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Abstract

We examine how parameter learning amplifies the impact of macroeconomic

shocks on equity prices and quantities in a standard production economy where a

representative agent has Epstein-Zin preferences. An investor observes technology

shocks that follow a regime-switching process, but does not know the underlying

model parameters governing the short-term and long-run perspectives of economic

growth. We show that rational parameter learning endogenously generates long-

run productivity and consumption risks that help explain a wide array of dynamic

pricing phenomena. The asset pricing implications of subjective long-run risks

crucially depend on the introduction of a procyclical dividend process consistent

with the data.
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1. Introduction

Parameter learning has recently been proposed as an amplification mechanism for

the pricing of macroeconomic shocks used to explain standard asset pricing moments.

In the endowment economy, parameter uncertainty helps explain the observed equity

premium, the high volatility of equity returns, the market price-dividend ratio and the

equity Sharpe ratio (Collin-Dufresne, Johannes and Lochstoer, 2016; Johannes, Lochstoer

and Mou, 2016). In contrast to the consumption-based approach, a production dynamic

stochastic general equilibrium (DSGE) model endogenously generates consumption and

dividends and, as a result, it becomes more challenging to explain asset pricing puzzles

in a production-based setting while simultaneously matching the moments of macroeco-

nomic fundamentals. In this paper, we study how the macroeconomic risks arising from

parameter uncertainty improve the performance of a standard DSGE model in jointly

reproducing salient features of the macroeconomic quantities and equity returns.

Kaltenbrunner and Lochstoer (2010) and Croce (2014) have argued that the presence

of a small but persistent long-run risk component in the productivity growth process

can endogenously generate long-run risks in consumption growth that help boost up

moments of financial variables. However, these long-run risk components are difficult

to identify in the data.1 In contrast, we demonstrate that rational pricing of parameter

uncertainty is a source of these subjective long-run risks in productivity growth. This

suggests the importance of accounting for parameter uncertainty in the productivity

growth process. It is not clear, however, if macroeconomic risks associated with rational

learning about productivity growth amplify the moments of financial variables. If so, what

is the magnitude of the effect? In this paper, we document a considerable amplification

mechanism of rational parameter learning on asset prices.

We introduce parameter uncertainty in the technology growth process of an otherwise

standard production-based asset pricing model. We depart from the extant macro-finance

literature by presuming that the representative investor does not know the parameters

of the technology process and learns about true parameter values from the data. In

each period, he updates his beliefs in a Bayesian fashion upon observing newly arrived

1Croce (2014) empirically demonstrates the existence of such a predictable component; however, the
results are not robust to estimation method and sample choice. Moreover, low values for goodness-of-fit
statistics lead to a conclusion that there is considerable uncertainty about the model specification for
productivity growth.
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data. Rational learning about unknown parameters together with recursive preferences

gives rise to subjective long-lasting macroeconomic risks. Coupled with endogenous long-

run consumption risks due to consumption smoothing (Kaltenbrunner and Lochstoer,

2010) these risks are priced under the investor’s preference for early resolution of uncer-

tainty. The model generates higher equity Sharpe ratios, risk premia and volatility, as

well as lower interest rates and price-dividend ratios relative to the standard framework.

Additionally, the model with rational belief updating reproduces the excess return pre-

dictability pattern observed in the data. We further show that under certain calibrations

of the elasticity of intertemporal substitution and a capital adjustment cost, parame-

ter learning significantly magnifies propagation of shocks and hence helps to match the

second moments and comovements of macroeconomic variables.

In our analysis, we restrict our attention to uncertainty about parameters governing

the magnitude and persistence of productivity growth over the various phases of the busi-

ness cycle. In particular, we examine the implications of learning about the transition

probabilities and mean growth rates in a two-state Markov-switching process for pro-

ductivity growth, where volatility of productivity growth is homoskedastic and known.2

We consider two approaches to dealing with parameter uncertainty in the equilibrium

models: anticipated utility (AU) and priced parameter uncertainty (PPU). The AU ap-

proach is common for most existing models, and assumes that economic agents learn

about unknown parameters over time, but treat their current beliefs as true and fixed

parameter values in the decision-making. For the PPU case, the representative investor

calculates his utility and prices in the current period, assuming that posterior beliefs can

be changed in the future. We quantify the impact of each type of parameter uncertainty

pricing by comparing the results of AU and PPU with the full information (FI) model.

We begin our investigation by illustrating the economic importance of parameter

uncertainty in the standard production economy with convex capital adjustment costs.

The increased uncertainty due to unknown parameters in the productivity growth process

creates a stronger precautionary saving motive, which leads to a lower risk-free rate. Fully

2There is a large strand of the literature emphasizing the importance of time-varying macroeconomic
uncertainty (see, for example, Justiniano and Primiceri (2008); Bloom (2009); Fernandez-Villaverde,
Guerron-Quintana, Rubio-Ramirez and Uribe (2011); Born and Pfeifer (2014); Christiano, Motto and
Rostagno (2014); Gilchrist, Sim and Zakrajsek (2014); Liu and Miao (2014) and more recent studies
by Leduc and Liu (2016); Basu and Bundick (2017); Bloom, Floetotto, Jaimovich, Saporta-Eksten and
Terry (2018)). We leave the investigation of learning about volatility risks for future research.
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rational learning about unknown parameters generates endogenous long-run risks in the

economy, which in turn increase the mean and volatility of levered returns to the firm’s

payouts (Jermann, 1998). In contrast, fluctuations in parameter beliefs are not priced in

the AU case. Thus, the PPU approach leads to around a two-fold increase in the risk

premium (in addition to higher return volatility) on a levered firm’s dividends, relative

to the FI and AU cases. The combination of time-varying posterior beliefs and rational

parameter learning is crucial for generating long-term predictability of excess returns by

Tobin’s Q, investment-capital, price-dividend and consumption-wealth ratios, as found in

the empirical literature. The time-variation in beliefs leads to fluctuations in the equity

risk premium and hence generates more predictability in the models with parameter

uncertainty relative to the known parameter frameworks. Fully rational learning further

magnifies the impact of belief revisions on the conditional equity premium and therefore

there is more significant return predictability with PPU compared to AU. Specifically,

the model with PPU closely replicates the increasing patterns (in absolute terms) of the

regression coefficients and R2’s. In contrast, both the FI and AU models generate less

predictability power and cannot match the magnitude of slope coefficients.

In terms of the macroeconomic variables, the benchmark model with parameter

learning has a small effect on the unconditional second moments and a large impact

on comovements of consumption, investment and output. In the sensitivity analysis,

we further investigate how the impact of parameter learning on quantities changes for

alternative calibrations of the inter-temporal elasticity of substitution and a capital ad-

justment cost. We find that a lower value of the inter-temporal elasticity of substitution,

or a smaller capital adjustment cost, magnifies the effect of rational parameter learning

on comovements between macroeconomic quantities. In particular, decreasing IES or ad-

justment costs for capital leads to significantly lower correlations between consumption,

investment and output in the PPU model, while aggregate variables still remain highly

correlated in the FI and AU economies. Thus, our evidence indicates that fully rational

parameter learning generates additional macroeconomic risks, which interact with adjust-

ment costs and elasticity of inter-temporal substitution, allowing us to better match the

macro dynamics. These findings complement the results of Tallarini (2000), Campanale,

Castro and Clementi (2010) and Liu and Miao (2015), who find no effect of increasing

agents’ sensitivity to risk on the macroeconomic variables.
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There are however several issues that this version of the model with parameter

learning does not resolve. Although parameter learning increases the equity premium, the

magnitudes are still too small compared to the historically observed statistics. The main

reason for this underperformance of the model is found in countercyclical dynamics of a

firm’s endogenous dividends in the production economy. Therefore, we further consider

pricing a claim to exogenous market dividends that are directly calibrated to reconcile

dividend dynamics. In this way, we are able to verify that the low equity premium arises

not because of an insufficient amplification effect of parameter uncertainty, but due to

the inability of the production economy to generate procyclical dividends.

When pricing a claim to calibrated dividends, we find that the PPU model with a

century-long prior learning period and unbiased prior beliefs generates an average equity

premium, equity volatility, equity Sharpe ratio, risk-free rate, and a level and autocor-

relation of the price-dividend ratio close to the values observed in the data. Learning

provides a significant improvement in the performance of the production model relative

to the FI and AU cases, which cannot match these standard asset pricing moments. Fur-

thermore, learning generates long-lasting effects on asset prices as the size of the risk

premium and its volatility remain high even after 200 years of a prior learning period. To

better understand the source of the model’s improvement, we look at the conditional dy-

namics of the key asset prices and conditional moments. We find that parameter learning

generates a much stronger amplification mechanism in bad times than in good, generating

countercyclical fluctuations in the conditional risk premium, volatility and Sharpe ratios

that are consistent with the data.

In sum, fully rational pricing of parameter uncertainty improves the fit of the stan-

dard production economy to a large array of empirical regularities, though parameter

learning alone cannot fix a common problem of countercyclical firm dividends in the fric-

tionless economy. In order to maintain a desired feature of endogenous dividends, we

consider an extension of the benchmark model that would generate a more procyclical

firms’ levered payouts consistent with the data. In particular, the extension incorpo-

rates the idea of costly reversibility (see, for example, Abel and Eberly (1994, 1996),

Hall (2001) and Zhang (2005) among others), which means that firms face higher costs

in cutting than in expanding capital stocks. Intuitively, the mechanism of investment

frictions works as follows. In bad times, it is more difficult for a representative firm to
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reduce investment, due to higher costs that would lead to a smaller drop in investment

compared to the symmetric capital adjustment cost. Thus, net profits after deducting

investment appear less countercyclical. With the financial leverage, a firm’s dividends

are the sum of a firm’s profits and the net balance of the long-term debt. The latter is

proportional to capital and therefore declines in the recession. The overall sum of the

profits and net issuance of the long-term debt results in procyclical dividends.

We find that the unconditional statistics of the levered returns to endogenous firm

dividends are now much closer to the data. In particular, the extended model accounts

for a large equity premium, around two thirds of equity volatility, and furthermore, it

matches well to the mean, volatility and autocorrelation of the price-dividend ratio. The

quadratic asymmetric adjustment cost function further lowers the correlations between

macroeconomic variables. The results of the benchmark calibration and the extended

model confirm our findings that for all relevant moments parameter learning provides a

substantial improvement relative to the FI and AU cases.

The main mechanism of this paper is closely related to the work of Collin-Dufresne,

Johannes and Lochstoer (2016) who study a similar learning problem in the endowment

economy. Our analysis differs from theirs in the following ways. First, we extend their

methodology to a production economy setting and explore joint implications of parameter

uncertainty for macroeconomic quantities and asset prices. Second, relative to the en-

dowment model, one needs to generate procyclical dividends in the production economy

to obtain a significant amplification of equity moments by parameter learning. We docu-

ment this result by pricing a claim to exogenous calibrated dividends. We further confirm

this finding in the extension of the model with costly reversibility, which generates en-

dogenous procyclical firm’s payoffs. Third, rather than exploring the impact of learning

in a rare events model (Rietz, 1988; Barro, 2006), we instead estimate the production pa-

rameters by the expectation maximization algorithm from the postwar U.S. data. Even

though the estimated process for productivity growth does not reflect rare states that

are naturally difficult to be learned about due to their rareness, fully rational parameter

learning still matches well financial moments in our setting with more frequent states.

The main reason for this is that long-run consumption risks generated by consumption

smoothing (see Kaltenbrunner and Lochstoer, 2010) magnify the impact of endogenous

long-run productivity risks originating from belief revisions on asset prices; therefore, less
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is needed in terms of the speed of parameter learning.

Our paper also speaks to macro-finance research in the production-based economies.

Cagetti, Hansen, Sargent and Williams (2002) is one of the first examples of a business

cycle model with parameter learning. In their paper, Cagetti, Hansen, Sargent and

Williams (2002) consider a signal extraction problem about the unobservable mean growth

rate of technology shocks. However, they do not study the implications of incomplete

information for quantities and asset prices, a key focus of our analysis. In a recent paper,

Jahan-Parvar and Liu (2014) examine a production economy with learning about a latent

state in a productivity growth process following a two-state hidden Markov chain. Their

paper is an adaption of the endowment economy with ambiguity preferences (Ju and

Miao, 2012) to a production setting. The key differentiators of our study from Jahan-

Parvar and Liu (2014), as well as the extant literature on learning in a business cycle

model, is a multidimensional learning problem and rational pricing of parameter beliefs.

Our paper is also related to the long-run risks models introduced by Bansal and

Yaron (2004). Kaltenbrunner and Lochstoer (2010) and Croce (2014) investigate the

original source and implications of long-run productivity and consumption risks. In rela-

tion to these studies, we do not explicitly incorporate long-run dynamics in productivity

growth by adopting the model of Bansal and Yaron (2004). In our paper, the subjective

long-run macroeconomic risks appear as a result of Bayesian learning about true param-

eter values. Our approach is complementary to the existing long-run risks literature and

in fact provides the empirical investigation of possible origins of long-run productivity

risks.

The paper proceeds as follows. Section 2 presents the formal model, Section 3

investigates the quantitative implications of parameter learning for quantities and asset

prices. Section 4 performs sensitivity analysis. Section 5 concludes.

2. The Model

In this section, we present a production-based asset pricing model (Jermann, 1998;

Campanale, Castro and Clementi, 2010; Croce, 2014; Kaltenbrunner and Lochstoer,

2010). The model is a standard business cycle framework (Kydland and Prescott, 1982;

Long and Plosser, 1983) populated by a representative firm with Cobb-Douglas pro-

duction technology and capital adjustment costs, and a representative household with
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Epstein-Zin preferences. The firm produces a single consumption-investment good using

labor and capital as inputs subject to productivity shocks. The household participates

in the production process by working for the firm and investing in capital. Additionally,

the representative investor trades firm shares and risk-free bonds to maximize lifetime

utility of a consumption stream subject to a sequential budget constraint. Ultimately, the

representative firm maximizes its value by choosing labor and investment demand. Our

objective is to investigate the impact of learning about parameters in the productivity

process on the moments of macroeconomic quantities and equity returns.

2.1. The Representative Household

We assume that a representative household has the recursive utility of Epstein and

Zin (1989):

Ut =

{
(1− β)C

1−1/ψ
t + β

(
Et

[
U1−γ
t+1

]) 1−1/ψ
1−γ

} 1
1−1/ψ

(1)

where Ut denotes the household’s continuation utility, Ct denotes aggregate consumption,

Et denotes the expectation operator, β ∈ (0, 1) is the discount factor, ψ > 0 represents

the elasticity of inter-temporal elasticity of substitution (EIS), γ > 0 represents the

risk aversion parameter. For simplicity, we will assume that the household inelastically

supplies one unit of labor; thus, the household’s intra-period utility depends only on

consumption.

It is straightforward to derive the stochastic discount factor:

Mt+1 = β

(
Ct+1

Ct

)−1/ψ

 Ut+1(
Et

[
U1−γ
t+1

]) 1
1−γ


1/ψ−γ

(2)

The key feature is a separation of agent’s relative risk aversion from the elasticity of

inter-temporal substitution. If γ 6= 1
ψ
, the utility function is not time-additive, and the

stochastic discount factor has two components. The first term represents the kernel of

the power utility, while the second term is the adjustment of the Epstein-Zin utility. In

this paper, we set γ > 1
ψ

and, thus, the household prefers earlier resolution of uncer-

tainty. When the household’s continuation utility Ut+1 is below the certainty equivalent

of this continuation utility, the second ingredient in the pricing kernel increases, raising

a premium for long-run risks.

We also aim to investigate the impact of learning about unknown parameters gov-

erning the technology process. Although we do not introduce long-run productivity
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risks directly by assuming a persistent component in productivity growth (Croce, 2014;

Kaltenbrunner and Lochstoer, 2010), Bayesian belief updating will generate subjective

long-run productivity risks. Since the representative household has a preference for early

resolution of uncertainty and is particularly averse to such long-run risks, parameter

learning will generate quantitatively significant macroeconomic risks, improving the per-

formance of the model in explaining salient features of the data.

2.2. The Representative Firm

The representative firm produces the consumption good using a constant returns to

scale Cobb-Douglas production function:

Yt = Kα
t (AtNt)

1−α, (3)

where Yt is the output, Kt is the capital stock, Nt is labor hours, and At is an exogenous,

labor-enhancing technology level (which we also refer to as productivity). For simplicity,

we assume that the representative household supplies the fixed amount of labor hours,

which are exogenously set Nt = 1.

The firm’s capital accumulation equation incorporates capital adjustment costs and

is formally defined by:

Kt+1 = (1− δ)Kt + ϕ(It/Kt)Kt,

where δ ∈ (0, 1) is the capital depreciation rate, It = Yt − Ct denotes gross investment,

and ϕ(·) is the capital adjustment cost function given by:

ϕ(x) = a1 +
a2

1− 1/ξ
x1−1/ξ, (4)

where ξ is the elasticity of the investment rate to Tobin’s q. We follow Boldrin, Christiano

and Fisher (2001) and choose the constants a1 and a2 such that there are no adjustment

costs in the non-stochastic steady state.1

2.3. Technology

We consider a parsimonious two-state Markov switching model for the productivity

growth rate ∆at = ln
(

At
At−1

)
:

∆at = µst + σεt,

1Specifically, a1 = 1
ξ−1 (1− δ − exp(µ̄)) , a2 = (exp(µ̄)− 1 + δ) , where µ̄ is the unconditional mean

of µst .We find steady state values of the remaining quantities from the conditions ϕ
(
I
K

)
= 1, ϕ

′ ( I
K

)
= 1.

In particular, the steady state investment-capital ratio is I
K = exp(µ̄)− 1 + δ.
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where εt
iid∼ N(0, 1), st is a two state Markov chain with transition matrix:

Π =

 π11 1− π11

1− π22 π22

 ,
where πii ∈ (0, 1). We label st = 1 the ”good” regime with high productivity growth and

st = 2 the ”bad” regime with low productivity growth.

2.4. Equilibrium Asset Prices

In the competitive equilibrium of the economy, the representative household works

for the firm and trades its shares to maximize the lifetime utility over a consumption

stream. The representative firm chooses labor and capital inputs (through investment)

to maximizes the firm’s value, the present value of its future cash flows. The firm’s

maximization problem implies the following equilibrium conditions for gross return Rj,t+1

of the asset j between period t and t+ 1 :

Et [Mt+1Rj,t+1] = 1. (5)

In particular, the equation above is satisfied by the investment return, RI,t+1, defined by:

RI,t+1 =
1

Qt

[
Qt+1

(
1− δ + ϕ

(
It+1

Kt+1

))
+
αYt+1 − It+1

Kt+1

]
, (6)

where Qt is Tobin’s marginal Q :

Qt =
1

ϕ′
(
It
Kt

) =
1

a2

(
It
Kt

)1/ξ

.

The return on investment can be interpreted as the return of an equity claim to the

unlevered firm’s payouts (Restoy and Rockinger, 1994). As the firm behaves com-

petitively, the labor input is chosen at a level equal to its marginal product: wt =

∂Yt/∂Nt = (1− α)A1−α
t Kα

t N
−α
t = (1− α)Yt/Nt. The unlevered firm value, FVt, is given

by FVt = QtKt+1, and the firm’s unlevered dividends, Dt, are defined by:

Dt = Yt − wtNt − It = αYt − It. (7)

Since the observed aggregate stock market dividends are not directly comparable

to the endogenous payouts defined above,2 we consider pricing levered equity claims.

2As noted by other studies, unlevered cash flows and investment returns are not directly observed in
reality. Additionally, the equity prices observed on the market are for leveraged corporations, in contrast
to unlevered dividend payments of production companies in the model.
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We introduce financial leverage in the spirit of Jermann (1998) by presuming that in

each period the firm issues long-term bonds for a fixed fraction of capital and pays the

outstanding debt from previous periods. Note that Modigliani and Miller conditions hold

in our model and, thus, introducing the financial leverage does not change the equilibrium

allocations. It only influences the dynamics of a firm’s payouts and the way we report the

returns on a claim to the firm’s dividends. In particular, the financial leverage increases

volatility of dividends and makes equity returns more risky.

Following Jermann (1998), we assume that the firm issues n period discount bonds

and pays back its outstanding debt of n period maturity in each period. The fraction ω

of the firm’s capital Kt at time t is invested in long-term bonds. Denoting the price of

the n period discount bonds at time t by Bt,n the dividends stream is given by:

Dl
t = Yt − wtNt − It + ωKt − ωKt−n/Bt−n,n, (8)

where the first part, Yt − wtNt − It, represents the operating cash flow of an unlevered

claim, whereas the second part, ωKt − ωKt−n/Bt−n,n, is the difference between proceeds

from newly issued bonds in period t at the price Bt,n and repayments of the bonds

purchased in period t− n at the price Bt−n,n. We assume that the Modigliani and Miller

Theorem holds in this setting. This implies that the financial policy above does not affect

a firm’s value and investment decision.

The price of the n-period bonds is defined recursively by:

Bt,n = Et [Mt+1Bt+1,n−1] , (9)

with the boundary condition Bt,0 = 1 for any t. We denote the price of the (levered)

equity claim by P l
t , and the (levered) equity return by Rl

t+1 = (P l
t+1 + Dl

t+1)/P l
t . By

(5) and (8), the equity price satisfies P l
t = Et(Mt+1(Dl

t+1 + P l
t+1)) and can be readily

computed by the formula P l
t = FVt − DVt, where FVt represents a firm’s value, DVt

denotes debt value of all outstanding bonds from period t−n+1 to period t. Specifically:

DVt =
n∑
j=1

Bt,jωKt−n+j

Bt−n+j,n

.

3. Results

We start with calibrating a benchmark model and analyzing the implications of

parameter uncertainty in the productivity growth process for macroeconomic quantities
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and asset returns. We focus our attention on the stylized facts observed in the U.S.

post-World War II data. Specifically, we compare the model-generated statistics with the

historical data for 1952:Q1-2016:Q4. Macroeconomic data on consumption, investment,

capital, and output are taken from the U.S. National Income and Product Accounts

(NIPA) as provided by the Bureau of Economic Analysis (BEA). The asset returns data

and dividends are from the Center for Research in Security Prices (CRSP). The model is

calibrated at a quarterly frequency.

Since the model does not admit an analytical solution, we solve for equilibrium al-

locations numerically through value function iteration. We extend the Collin-Dufresne,

Johannes and Lochstoer (2016) solution methodology to the production-based setting.

The detailed description of the numerical methods is presented in the Appendix. Hav-

ing solved the model, we generate 1,000 simulations of the economy with the sample

length of 260 periods and report statistics of asset returns and macroeconomic quantities

corresponding to their empirical counterparts.

3.1. Parameter Values

Panel A in Table 1 reports the parameter values of an investor’s preferences, produc-

tion and capital adjustment cost functions. We choose these parameter values similarly

to the existing real-business cycle models. In particular, the constant capital share in a

Cobb-Douglas production function (α) is 0.36, and the quarterly depreciation rate (δ) is

0.02. We set the capital adjustment cost parameter (ξ) equal to 4, which yields volatility

of investment growth and consumption growth relatively close to the data. We further

choose the constants (a1, a2) in the capital adjustment cost function such that there are

no adjustment costs in the non-stochastic steady state.

The preference parameters are also consistent with the macroeconomic literature.

The coefficient of relative risk aversion (γ) is equal to 10, the upper bound of an interval

considered plausible by Mehra and Prescott (1985). The subjective discount factor (β)

is set to 0.9945. This value allows the benchmark calibration to generate the low un-

conditional risk-free rate. There is no consensus in the literature about the value of the

elasticity of inter-temporal substitution. We follow the disaster risk literature (Gourio,

2012) and long-run risks models (Bansal and Yaron, 2004; Ai, Croce and Li, 2013; Bansal,

Kiku, Shaliastovich and Yaron, 2014) by setting EIS (ψ) to 2.

Following the methodology of Stock and Watson (1999), we use the macroeconomic
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Table 1
Benchmark Calibration

Parameter Description Value

Panel A: Preferences, Production and Capital Adjustment Costs Functions, and Financial Leverage

β Discount factor 0.9945
γ Risk aversion 10
ψ EIS 2
α Capital share 0.36
δ Depreciation rate 0.02
ξ Adjustment costs parameter 4
a1 Normalization −0.0075
a2 Normalization 0.3877

Panel B: Markov-switching Model of Productivity Growth

π11 Transition probability from expansion to expansion 0.947
π22 Transition probability from recession to recession 0.662
µ1 Productivity growth in expansion 0.54
µ2 Productivity growth in recession −1.53
σ Productivity volatility 1.36

This table reports the parameter values in the benchmark calibration. Panel A presents preferences
parameters, values in the production and adjustment costs functions. Panel B shows the maximum
likelihood estimates of parameters in a two-state Markov-switching model for productivity growth.
We obtain these estimates by applying the expectation maximization algorithm (Hamilton, 1990) to
quarterly total factor productivity growth rates from 1952:Q1 to 2016:Q4.

data to construct the cumulative Solow residuals. We further scale these residuals by

the labor share (1 − α) in order to interpret them as labor-augmenting technology. We

estimate a two-state Markov switching process of quarterly productivity growth rates by

applying the expectation maximization algorithm developed by Hamilton (1990). Panel

B in Table 1 reports the maximum likelihood estimates for the transition probabilities

(πii), productivity growth rates (µi) as well as the constant volatility (σ). Productivity is

estimated to grow at the quarterly rate of about 0.54 percent in expansions and about -

1.53 percent in recessions. The productivity volatility comes out around 1.36 percent. The

transition probability to the expansion (recession) conditional on being in the expansion

(recession) is estimated around 0.947 (0.662). These numbers imply the average duration

of the high-growth expansion state of about 18.87 quarters and the average duration of

the low-growth recession of about 2.96 quarters. Our maximum likelihood estimates are

broadly consistent with the values reported by Hamilton (1989) and Cagetti, Hansen,

Sargent and Williams (2002).

Once we solve the model according to the calibration above, we introduce financial

leverage by assuming the representative firm issues long-term bonds with a maturity of

fifteen years. Because the Modigliani-Miller theorem holds, this only changes the levered
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returns and dividends but does not influence the equilibrium allocation of the economy.

With financial leverage, equity value depends on the market value of the firm and the

total debt oustanding bonds. All valuations endogenously depend on the equilibrium

investment decision. For each model, we calibrate (ω) in order to match the average

debt-to-equity ratio of around 1:1. Therefore, the leverage parameter across different

models is in the interval [1%, 1.1%].

3.2. Parameter Uncertainty

In this paper, we consider five parameters in the productivity growth process. We

employ conjugate priors for each unknown parameter in order to obtain conjugate pos-

teriors via Bayesian updating. If all parameters are assumed to be unknown for the

agent, we obtain a 10-dimensional vector of state variables including the current regime

of the Markov chain, capital stock, time and hyperparameters of prior distributions.

In addition to the curse of dimensionality, the numerical solution methodology in the

production-based setting requires the solution of the agent’s maximization problem for

every combination of state variables in each period. This makes the model solution espe-

cially slow. To mitigate complexity in the model solution, we investigate the impact of

uncertainty about the transition probabilities and mean growth rates, whereas a volatility

parameter is assumed to be known.3 Furthermore, our analysis assumes homoskedastic

volatility of productivity growth, though a large strand of the macroeconomic literature

documents the importance of time-varying uncertainty on macroeconomic variables and

asset returns. We leave the important investigation of the implications of learning about

volatility risk and regime switches in volatility of productivity growth for future research.

Having decided which parameters are unknown for the agent in the production econ-

omy, we consider the two approaches to dealing with parameter uncertainty: priced pa-

rameter uncertainty and anticipated utility. PPU implies the economic agents learn about

unknown parameters from the data and rationally take into account the changing beliefs

while making their decisions. AU assumes the decision-makers learn about unknown pa-

rameters over time but in each period of time they treat their current beliefs as ”true”

values. Thus, AU agents ignore the possibility that parameters might actually change

3We motivate our choice of unknown parameters by the results in the consumption-based asset pricing
model. Specifically, Collin-Dufresne, Johannes and Lochstoer (2016) conclude that uncertainty about
variance has a negligible effect on asset prices. Meanwhile, learning about transition probabilities has
long-lasting asset pricing implications. Mean growth rates are harder to learn than volatilities, though
the implications are less pronounced compared to learning about unknown transition probabilities.
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in the future. Since the posterior beliefs are martingales, Bayesian learning generates

subjective long-run risks in the economy, which would be priced under rational beliefs

pricing, unlike the AU case. To evaluate the impact of these additional macroeconomic

risks, we consider different specifications of the production economy for the comparison

analysis. We start by solving three frameworks: our preferred benchmark with full infor-

mation about parameters in the productivity growth process and an identical calibration

with unknown parameters incorporating either PPU or AU. This comparison allows us to

isolate the impact of rational pricing of parameter uncertainty. Furthermore, we study the

role of an investor’s prior knowledge by injecting training samples with different lengths

into the model. By experimenting with the prior samples, we can evaluate how persistent

the impact of rational beliefs updating is.

In sum, we use standard, conjugate priors distributions for the unknown parameters:

beta and normal distributions for the transition probabilities and mean growth rates, re-

spectively. We choose the hyperparameters of the distributions such that initial beliefs

are centered at the true values of uncertain parameters estimated from the postwar sam-

ple. Furthermore, we solve the models with parameter uncertainty based on the prior

training samples of 100, 150 or 200 years of initial learning. Thus, although calibrating

initial beliefs based on the historical data may be a realistic feature and will certainly

improve the model’s performance due to pessimism induced by the Great Depression and

both World Wars, our results do not require pessimistic prior specifications and are based

on the information contained in the postwar data. For each specification, we numerically

solve the production economy using the methodology outlined in the Appendix.

3.3. Pricing a Claim to Firm’s Levered Dividends

In this section, we quantitatively analyze the impact of uncertainty about the tran-

sition probabilities (π11, π22) and mean growth rates (µ1, µ2) in the production economy

of this paper.4 The macroeconomic variables of our interest are consumption, investment

and output. The financial variables include short-term (one quarter) and long-term (15

years) risk-less bonds and equity claim on the firm’s leveraged dividends. First, we as-

sess the implications of parameter uncertainty in the production economy by comparing

4The Appendix provides extensive details of the numerical solution methodology in different settings.
The model-generated statistics with uncertainty about the transition probabilities are similar to the
results presented in the main text with both unknown probabilities and mean growth rates. For brevity,
these results are not reported but are available upon request.
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model-implied unconditional moments of quantities and asset returns to their sample

counterparts. Second, we study the impulse responses of quantities to a regime switch in

the productivity growth. Finally, we check the ability of the economy to reproduce the

long-horizon predictability of excess equity returns.

Unconditional Moments. Panel A in Table 2 presents business cycle moments

of macroeconomic variables from simulations of models as well as the U.S. post WWII

statistics. The data column shows that output is more volatile than consumption but less

volatile than investment. Also, there is a significant correlation between the three series,

especially between investment and output growth. Comparing the empirical moments

with the model-generated statistics, all three models with PPU, AU and fixed param-

eters explain the empirical moments reasonably well. Relative to the case of known

parameters and AU, rational pricing of beliefs with 100 years of prior learning slightly

increases investment growth volatility, lowers consumption growth volatility and brings

the correlations between the macro quantities closer to the data. However, parameter

learning has quantitatively marginal effects on the macro dynamics.

In contrast, Panel B in Table 2 shows that priced parameter uncertainty improves

more significantly the performance of the real business cycle model in terms of financial

moments. The last two columns in Table 2 show that the production economy with

known parameters, or with unknown parameters but AU pricing (for the AU case, we

report the results only with a prior period of 100 years), generates a too high average

risk-free rate and price-dividend ratio as well as a too low mean and volatility of excess

equity returns compared to the data. Columns 3 to 6 shows that rationally taking into

account parameter uncertainty in the productivity growth process leads to a lower risk-

free rate and price-dividend ratio. The risk premium is almost two times higher with

parameter learning, equity volatility and the price of risk also increase in this case.

Although the financial moments are amplified in the model with priced parameter

uncertainty, they are still too small compared to the data. The reason for a very small

equity premium and equity volatility in the production economy is the countercyclical

dynamics of dividends growth as documented by Kaltenbrunner and Lochstoer (2010)

among others. This is in contrast to the observed procyclical dividends in the data.

Panel B in Table 2 indicates that a firm’s payouts are strongly negatively correlated with

consumption growth in all models, while we document that the corresponding correlation
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Table 2
Sample Moments

Data PPU AU FI

100 yrs 150 yrs 200 yrs ∞ yrs

Panel A: Macroeconomic Quantities

σ(∆c) 1.26 1.30 1.32 1.32 1.33 1.31 1.33
σ(∆i) 4.51 3.51 3.46 3.45 3.47 3.47 3.44
σ(∆y) 2.41 1.97 1.96 1.96 1.96 1.94 1.94
ar1(∆c) 0.32 0.14 0.16 0.17 0.19 0.19 0.18
ρ(∆i,∆y) 0.72 0.97 0.98 0.99 0.99 0.99 0.99
ρ(∆c,∆y) 0.52 0.96 0.97 0.98 0.99 0.98 0.98
ρ(∆c,∆i) 0.36 0.90 0.92 0.94 0.96 0.95 0.95

Panel B: Financial Variables

E(Rf )− 1 1.44 1.64 1.78 1.87 2.01 2.13 2.14
σ(Rf ) 1.07 0.41 0.38 0.37 0.34 0.31 0.31
σ(M)/E(M) 0.29 0.27 0.25 0.23 0.19 0.19

E(∆dl) 2.06 0.65 0.77 0.84 0.95 1.07 1.08
σ(∆dl) 10.38 13.35 13.74 14.20 15.77 17.09 16.19
ar1(∆dl) 0.25 −0.01 −0.01 −0.01 −0.01 −0.01 −0.02
ρ(∆c,∆dl) 0.44 −0.53 −0.58 −0.61 −0.63 −0.62 −0.60

E(Rl −Rf ) 5.51 2.92 2.60 2.25 1.84 1.56 1.52
σ(Rl −Rf ) 16.55 5.41 5.25 4.83 4.49 4.41 4.38

E(pl − dl) 3.19 3.38 3.45 3.55 3.65 3.67 3.67
σ(pl − dl) 0.33 0.31 0.31 0.32 0.35 0.36 0.36
ar1(pl − dl) 0.97 0.95 0.95 0.95 0.95 0.95 0.95

This table reports the average moments from 1,000 simulations of 260 quarters of the data
from the production economy considered in this paper, where the transition probabilities
and mean growth rates are assumed to be unknown. The historical data moments are
reported in the data column and correspond to the U.S. data from 1952:Q1 to 2016:Q4.
The PPU column refers to the production economy with rational pricing of parameter
uncertainty, whereas the AU column refers to the production economy with AU pricing.
In both cases, parameter uncertainty includes unknown transition probabilities and mean
growth rates. The FI column presents the results of the full information case where the
parameters are known. E(x) and σ(x) denote the average sample mean and standard
deviations of x, respectively. ar1(x) and ρ(x, y) denote the average sample autocorrela-
tion of x and correlation between x and y, respectively. All statistics are expressed in
annualized terms, except for market price of risk given in percent, whereas correlations
and autocorrelations are expressed in quarterly terms.

between consumption and dividend growth is about 0.44 in the data. A number of

studies (Uhlig, 2007; Belo, Lin and Bazdresch, 2014; Favilukis and Lin, 2016) introduce

wage rigidity in the standard production model in order to generate more volatile and

procyclical dividends. This extension of the model can further improve our results and

possibly magnify the effect of parameter learning. However, we leave the investigation of

the interplay between sticky wages and parameter uncertainty for future research. In this

paper, we will directly calibrate the firm’s dividends process to the empirical counterpart.
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Impulse Response Functions. Figure 1 illustrates the response of the economy

with unknown transition probabilities to a typical recession lasting for 1 quarter, 3 quar-

ters and 2 years. The economy is assumed to grow at the mean growth µ1 and µ2 in each

state. Before the economy enters the recession, the representative investor holds unbiased

beliefs about the uncertain parameters (the transition probabilities π11 and π22) assuming

a 100-year prior period. We feed these simulated paths of beliefs and productivity growth

series into the model and calculate the equilibrium quantities as described in Appendix

C.

The top panels in Figure 1 show the mean beliefs about the transition probabilities.

Upon the onset of the recession, the mean belief about staying in the good regime falls

sharply and stays at the same level during the recession. Once the economy returns back

to the high growth state, the investor gradually updates his beliefs about π11 upward. In

contrast, learning about π22 happens only in the recession. The random durations of 1

quarter, 3 quarters and 2 years correspond to the realization of a short economic decline,

an average recession and a long downturn, respectively. When the agent experiences an

average duration of the recession, his belief about π22 increases but then returns back to

the initial value. The mean belief about π22 remains permanently lower (higher) relative

to the initial belief in the case of the recession that is shorter (longer) than the average

downturn.

The middle panels of Figure 1 present the impulse responses of macroeconomic

quantities and equity prices. Given that productivity growth declines and the investor’s

probability beliefs about π11 drop, the capital stock declines upon the bad news in the

economy and consequently leads to a reduction in investment and consumption. As

productivity stays low and probability beliefs become more pessimistic, macroeconomic

variables continue to fall and start to recover only after the economy exits the recession.

The stock prices fall in response to switching to the low productivity growth regime. Also,

the realized equity returns are smaller in the recession due to low productivity growth and

bounce back to the original rate in the expansion. Since consumption dynamics predicts

the high marginal utility when productivity growth is low, equity returns are positively

exposed to the regime switching in mean productivity growth. Overall, the model predicts

the dynamics of consumption, investment, equity prices and equity returns consistent with

the data.
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Figure 1: Beliefs, Impulse Responses and Recession Realizations. The figure shows the dynam-
ics of investor’s beliefs and the impulse responses of macroeconomic and financial variables to a typical
recession in the model with unknown transition probabilities. Initially, the economy stays in the expan-
sion for a long period, and the investor holds unbiased mean beliefs about the transition probabilities
(π11 and π22) based on a 100-year prior period. The panels show three simulated paths with the duration
of the recession state equal to 1 quarter, 3 quarters and 2 years.

Turning to endogenous firm’s payouts, the dividends increase following the recession

realization, in contrast to a procyclical movement observed in the data. The unlevered

dividends, which are not reported in Figure 1, are approximately equal to profits minus

investment. Since profits in the model are smooth relative to investment and investment

is procyclical, the endogenous unlevered firm’s dividends are strongly countercyclical and
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would initially increase on impact and then grow at the original rate. Similarly, the

levered firm’s dividends reported in Figure 1 increase upon entering the recession but

start to decline when the economy returns to the growth state. The reason is that a

sharp decline in the mean beliefs about π11 has a negative and long-lasting impact on the

capital stock. Since the agent invests a constant proportion of the firm’s capital in the

long-term bonds, the current profits from trading the long-term bonds remain negative

until capital recovers to the initial level.

Return Predictability. A large strand of the empirical literature documents that

excess returns at an aggregate level can be predicted by variables like the investment-

capital ratio (Cochrane, 1991; Bansal and Yaron, 2004), Tobin’s Q (Pontiff and Schall,

1998; Lewellen, 2004), the dividend-price ratio (Campbell and Shiller, 1988; Fama and

French, 1989) and the consumption-wealth ratio (Lettau and Ludvigson, 2001). In this

section, we compare the long-term predictability patterns generated by the production

economy with parameter uncertainty (both the PPU and AU cases) and fixed parameters

to the predictability observed in the post-war data. The conclusion of the extensive

empirical literature is that high dividend yields, high book-to-market and consumption-

wealth ratios predict high future excess returns, whereas high investment rates forecast

low future excess returns. Furthermore, the predictive regressions suggest that the slope

coefficients (in absolute terms) and R2’s are relatively large and tend to increase over

the forecast horizon. These regularities pose a significant challenge for the standard real

business cycle model.

Tobin’s Q, the investment-capital and consumption-wealth ratios are endogenously

specified in our production economy. Furthermore, we follow Epstein and Zin (1989) and

calculate the wealth-consumption ratio as:

Wt

Ct
=

1

1− β

(
Ut
Ct

)1−1/ψ

,

where the equilibrium allocations of the agent’s utility and consumption are endogenously

determined. Using these model-generated quantities, we run the abovementioned predic-

tive regressions and report results in Table 3. We find that all three models can generate

monotonicity in the slope coefficients and R2’s over the forecast horizon. Furthermore,

the model with priced parameter uncertainty produces dramatically larger (in absolute

terms) slopes and R2’s relative to the AU approach and especially to the model with
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Table 3
Return Predictability

Data PPU AU FI

h Slope R2 Slope R2 Slope R2 Slope R2

Panel A: Investment-capital ratio (i− k)

1Y −0.394 0.071 −0.504 0.037 −0.108 0.043 −0.090 0.035
2Y −0.603 0.123 −0.910 0.071 −0.198 0.079 −0.165 0.065
3Y −1.293 0.245 −1.287 0.106 −0.280 0.114 −0.236 0.095
4Y −1.831 0.333 −1.639 0.138 −0.362 0.150 −0.307 0.126
5Y −2.453 0.372 −1.970 0.163 −0.439 0.182 −0.376 0.155

Panel B: Tobin’s Q

1Y −0.335 0.078 −0.493 0.052 −0.434 0.042 −0.362 0.035
2Y −1.573 0.133 −0.875 0.096 −0.792 0.079 −0.661 0.065
3Y −1.952 0.165 −1.228 0.137 −1.123 0.114 −0.945 0.095
4Y −2.443 0.192 −1.578 0.179 −1.452 0.150 −1.232 0.126
5Y −2.815 0.231 −1.907 0.214 −1.758 0.181 −1.507 0.155

Panel C: Dividend-price ratio (dl − pl)

1Y 0.083 0.041 0.024 0.030 0.013 0.018 0.011 0.016
2Y 0.122 0.055 0.040 0.051 0.023 0.033 0.018 0.029
3Y 0.175 0.074 0.055 0.070 0.030 0.045 0.024 0.040
4Y 0.212 0.093 0.069 0.089 0.037 0.055 0.029 0.050
5Y 0.227 0.105 0.080 0.103 0.042 0.063 0.034 0.058

Panel D: Consumption-wealth ratio (c− w)

1Y 3.173 0.086 2.050 0.085 1.788 0.071 2.110 0.039
2Y 5.944 0.182 3.429 0.138 3.195 0.124 3.717 0.067
3Y 7.845 0.274 4.620 0.184 4.412 0.171 5.159 0.093
4Y 9.352 0.297 5.821 0.229 5.627 0.217 6.659 0.122
5Y 11.134 0.327 6.933 0.269 6.747 0.259 8.110 0.148

This table reports univariate regressions of cumulative excess log equity returns on
several valuation and macroeconomic variables over various forecasting horizons
(h years; 1 to 5). We use investment-capital ratio, Tobin’s Q, dividend-price
and consumption-wealth ratios as the right-hand side variable (xt) in the linear
projection:

rext+1→t+h = Intercept + β(h)× xt + εt+h,

where rext+1→t+h are h-year future excess log equity returns. The empirical statistics
are for the U.S. data from 1952:Q1 to 2016:Q4. The PPU column refers to the
production economy with rational pricing of parameter uncertainty, whereas the
AU column refers to the production economy with AU pricing. In both cases,
parameter uncertainty includes unknown transition probabilities and mean growth
rates. The FI column presents the results of the full information case where the
parameters are known. For each model, we simulate 1,000 economies at a quarterly
frequency with a sample size equal to the empirical counterpart. We obtain the
slope coefficients and R2’s for each simulation and report average sample statistics
over all 1,000 artificial series.

known parameters.
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3.4. Pricing a Claim to Calibrated Dividends

In the previous section, we studied the implications of parameter uncertainty for

the dynamics of macroeconomic quantities and equity returns. We introduced financial

leverage in the spirit of Jermann (1998) in order to make the equity return more risky.

The main drawback of financial leverage considered in the previous section is that the

leveraged firm’s dividends still remained significantly procyclical in the model and, thus,

the equity premium and its volatility were too small compared to the data. Furthermore,

following the discussion of Kaltenbrunner and Lochstoer (2010), one can argue that the

aggregate stock market dividends are only a small part of the payouts of the productive

sector and, thus, cannot be directly interpreted as the firm’s dividends in our model.

Therefore, we follow a consumption-based asset pricing literature by directly calibrating

an exogenous dividend process to replicate the stock market dividends.

Following Bansal and Yaron (2004), we price a levered consumption claim with a

leverage factor λ. We formally define quarterly log dividend growth as follows:

∆dMt = gd + λ∆ct + σdε
d
t , (10)

where εdt
iid∼ N(0, 1), gd and σd are the dividend growth rate and volatility, respectively. We

calibrate the parameters gd, σd, and λ to make model implied statistics of dividend growth

consistent with the historical data. Panel B in Table 1 reports the parameter values in

an exogenous dividend stream. We set the mean adjustment (gd) and the idiosyncratic

dividend volatility (σd) to match the observed annual mean growth (2.06 percent) and

volatility (10.38 percent) of dividends for the considered period. The leverage parameter

(λ) is equal to 3.5, a midpoint of the range from 2.5 to 4.5 used in other studies.

Let RM
t+1 denote the return on a claim delivering stochastic dividends given by (10).

Then:

RM
t+1 =

PM
t+1 +DM

t+1

PM
t

=
PM
t+1/D

M
t+1 + 1

PM
t /DM

t

·
DM
t+1

DM
t

.

Substituting this expression into the equilibrium condition (5), the price-dividend ratio

of a claim on the aggregate stock market dividends satisfies the equation:

PM
t

DM
t

= Et

[
Mt+1

(
1 +

PM
t+1

DM
t+1

)
DM
t+1

DM
t

]
. (11)

Unconditional Moments. Now we take a closer look at the equity claim paying

stochastic dividends as a leverage on consumption similarly to Bansal and Yaron (2004).
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The numerical methods used to solve for the equilibrium price-dividend ratio are pre-

sented in the Appendix. Table 4 shows the model-implied statistics of dividend growth,

excess equity returns, the Sharpe ratio and the price-dividend ratio.

The calibrated dividends closely replicate the empirical first and second moments as

well as a positive correlation between dividends and consumption observed in the data.

Our conservative choice of a leverage parameter produces a slightly lower correlation

between dividend and consumption growth rates, but it is crucial that the correlation

remains positive in all models. Turning to equity moments, parameter uncertainty with

AU pricing produces similar results to the production model with known parameters.

Relative to the FI and AU cases, a priced parameter uncertainty approach significantly

improves the fit of the model with the data. The model with parameter uncertainty and

a prior sample of learning of 100 years match the sample equity premium, its volatility,

the equity Sharpe ratio and the level of the price-dividend ratio well. Furthermore, the

volatility of the price-dividend ratio comes out two to three times its value with fixed

parameters, though it still remains lower than in the data. In the data, the log price-

dividend ratio is highly persistent and the model with parameter learning reconciles this

feature. Furthermore, looking at the results based on different training samples, one can

see that Bayesian learning and rational pricing of an investor’s subjective beliefs generates

permanent shocks in the production economy.

It is important to stress that the implications of parameter learning in the production-

based setting are based on a productivity growth process that is estimated over the post-

war data. Even though the parameter estimates in our model reflect the business cycle

fluctuations rather than rare and bad macroeconomic events, learning about the true

productivity growth process has significant quantitative effects. This is mainly due to

the fact that the impact of endogenous long-run risks originating from belief revisions is

magnified by long-run risks in consumption growth through consumption smoothing, as

documented by Kaltenbrunner and Lochstoer (2010). In the consumption-based setting,

in order to match the financial moments one needs to add either learning about rare events

observed in the pre-war data (Collin-Dufresne, Johannes and Lochstoer, 2016) or a more

complex learning process (Johannes, Lochstoer and Mou, 2016). Furthermore, given con-

founding effects5 documented by Johannes, Lochstoer and Mou (2016), we expect that

5Confounding effectively means that uncertainty about one variable makes learning about another
variable more difficult.
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Table 4
Calibrated Stock Market Dividend Claim

Data PPU AU FI

100 yrs 150 yrs 200 yrs ∞ yrs

E(∆dM ) 2.06 1.89 1.80 1.75 1.68 1.60 1.60
σ(∆dM ) 10.38 11.48 11.51 11.52 11.54 11.54 11.56
ar1(∆dM ) 0.25 0.01 0.01 0.01 0.01 0.01 0.01
ρ(∆c,∆dM ) 0.44 0.32 0.32 0.32 0.32 0.32 0.32

E(RM −Rf ) 5.51 5.92 5.18 4.64 3.75 2.88 2.80
σ(RM −Rf ) 16.55 15.90 15.43 15.18 14.78 14.81 14.42
SR(RM −Rf ) 0.33 0.33 0.27 0.24 0.20 0.15 0.15

E(pM − dM ) 3.19 3.15 3.28 3.37 3.54 3.76 3.78
σ(pM − dM ) 0.33 0.07 0.05 0.04 0.03 0.05 0.02
ar1(pM − dM ) 0.97 0.90 0.87 0.84 0.79 0.90 0.76

This table reports the average moments from 1,000 simulations of 260 quarters of the data
from the production economy considered in this paper, where the transition probabilities
and mean growth rates are assumed to be unknown. As in Bansal and Yaron (2004),
equity is a claim to an exogenous dividend stream. The historical data moments are
reported in the data column and correspond to the U.S. data from 1952:Q1 to 2016:Q4.
The PPU column refers to the production economy with rational pricing of parameter
uncertainty, whereas the AU column refers to the production economy with AU pricing.
In both cases, parameter uncertainty includes unknown transition probabilities and mean
growth rates. The FI column presents the results of the full information case where the
parameters are known. E(x) and σ(x) denote the average sample mean and standard
deviations of x, respectively. ar1(x) and ρ(x, y) denote the average sample autocorre-
lation of x and correlation between x and y, respectively. All statistics are expressed
in annualized terms, except for correlations and autocorrelations expressed in quarterly
terms.

learning additionally about volatility risks and especially introducing a multidimensional

learning problem with model, state and parameter uncertainty are expected to slow down

the speed of learning and, thus, will improve our results. Finally, adding a more rare state

into the productivity growth is expected to amplify the impact of parameter uncertainty,

following the results of Collin-Dufresne, Johannes and Lochstoer (2016). We view the

investigation of these Bayesian approaches as an interesting avenue for future research.

Conditional Dynamics. Figure 2 plots the responses of several key variables to a

bad state realization, that lasts for 1 quarter, 3 quarters and 2 years. The sharp decline in

beliefs about the probability of staying in the good state leads to a reduction in the interest

rate, a decline in the price-dividend ratio as well as an increase in the risk premium and

equity volatility. As long as the economy stays in the low productivity growth regime, the

agent learns about the persistence of the bad state by revising his beliefs upward. During

this period, the interest rates are low, the price-dividend ratio keeps declining, while
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Figure 2: Conditional Prices and Moments. This figure shows the conditional risk-free rate, the
price-dividend and equity Sharpe ratios, as well as the conditional equity premium and its volatility.
The simulated variables are impulse response functions to the realization of a bad state of 1 quarter,
3 quarters and 2 years in the production economy, considered in this paper for the case of a 100-year
prior. The economy is assumed to stay in the high productivity growth steady-state for a long period,
and the representative agent holds unbiased initial mean beliefs. We report the conditional dynamics of
the variables for the AU and PPU cases. For the sake of a convenient exposition, the former one includes
only the responses to a 1-quarter bad state realization. The Appendix describes the numerical approach
used.

the equity Sharpe ratio, the conditional equity premium and volatility remain elevated.

Although both AU and PPU pricing predict similar paths of financial variables in response

to a negative long-run risk shock to the expected productivity growth, the magnitude of

their responses is substantially different.

For the anticipated utility case, one can observe very moderate responses in the

returns, prices and conditional moments upon the onset of the bad state. Before the

regime switch, both the conditional equity premium and the conditional Sharpe ratio

are too low relative to the data and then they approximately double in response to the

negative shock. Meanwhile, the conditional equity volatility increases only marginally in
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this case. In contrast, rationally priced parameter uncertainty predicts around 6-fold and

3-fold increases in the conditional risk premium and the equity Sharpe ratio, respectively.

The equity volatility turns out to be highly countercyclical as it increases by a factor of

about 2.5. The interest rate drops more in bad times with parameter uncertainty, while

the realized equity returns are more volatile. The price-dividend ratio experiences about

the same percentage decline upon the realization of the low productivity growth state

in both cases. However, the level of the price-dividend ratio is substantially higher with

AU, while parameter learning generates reasonable levels of the price-dividend ratio.

3.5. Adding Costly Reversibility

In the previous section we demonstrated that parameter learning and rational pricing

are able to reproduce salient features of the macroeconomic quantities and equity returns,

as long as the dividends exhibit a positive correlation with business cycle. However, it

is important to maintain the endogeneity of the dividend process within the model. To

fix this issue, we present an extension of the model where we include investment frictions

in the form of costly reversibility. This will endogenously generate more procyclical

dividends consistent with the data.

Formally, we model costly reversibility by adopting the asymmetric capital adjust-

ment cost function, which takes a quadratic form:

ϕ(xt) = xt −
θt
2
· (xt − x0)2 ,

where

θt = θ+ · I(xt ≥ x0) + θ− · I(xt < x0)

and I(·) denotes the indicator operator that equals 1 if the condition is satisfied and 0

otherwise. We choose the constant x0 such that there are no adjustment costs in the non-

stochastic steady state, which implies x0 = exp(µ̄)−1+δ. The remaining two parameters

θ+ and θ− satisfy the condition 0 < θ+ < θ− to capture the idea of costly reversibility:

the representative firm faces higher capital adjustment costs for the investment decisions

leading to the capital stock being below a non-stochastic steady state value. In the

quantitative exercise here, we calibrate the parameters θ+ and θ− consistent with the

literature. The empirical estimates of θ+ vary from 2 to 8. We choose a middle point

of this range and set θ+ = 5 as in Zhang (2005). We further follow Zhang (2005) by

assuming the degree of asymmetry equal θ−/θ+ = 10 that would imply θ− = 50.
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Table 5 shows the results of the model with the asymmetric adjustment cost cali-

brated above and other parameters fixed at the values in Table 1. As shown in Panel

A of Table 5, the model generates volatility of macroeconomic quantities relatively close

to the data, though consumption is slightly more volatile and investment is smoother

compared to the case with a convex adjustment cost function. Also, the quadratic ad-

justment cost better matches the comovements between macroeconomic variables than

the convex adjustment cost.

Panel B summarizes the model-generated statistics of financial variables. Our cal-

ibration with investment reversibility predicts dividend dynamics quite similar to the

data. Most importantly, the correlation between consumption and dividends becomes

slightly positive, which in turn has a large impact on equity returns. In particular, the

unconditional risk premium compares quite well with the sample estimate. Even though

the excess volatility puzzle remains unresolved, the rationally priced parameter uncer-

tainty magnifies the unconditional second moment of excess equity returns compared to

the full information case and, in turn, explains around two thirds of the equity volatility

in the data. Further, the mean, volatility and autocorrelation of the log price-dividend

ratio compare surprisingly well to the observed point estimates. The introduction of

additional channels such as, for example, a combination of wage rigidity and a constant

elasticity of substitution (CES) production function (Favilukis and Lin, 2016) or learning

about time-varying volatility risks can further improve the model performance; however,

we leave a rigorous investigation of a more complex model for future research.

4. Sensitivity Analysis

We examine the sensitivity of our results to the choice of the two parameters (ψ, ξ),

which determine how the agent is willing to substitute consumption intertemporally and

how the capital stock can be adjusted over time. These channels are the two natural

candidates to influence the propagation of and the interplay between the productivity

shocks and subjective long-run risks due to Bayesian learning in our model. Table 6

presents a two-part sensitivity analysis by decreasing the EIS and considering different

capital adjustment cost parameters, while keeping other values as in the benchmark

calibration. For convenience, we report the results of the simulations for the setting with

PPU and AU pricing based on a 100-year prior period.
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Table 5
Sample Moments: The Extended Model with Costly Reversibility

Data PPU AU FI

100 yrs 150 yrs 200 yrs ∞ yrs

Panel A: Macroeconomic Quantities

σ(∆c) 1.26 1.59 1.60 1.61 1.62 1.61 1.65
σ(∆i) 4.51 3.31 3.29 3.27 3.25 3.30 3.23
σ(∆y) 2.41 1.97 1.97 1.97 1.97 1.97 1.97
ar1(∆c) 0.32 0.18 0.18 0.18 0.18 0.18 0.18
ρ(∆i,∆y) 0.72 0.90 0.90 0.90 0.90 0.89 0.88
ρ(∆c,∆y) 0.52 0.85 0.85 0.85 0.85 0.85 0.85
ρ(∆c,∆i) 0.36 0.55 0.55 0.55 0.55 0.52 0.49

Panel B: Financial Variables

E(Rf )− 1 1.44 1.64 1.77 1.85 1.98 2.02 2.03
σ(Rf ) 1.07 0.59 0.55 0.53 0.49 0.44 0.44
σ(M)/E(M) 0.28 0.26 0.25 0.21 0.19 0.19

E(∆dl) 2.06 0.77 0.88 0.95 1.05 1.14 1.13
σ(∆dl) 10.38 9.98 10.77 11.34 12.55 15.12 14.40
ar1(∆dl) 0.25 −0.06 −0.06 −0.06 −0.06 −0.06 −0.06
ρ(∆c,∆dl) 0.44 0.01 0.01 0.02 0.03 0.03 0.07

E(Rl −Rf ) 5.51 5.71 5.14 4.53 3.59 3.50 3.29
σ(Rl −Rf ) 16.55 11.04 10.73 9.88 8.56 9.80 8.93

E(pl − dl) 3.19 2.89 2.97 3.06 3.23 3.29 3.32
σ(pl − dl) 0.33 0.26 0.26 0.26 0.26 0.30 0.29
ar1(pl − dl) 0.97 0.92 0.92 0.92 0.92 0.92 0.92

This table reports the average moments from 1,000 simulations of 260 quarters of the data
from the production economy considered in this paper, where the transition probabilities
and mean growth rates are assumed to be unknown. The historical data moments are
reported in the data column and correspond to the U.S. data from 1952:Q1 to 2016:Q4.
The PPU column refers to the production economy with rational pricing of parameter
uncertainty, whereas the AU column refers to the production economy with AU pricing.
In both cases, parameter uncertainty includes unknown transition probabilities and mean
growth rates. The FI column presents the results of the full information case where the
parameters are known. E(x) and σ(x) denote the average sample mean and standard
deviations of x, respectively. ar1(x) and ρ(x, y) denote the average sample autocorrela-
tion of x and correlation between x and y, respectively. All statistics are expressed in
annualized terms, except for market price of risk given in percent, whereas correlations
and autocorrelations are expressed in quarterly terms.

The elasticity of intertemporal substitution is an important parameter for matching

the moments of macroeconomic variables as shown in Panel A of Table 6. For both PPU

and AU, a lower EIS reduces the volatility of investment growth and makes consumption

growth more volatile relative to the benchmark calibration. This is due to the fact that

the investor is less willing to substitute consumption intertemporally. The AU columns

of Panel A also suggest that the EIS does not affect the correlations between macroeco-

nomic quantities. Interestingly, the PPU case predicts significantly different moments of
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macroeconomic variables for the smaller EIS. Indeed, consumption, investment and out-

put become less correlated mainly due to larger short-run risks in consumption growth.

The bottom panel of Table 6 shows the impact of the EIS on financial moments. As

expected, the risk-free rate is inversely related to the EIS parameter. The prices of equity

on the endogenous levered firm’s payouts are not markedly affected by the EIS. Turning to

the equity claim on aggregate market dividends, there are large differences in the average

equity premium and equity volatility. In this case, more volatile consumption growth

predicts riskier dividends, which are modeled as a leverage on consumption. Therefore,

the equity as a leveraged consumption claim implies the lower price-dividend ratios, the

higher equity premium and equity volatility for a smaller value of the EIS. Notably, this

impact on the financial moment is magnified in the PPU case.

As an additional exercise, we change the degree of capital adjustment costs in the

production economy. The lower values of ξ introduce higher costs for capital adjustment.

Decreasing the value of ξ to 2.5 leads to more volatile consumption growth and smoother

investment growth. This additionally generates more volatile Tobin’s Q and increases the

mean and volatility of the investment return in the model. In general, the higher capital

adjustment costs generate stronger short-run risks in the model and reduce the impact of

the long-run risks generated by Bayesian learning and rational belief pricing. Since the

latter shocks are the dominant drivers of high and volatile equity returns in the model, a

claim to aggregate dividends becomes less risky as reflected in the higher price-dividend

ratio, lower equity premium and equity volatility. In the light of this observation, a lower

capital adjustment cost helps jointly match salient moments of macroeconomic quantities

and financial returns. In particular, increasing the value of ξ to 5.5 moves the model-

implied volatilities of consumption and investment closer to the data. Most importantly,

parameter uncertainty generates stronger propagation of productivity shocks in this case

by lowering the correlations between macroeconomic variables. In addition, stronger long-

run risks originating from rational belief pricing further lead to a substantial increase in

risk premia compared to the AU case, as evidenced in the last two columns of Table 6.

To assess the impact of asymmetric adjustment costs, we conduct sensitivity anal-

ysis to alternative parameter choices of θ+ and θ−. Table 7 shows that the model with

symmetric quadratic adjustment costs θ+ = θ− = 5 displays a small equity premium and

levered equity volatility originating from a wrong business cycle movement of dividends.
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Table 6
Sensitivity Analysis

ψ = 1.2 ψ = 1.5 ξ = 2.5 ξ = 5.5

PPU AU PPU AU PPU AU PPU AU

Panel A: Macroeconomic Quantities

σ(∆c) 1.54 1.51 1.44 1.43 1.46 1.49 1.21 1.22
σ(∆i) 2.99 3.00 3.20 3.18 3.13 3.12 3.74 3.68
σ(∆y) 1.95 1.94 1.96 1.94 1.96 1.96 1.95 1.93
ρ(∆i,∆y) 0.91 0.98 0.96 0.99 0.99 0.98 0.97 0.99
ρ(∆c,∆y) 0.93 0.98 0.96 0.99 0.99 0.98 0.92 0.98
ρ(∆c,∆i) 0.69 0.92 0.83 0.97 0.97 0.92 0.79 0.96

Panel B: Financial Variables

E(Rf )− 1 1.96 2.52 1.84 2.34 1.64 2.10 1.64 2.17
σ(Rf ) 0.43 0.37 0.42 0.35 0.48 0.37 0.36 0.28
E(Rl −Rf ) 2.86 1.59 2.89 1.67 3.69 2.23 2.55 1.50
σ(Rl −Rf ) 5.23 4.72 5.35 4.72 6.98 6.12 4.64 4.04

E(RM −Rf ) 9.90 3.55 8.03 3.31 5.60 3.06 6.56 2.82
σ(RM −Rf ) 21.41 15.98 18.50 15.41 15.39 14.98 16.57 14.75
SR(RM −Rf ) 0.40 0.19 0.36 0.17 0.30 0.16 0.35 0.15

E(pM − dM ) 2.64 3.45 2.84 3.56 3.22 3.71 3.10 3.78
σ(pM − dM ) 0.14 0.05 0.11 0.05 0.06 0.05 0.08 0.05
ar1(pM − dM ) 0.90 0.84 0.90 0.86 0.90 0.90 0.90 0.90

This table reports the average moments from 1,000 simulations of 260 quarters of
the data from the production economy considered in this paper, where the transi-
tion probabilities and mean growth rates are assumed to be unknown. The PPU
column refers to the production economy with rational pricing of parameter uncer-
tainty, whereas the AU column refers to the production economy with AU pricing.
In both cases, parameter uncertainty includes unknown transition probabilities
and mean growth rates. E(x) and σ(x) denote the average sample mean and stan-
dard deviations of x, respectively. ar1(x) and ρ(x, y) denote the average sample
autocorrelation of x and correlation between x and y, respectively. All statistics
are expressed in annualized terms, except for correlations and autocorrelations
expressed in quarterly terms.

This result mimics our findings in the benchmark model with convex adjustment costs.

Introducing costly reversibility improves the asset pricing implications of the model. We

quantify this improvement by varying the degree of asymmetry. In particular, we fix

θ+ = 4 and consider three cases for θ−/θ+ : 10, 12.5 and 15. Table 7 reports that a higer

degree of asymmetry increases the average mean and volatility of levered equity returns.

This comes as a result of a more procyclical firm’s dividends consistent with our main

result: the importance of parameter learning in the production economy is conditional

on the introduction of procyclical dividends in the economy.
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Table 7
Sensitivity Analysis: The Extended Model with Costly Reversibility

θ+ = 5 θ+ = 4 θ+ = 4 θ+ = 4
θ− = 5 θ− = 40 θ− = 50 θ− = 60

PPU AU PPU AU PPU AU PPU AU

Panel A: Macroeconomic Quantities

σ(∆c) 1.14 1.12 1.51 1.54 1.58 1.60 1.63 1.64
σ(∆i) 3.98 3.91 3.42 3.41 3.36 3.34 3.27 3.22
σ(∆y) 1.93 1.92 1.97 1.97 1.97 1.96 1.97 1.96
ρ(∆i,∆y) 0.91 0.99 0.93 0.92 0.91 0.89 0.90 0.89
ρ(∆c,∆y) 0.78 0.96 0.86 0.84 0.83 0.83 0.84 0.84
ρ(∆c,∆i) 0.45 0.91 0.62 0.57 0.53 0.50 0.53 0.52

Panel B: Financial Variables

E(Rf )− 1 1.62 2.23 1.66 2.03 1.65 2.00 1.62 2.00
σ(Rf ) 0.28 0.24 0.55 0.43 0.59 0.45 0.59 0.45

E(∆dl) 0.58 1.24 0.72 1.13 0.76 1.14 0.77 1.12
σ(∆dl) 24.45 27.45 11.29 16.72 10.39 15.65 9.86 15.11
ar1(∆dl) −0.06 −0.03 −0.04 −0.05 −0.06 −0.06 −0.06 −0.05
ρ(∆c,∆dl) −0.11 −0.61 −0.10 −0.05 0.01 0.05 0.06 0.08

E(Rl −Rf ) 2.03 1.15 4.88 3.00 5.68 3.53 6.49 3.82
σ(Rl −Rf ) 3.65 3.21 9.32 8.09 11.02 9.93 13.25 10.90

This table reports the average moments from 1,000 simulations of 260 quarters of
the data from the production economy considered in this paper, where the transi-
tion probabilities and mean growth rates are assumed to be unknown. The PPU
column refers to the production economy with rational pricing of parameter uncer-
tainty, whereas the AU column refers to the production economy with AU pricing.
In both cases, parameter uncertainty includes unknown transition probabilities
and mean growth rates. E(x) and σ(x) denote the average sample mean and stan-
dard deviations of x, respectively. ar1(x) and ρ(x, y) denote the average sample
autocorrelation of x and correlation between x and y, respectively. All statistics
are expressed in annualized terms, except for correlations and autocorrelations
expressed in quarterly terms.

5. Conclusion

In this paper, we show that introducing rational parameter learning into an other-

wise standard real business cycle model improves its ability to match asset return data.

The model with priced parameter uncertainty has a small effect on the second moments

of macroeconomic variables and more significant impact on the comovements between

quantities. Parameter learning generates a substantial amplification of the risk premium

on a levered firm’s payouts and reproduces the long-horizon predictability of excess re-

turns by macroeconomic and valuation variables. Furthermore, we show that rational

belief pricing considered in this paper has the largest impact on equity returns when in-

troducing and pricing a procyclical dividend growth process. In this case, the production
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economy can closely replicate the first and second moments of risk-free rates and excess

equity returns, the equity Sharpe ratio and the level of the price-dividend ratio, while

generating smooth consumption and volatile investment. Finally, we show that introduc-

ing investment friction in the form of costly reversibility helps endogenously generate a

pro-cyclical dividend process and, at the same time, to maintain all the desired pricing

effects that come from multidimensional learning and rational pricing.

Future research may consider extending our mechanism to a richer model with sticky

prices and financial frictions. In particular, modeling wage rigidity in the spirit of Fav-

ilukis and Lin (2016) can help endogenously generate procyclical dividend growth in the

model. The interaction between sticky prices and learning effects may have additional

interesting implications for the labor market. Motivated by a large strand of the litera-

ture on time-varying macroeconomic uncertainty, it is interesting and straightforward to

extend our methodology to learning about volatility risks. This might have additional

asset pricing implications, especially for volatility sensitive assets, as well as interesting

effects for the real economy.
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Appendix

A. Numerical Algorithm: Anticipated Utility

In the AU case, the representative household learns about the unknown parameters

by updating his beliefs upon the realization of new data, but ignores parameter uncer-

tainty when making decisions. Thus, although the beliefs vary over time, the household

centers the ”true” parameters at the current posterior means and keeps these subjective

estimates constant while solving for the continuation utility (and a levered equity claim)

in each period.

In this paper, we focus on two learning about parameters economies with unknown

transition probabilities, and unknown transition probabilities and mean growth rates.6

The numerical solution for both models under AU pricing simplifies to solving for the

equilibrium pricing ratios when all parameters are actually known by the household. We

find the solution of these simplest economies on a dense grid for unknown parameters (that

is, unknown transition probabilities in the former model; unknown transition probabilities

and mean growth rates in the latter model). Then the household uses these equilibrium

pricing functions for the decision making and asset pricing based on the current beliefs.

A.1. All Known Parameters

Productivity growth is given by:

∆at = µst + σεt,

where εt
iid∼ N(0, 1), st is a two state Markov chain with transition matrix:

Π =

 π11 1− π11

1− π22 π22

 ,
where πii ∈ (0, 1). The regimes switches in st are independent of the Gaussian shocks εt.

Here, we give details on how the continuation utility (and a levered equity claim) is

computed for the economy with all parameters known. We define the following stationary

variables: {
C̃t, Ĩt, Ỹt, K̃t, Ũt

}
=

{
Ct
At
,
It
At
,
Yt
At
,
Kt

At
,
Ut
At

}
6The methodology for the AU case (as well as the priced parameter uncertainty case in Appendix

B) can be further extended for learning about the volatility of productivity growth. However, we leave
this investigation for the future research.
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The household’s problem is:

Ũt = max
C̃t,Ĩt

(1− β)C̃
1− 1

ψ

t + β

(
Et

[
Ũ1−γ
t+1 ·

(
At+1

At

)1−γ
]) 1− 1

ψ
1−γ


1

1−ψ

(A1)

subject to the constraints:

C̃t + Ĩt = K̃α
t N̄

1−α (A2)

e∆at+1K̃t+1 = (1− δ)K̃t + ϕ

(
Ĩt

K̃t

)
K̃t (A3)

∆at = µst + σεt, εt ∼ N(0, 1) (A4)

C̃t ≥ 0, K̃t+1 ≥ 0 (A5)

where the subscript t indicates the time, Et(·) denotes the expectation conditional on the

information available at time t. Because the parameters are assumed known, st and K̃t

are the only state variables in the economy. Ultimately, the recursive equation (A1) can

be rewritten as:

Ũt(st, K̃t) (A6)

= max
C̃t,Ĩt

(1− β)C̃
1− 1

ψ

t + β

(
Et

[
Ũt+1

(
st+1, K̃t+1

)1−γ
· e(1−γ)∆at+1

]) 1− 1
ψ

1−γ


1

1−ψ

To solve the recursion (A6), we use the the value function iteration algorithm. In partic-

ular, the numerical algorithm proceeds as follows:

1. We find the de-trended steady state capital K̃ss, assuming the productivity growth

equals the steady state level predicted by a Markov-switching model. The state

space for capital normalized by technology is set at [0.2K̃ss, 2.2K̃ss]. We further use

nk = 100 points on a grid for capital in the numerical computation. A denser grid

does not lead to significantly different results.

2. For any level of capital K̃t at time t, we construct a grid for Ĩt with uniformly

distributed points between 0 and K̃α
t N̄

1−α. Specifically, we use ni = 400 points.

3. For the expectation, we use the Gauss-Hermite quadrature with ngh = 8 points.

Using the quadrature weights and nodes, we can calculate the expression on the

right hand side.
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4. We solve the optimization problem in the Bellman equation (A6) subject to (A2)-

(A5) and update a new value function Ũt = Ũt(st, K̃t) given an old one Ũt+1 =

Ũt+1(st+1, K̃t+1).

5. We iterate Steps 2-4 by updating the continuation utility on each iteration until a

suitable convergence is achieved. Specifically, the stopping rule is that the distance

between the new value function and the old value function satisfies |Ũt+1−Ũt|/|Ũt| <

10−12.

B. Numerical Algorithm: Priced Parameter Uncertainty

The numerical solution for the case of priced parameter uncertainty consists of two

main steps7. First, we solve for the equilibrium pricing ratios when true parameters are

actually known by the household (by assumption, these are learned at T =∞). We find

the solution of this simplest limiting economy on a dense grid of state variables. Second,

we use the known parameters boundary economies as terminal values in the backward

recursion to obtain the equilibrium function at time t. For the first step, Appendix A out-

lines details of the numerical algorithm for all known parameters. Therefore, we present

the solution methodology employed at the second step for two models with unknown

transition probabilities, and unknown transition probabilities and mean growth rates.

B.1. Unknown Transition Probabilities

Productivity growth is given by:

∆at = µst + σεt,

where εt
iid∼ N(0, 1), st is a two state Markov chain with a transition matrix:

Π =

 π11 1− π11

1− π22 π22

 ,
where πii ∈ (0, 1). The regimes switches in st are independent of the Gaussian shocks εt.

In the case of unknown transition probabilities, the representative household knows

true values of the parameters within each state (µ1, µ2, σ) and observes states (st) but

7Johnson (2007) uses this solution methodology in a case with parameter learning and power utility.
Johannes, Lochstoer and Mou (2016) and Collin-Dufresne, Johannes and Lochstoer (2016) extend this
approach to the case of Epstein-Zin utility in the endowment economy. We further extend the numerical
solution to the case of Epstein-Zin utility in the production economy.
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does not know the transition probabilities (π11, π22). At time t = 0, the household holds

priors about uncertain probabilities in the transition matrix and updates beliefs each

period upon realization of new series and regimes. We assume a Beta distributed prior

and, thus, posterior beliefs are also Beta distributed.

The Beta distribution has the probability density function of the form:

p(π|a, b) =
πa−1(1− π)b−1

B(a, b)
,

where B(a, b) is the Beta function (a normalization constant), a and b are two positive

shape parameters. We are particularly interested in the expected value of the Beta

distribution defined by:

E[π|a, b] =
a

a+ b
.

Furthermore, we use two pairs of hyperparameters parameters (a1, b1) and (a2, b2) for

unknown transition probabilities in the states π11 and π22, respectively. At time t, the

household uses Bayes’ rule and the fact that states are observable to update hyperpa-

rameters for each state i as follows:

ai,t = ai,0 + #(state i has been followed by state i), (B7)

bi,t = bi,0 + #(state i has been followed by state j), (B8)

given the initial prior beliefs ai,0 and bi,0.

Once we find the limiting boundary economies on the first step, we perform a back-

ward recursion using the following state variables:

τ1,t = a1,t − a1,0 + b1,t − b1,0 (B9)

λ1,t = Et[π11] =
a1,t

a1,t + b1,t

(B10)

τ2,t = a2,t − a2,0 + b2,t − b2,0 (B11)

λ2,t = Et[π22] =
a2,t

a2,t + b2,t

(B12)

Note that Xt = {τ1,t, λ1,t, τ2,t, λ2,t} are sufficient statistics for the agent’s priors.

Also, we can update Xt+1 using the equations (B7)-(B12), the next period regime, and

sufficient statistics:

Xt+1 = f(st+1, st, Xt).

For notational purposes, it might be useful to denote Xs
t ≡ {τ1,t, λ1,t, τ2,t, λ2,t} and X∆a

t ≡

{K̃t}, where the superscripts s and ∆a indicate that variables in the vectors Xs
t and X∆a

t
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are a function only of the observed state realization st and a function of (also) the realized

productivity growth, respectively. Thus, Xt =
[
Xs
t , X

∆a
t

]
. Using these notations, we can

rewrite

Ũt+1(st+1, Xt+1) = Ũt+1(st+1, st, X
s
t ,∆at+1, X

∆a
t )

to better indicate the dependence of state variables on specific shocks. Ultimately, the

recursive equation (A1) can be rewritten as:

Ũt(st, Xt) (B13)

= max
C̃t,Ĩt

(1− β)C̃
1− 1

ψ

t + β
(
Et

[
Ũ1−γ
t+1

(
st+1, st, X

s
t ,∆at+1, X

∆a
t

)
· e(1−γ)∆at+1

∣∣∣st, Xt

]) 1− 1
ψ

1−γ


1

1−ψ

,

where the expectation on the right hand side is equivalent to:

Et

[
Ũ1−γ
t+1

(
st+1, st, X

s
t ,∆at+1, X

∆a
t

)
· e(1−γ)∆at+1

∣∣∣st, Xt

]
= Et

[
Et

[
Ũ1−γ
t+1

(
st+1, st, X

s
t ,∆at+1, X

∆a
t

)
· e(1−γ)∆at+1

∣∣∣st+1, st, Xt

] ∣∣∣st, Xt

]
=

2∑
st+1=1

P(st+1|st, Xs
t ) ...

× Et

[
Ũ1−γ
t+1

(
st+1, st, X

s
t ,∆at+1, X

∆a
t

)
· e(1−γ)∆at+1

∣∣∣st+1, st, Xt

]
=

2∑
st+1=1

Et(πst+1,st |st, Xs
t ) ...

× Et

[
Ũ1−γ
t+1

(
st+1, st, X

s
t ,∆at+1, X

∆a
t

)
· e(1−γ)∆at+1

∣∣∣st+1, st, Xt

]
, (B14)

where the first and second equalities follow from the independency of the regime changes

and the Gaussian shocks to productivity growth (st+1 and εt+1). Let the conditional

density of πst+1,st be g(πst+1,st|st, Xs
t ), then the third equality follows from:

P(st+1|st, Xs
t ) =

∫ 1

0

πst+1,stg(πst+1,st |st, Xt)dπst+1,st = Et(πst+1,st |st, Xt)

Furthermore, using the definition of our state variables, this last conditional expectation

equals λst,t or 1− λst,t.

Note that before choosing the optimal consumption and investment in (B13), we

need to solve numerically first the inner expectation, which is equivalently represented

by (B14). Hopefully, we have an analytical expression for the conditional expectation of

transition probabilities in (B14), which is either λst,t or 1−λst,t. For the second conditional
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expectation in (B14), we do not have a closed form since the continuation utility depends

on the realized productivity growth through K̃t+1. Therefore, we use quadrature-type

numerical methods to evaluate this expectation as follows:

Et

[
Ũ1−γ
t+1

(
st+1, st, X

s
t ,∆at+1, X

∆a
t

)
· e(1−γ)∆at+1

∣∣∣st+1, st, Xt

]
≈

J∑
j=1

ωε(j)
[
Ũ1−γ
t+1

(
st+1, st, X

s
t ,∆a(j), X∆a

t

)
· e(1−γ)∆a(j)

∣∣∣st+1, st, Xt

]
, (B15)

where ωε(j) is the quadrature weight corresponding to the quadrature node nε(j) used

for the integration of a standard normal shock εt+1 in productivity growth. The observed

realized productivity growth, ∆a(j), and a state variable, X∆a
t+1(j) = K̃t+1(j), are updated

as follows:

∆a(j) = µst+1 + σ · nε(j) (B16)

e∆a(j)K̃t+1(j) = (1− δ)K̃t + ϕ

(
Ĩt

K̃t

)
K̃t, (B17)

where

Ĩt = K̃α
t N̄

1−α − C̃t. (B18)

Finally, the numerical backward recursion can be performed by using (B13)-(B18).

The boundary conditions are defined by the limiting economies τ1,∞ and τ2,∞, where the

transition probabilities π11 and π22 are known.

B.1.1. Solving for a Dividend Claim

We also solve for the price-dividend ratio of the equity claim written on aggregate

dividends, which are defined as a leverage to aggregate consumption. Let exogenous

aggregate dividends be given by:

∆dt+1 = gd + λ∆ct+1 + σdεd,t+1,

where gd =
(

1 − λ
)(
E(P(s∞ = 1|π11, π22))µ1 + E(P(s∞ = 2|π11, π22))µ2

)
and P(s∞ =

i|π11, π22) is the ergodic probability of being in state i conditional on the transition prob-

abilities π11 and π22. Note that the long run mean of dividends growth, gd, is changing

under the household’s filtration, though the true long run growth is constant. The sub-

jective beliefs about the true parameter values induce fluctuations in gd, which can be

expressed as gd = gd(st+1, st, Xt).
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The equilibrium condition for the price-dividend ratio is standard in the Epstein-Zin

economy and is given by:

PDt = Et

β(C̃t+1

C̃t

)− 1
ψ (

At+1

At

)− 1
ψ

 Ũt+1 ·
(
At+1

At

)
Rt

(
Ũt+1 ·

(
At+1

At

))


1
ψ
−γ (

Dt+1

Dt

)
(PDt+1 + 1)


(B19)

Similarly to the solution for the value function, we rewrite all variables in the recursion

(B19) as a function of the state variables and further use quadrature-type numerical

methods to evaluate expectations on the right hand side of (B19). Additionally, we update

the long run dividends growth, gd(st+1, st, Xt), which is in fact random. Consequently,

the equilibrium recursion used to solve the model is then:

PDt(st, Xt, )

= Et

 βe(λ−
1
ψ )(∆c̃t+1+∆at+1)

(
Ũt+1·e∆at+1

Rt(Ũt+1·e∆at+1)

) 1
ψ
−γ

...

× egd(st+1,st,Xt)+0.5σ2
d ·
(
PDt+1

(
st+1, st, X

s
t ,∆at+1, X

∆a
t

)
+ 1
)
∣∣∣∣∣st, Xt



= Et

Et
 βe(λ−

1
ψ )(∆c̃t+1+∆at+1)

(
Ũt+1·e∆at+1

Rt(Ũt+1·e∆at+1)

) 1
ψ
−γ

...

× egd(st+1,st,Xt)+0.5σ2
d ·
(
PDt+1

(
st+1, st, X

s
t ,∆at+1, X

∆a
t

)
+ 1
)
∣∣∣∣∣st+1, st, Xt


∣∣∣∣∣st, Xt


=

2∑
st+1=1

P(st+1|st, Xs
t ) ...

× Et

 βe(λ−
1
ψ )(∆c̃t+1+∆at+1)

(
Ũt+1·e∆at+1

Rt(Ũt+1·e∆at+1)

) 1
ψ
−γ

...

× egd(st+1,st,Xt)+0.5σ2
d ·
(
PDt+1

(
st+1, st, X

s
t ,∆at+1, X

∆a
t

)
+ 1
)
∣∣∣∣∣st+1, st, Xt


=

2∑
st+1=1

Et(πst+1,st |st, Xs
t ) ...

× Et

 βe(λ−
1
ψ )(∆c̃t+1+∆at+1)

(
Ũt+1·e∆at+1

Rt(Ũt+1·e∆at+1)

) 1
ψ
−γ

...

× egd(st+1,st,Xt)+0.5σ2
d ·
(
PDt+1

(
st+1, st, X

s
t ,∆at+1, X

∆a
t

)
+ 1
)
∣∣∣∣∣st+1, st, Xt



Again, the conditional expectation of transition probabilities under the household’s filtra-

tion permits an analytical formula, while the inner expectation in the expression above

can be evaluated using the quadrature-type integration methods.
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B.1.2. Limiting Economies - Boundary Values for General Case

The key assumption of the numerical solution is that the household eventually learns

the true values of all uncertain parameters in the productivity growth. Thus, the simplest

limiting economy is the one where all parameters are known, including both transition

probabilities π11 and π22. In this case, st and Kt are the only state variables in the

economy. We employ the numerical solution methodology outlined for AU pricing for this

limiting economy. Specifically, we find the continuation utility (and the price-dividend

ratio of the equity claim) for a grid on π11 and π22.

B.2. Unknown Transition Probabilities and Unknown Mean Growth Rates

Productivity growth is given by:

∆at = µst + σεt,

where εt
iid∼ N(0, 1), st is a two state Markov chain with the transition matrix:

Π =

 π11 1− π11

1− π22 π22

 ,
where πii ∈ (0, 1). The regimes switches in st are independent of the Gaussian shocks εt.

As before, we assume that the representative household does not know the transition

probabilities (π11, π22). Additionally, the mean growth rates within each state (µ1, µ2)

are assumed to be unknown, while the realization of states (st) and productivity volatil-

ity (σt) remain observable. Due to the limitations of the numerical solution algorithm

under the prices parameter uncertainty case, we are unable to extend the economy to

unobservable regimes, while it is still possible to assume that the household does not

know a volatility parameter. Nevertheless, the extension to the case with all parameters

unknown, including volatility except for states, is quite straightforward, and we leave the

investigation of learning about volatility parameters for future research.

Regarding priors, we assume a conjugate prior for transition probabilities and mean

growth rates within each state i : the Beta distributed prior and the truncated normal

distributed prior, respectively. The updating equations for two pairs of hyperparameters

(a1, b1) and (a2, b2) remain as before. Additionally, we denote hyperparameters of the

truncated normal distributed prior for mean growth in state i by µi,t and σi,t, which are
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updated by the Bayes’ rule as follows:

µi,t+1 = µi,t + 1st+1=i

σ2
i,t

σ2
i + σ2

i,t

(∆at+1 − µi,t) (B20)

σ−2
i,t+1 = 1st+1=i · σ−2

i + σ−2
i,t , (B21)

where 1 is an indicator function that equals 1 if the condition in subscript is true and 0

otherwise.

Note that since the variance hyperparameters σ2
1,t and σ2

2,t are a function of the time,

the following 6-dimensional vector Xt ≡ {τ1,t, λ1,t, τ2,t, λ2,t, µ1,t, µ2,t} is sufficient statistics

for the priors. Thus, we can define Xt+1 using the equations (B7)-(B12), (B20)-(B21),

the next period regime, and sufficient statistics at time t :

Xt+1 = f(st+1, st, Xt).

Following the notations of a previous section, we define Xs
t ≡ {τ1,t, λ1,t, τ2,t, λ2,t} and

X∆a
t ≡ {K̃t, µ1,t, µ2,t}, where the superscripts s and ∆a indicate that variables in the

vectors Xs
t and X∆a

t are a function only of the observed state realization st and a function

of (also) the realized productivity growth, respectively. Thus, Xt =
[
Xs
t , X

∆a
t

]
. Using

these notations, we can rewrite

Ũt+1(st+1, Xt+1) = Ũt+1(st+1, st, X
s
t ,∆at+1, X

∆a
t )

to better indicate the dependence of state variables on specific shocks. Ultimately, the

recursive equation (A1) is of the same form:

Ũt(st, Xt) (B22)

= max
C̃t,Ĩt

(1− β)C̃
1− 1

ψ

t + β
(
Et

[
Ũ1−γ
t+1

(
st+1, st, X

s
t ,∆at+1, X

∆a
t

)
· e(1−γ)∆at+1

∣∣∣st, Xt

]) 1− 1
ψ

1−γ


1

1−ψ

,

where the expectation on the right hand side is equivalent to:

Et

[
Ũ1−γ
t+1

(
st+1, st, X

s
t ,∆at+1, X

∆a
t

)
· e(1−γ)∆at+1

∣∣∣st, Xt

]
=

2∑
st+1=1

Et(πst+1,st |st, Xs
t ) ...

× Et

[
Ũ1−γ
t+1

(
st+1, st, X

s
t ,∆at+1, X

∆a
t

)
· e(1−γ)∆at+1

∣∣∣st+1, st, Xt

]
. (B23)
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In this case, we compute the conditional expectation in (B23) by integrating over

conditional distribution of mean growth rates as well as Gaussian distribution of the error

term in productivity growth. In particular:

Et

[
Ũ1−γ
t+1

(
st+1, st, X

s
t ,∆at+1, X

∆a
t

)
· e(1−γ)∆at+1

∣∣∣st+1, st, Xt

]
≈

J∑
j=1

ωε(j)

[
K∑
k=1

ωµst+1
(k) · Ũ1−γ

t+1

(
st+1, st, X

s
t ,∆a(j, k), X∆a

t

)
· e(1−γ)∆a(j,k)

∣∣∣st+1, st, Xt

]
,

(B24)

where ωε(j) is the quadrature weight corresponding to the quadrature node nε(j) used for

the integration of a standard normal shock εt+1 in productivity growth, and ωµst+1
(k) is

the quadrature weight corresponding to the quadrature node nµst+1
(k) used for the inte-

gration of a truncated standard normal variable µst+1 . The observed realized productivity

growth, ∆a(j, k), and a state variable, X∆a
t+1(j, k) = K̃t+1(j, k), are updated as follows:

∆a(j, k) = nµst+1
(k) + σ · nε(j) (B25)

e∆a(j,k)K̃t+1(j, k) = (1− δ)K̃t + ϕ

(
Ĩt

K̃t

)
K̃t, (B26)

where

Ĩt = K̃α
t N̄

1−α − C̃t. (B27)

Finally, the numerical backward recursion can be performed by using (B22)-(B27).

The boundary conditions are defined by the limiting economies τ1,∞ and τ2,∞, where the

transition probabilities π11 and π22, and mean growth rates µ1 and µ2, are known.

B.2.1. Solving for a Dividend Claim

We also solve for the price-dividend ratio of the equity claim written on aggregate

dividends, which are defined as a leverage to aggregate consumption. Let exogenous

aggregate dividends be given by:

∆dt+1 = gd + λ∆ct+1 + σdεd,t+1,

where gd =
(

1 − λ
)(
E(P(s∞ = 1|π11, π22))µ1 + E(P(s∞ = 2|π11, π22))µ2

)
and P(s∞ =

i|π11, π22) is the ergodic probability of being in state i conditional on the transition

probabilities π11 and π22.
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Note that the long run mean of dividends growth, gd, is changing under the house-

hold’s filtration, though the true long run growth is constant. The subjective beliefs

about the true parameter values induce fluctuations in gd, which can be expressed as

gd = gd(st+1, st, Xt). The equilibrium condition for the price-dividend ratio and the equi-

librium recursion remain the same as in the ”unknown transition probabilities” model.

The only difference between the two models lie in the way we calculate the conditional

expectations. With unknown transition probabilities and mean growth rates in the pro-

ductivity growth process, we employ quadrature-type integration methods analogous to

solving for the continuation utility in this economy.

B.2.2. Limiting Economies - Boundary Values for General Case

The key assumption of the numerical solution is that the household eventually learns

the true values of all uncertain parameters in the productivity growth. Thus, the simplest

limiting economy is the one where all parameters are known, including both transition

probabilities π11 and π22, mean growth rates µ1 and µ2. In this case, st and Kt are the

only state variables in the economy. We employ the numerical solution methodology

outlined for AU pricing for this limiting economy. Specifically, we find the continuation

utility (and the price-dividend ratio of the equity claim) for a grid on π11, π22, µ1 and µ2.

B.3. Existence of Equilibrium

Similarly to Collin-Dufresne, Johannes and Lochstoer (2016) and Johannes, Lochstoer

and Mou (2016), the existence of the equilibrium in our production-based economy re-

lies on the fact that the value function is concave and finite for all parameters known

economies. Therefore, we verify that these conditions are satisfied for all limiting bound-

ary economies.

C. Impulse Responses

In this section, we consider the numerical procedure used to obtain impulse responses

of key macroeconomic and financial variables to a regime switch in the mean growth rate

of productivity. In particular, we assume that the economy stays in the high growth

state for a long period and then moves to a low growth regime at time 0. We further

consider three possible scenarios where the economy remains in the bad regime for one

quarter, three quarters, or two years before returning to the good state. The details of

the numerical algorithm look as follows.
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First, we find the steady state of capital, K̃, in the high growth regime, st = 1,

assuming unbiased parameter beliefs, Xt, which are centered at the true values. Formally,

K̃ solves the equation:

K̃ = fk(s−1 = 1, X−1, K̃),

where fK(·) is the policy function for capital assuming the productivity growth is high

forever.

Second, suppose that the economy starts in the high growth steady state before time

0 and the investor holds unbiased parameter beliefs. Then unexpectedly the economy

shifts to to the bad state at time 0 and stays there for τ periods. Using the policy

function, capital is computed recursively as:

K̃−1 = K̃,

K̃0 = fk(s0 = 2, X0, K̃−1), ...

K̃τ = fk(sτ = 2, Xτ , K̃τ−1),

K̃τ+1 = fk(sτ+1 = 1, Xτ+1, K̃τ ), ...

K̃t = fk(st = 1, Xt, K̃t−1), ∀t,

where investor’s parameter beliefs are updated in each period.

Third, we use policy functions for investment and consumption to obtain equilibrium

values of Ĩt and C̃t. Finally, we calculate the remaining macroeconomic and financial

variables using the updated state variables.
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Abstrakt

Zkoumáme, jakým zp̊usobem učeńı parametr̊u posiluje dopad makroekonomic-

kých šok̊u na ceny akcíı a jiné veličiny ve standardńı produkčńı ekonomice, kde

má reprezentativńı agent Epstein-Zin preference. Investor pozoruje technologické

šoky, jejichž dynamika je dána procesem sproměnlivým režimem, ale nezná skryté

parametry modelu, které ř́ıd́ı krátkodobé a dlouhodobé vyhĺıdky ekonomického

r̊ustu. Ukazujeme, že racionáln učeńı parametr̊u endogenné generuje dlouhodobé

riziko vekonomickém r̊ustu a ve spotřebě, což pomáhá vysvětlit širokou škálu feno-

mén̊u dynamického oceňováńı aktiv. Implikace dlouhodobých subjektivńıch rizik

pro oceňováńı aktiv zásadně záviśı na zavedeńı pro-cyklického procesu dividend,

který je konzistentńı sdaty.
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