t|T0].
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Abstrakt 

 

Navrhujeme obecný postup pro odhad kauzálního vlivu změn v kontextu, kde jediným 

zdrojem exogenní variace je časová řada agregátních šoků. Nejdříve argumentujeme, že běžně 

používané postupy odhadu ignorují klíčové vlastnosti časové dimenze dat. Dále vyvíjíme 

grafický nástroj a nový test k ilustraci problematiky naší metody s využitím dat z vlivných 

studií v oboru ekonomického rozvoje [Nunn and Qian, 2014] a makroekonomie [Nakamura a 

Steinsson, 2014]. Motivováni těmito studiemi, konstruujeme nový odhad, který je založen na 

modelu časových řad pro agregátní šoky. Analyzujeme statistické vlastnosti našeho odhadu 

v situacích relevantních v praxi, kdy průřezová i časová dimenze je podobné velikosti. 

Nakonec poskytujeme kauzální interpretaci pro náš odhad a analyzujeme nový kauzální 

model, který umožňuje jak rozsáhlou nepozorovanou heterogenitu v potenciálních výstupech, 

tak nepozorované agregátní šoky. ¨ 
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