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Abstract

I incorporate behavioral and bounded rationality elements into a single asset-pricing
framework by setting up a two-period consumption-based portfolio selection problem in
which a representative agent has biased priors, does not observe the current state and thus
has incomplete information about future state probabilities. He forms posterior beliefs
using signals that he selects according to the rational inattention discrete choice framework
of Matějka and McKay (2015), where the precision of the beliefs depend intuitively on
the priors and the cost of information λ. In the case of log-utility, the optimal portfolio
is a convex combination of the N portfolios the investor would have selected in each
of the N states if they were fully observable, where the weights reflect the subjective
posterior likelihood of time-zero states. The posterior beliefs are induced by parsimonious
reweighing of priors, where the weights depend on λ, discount factor β and the relative
entropies of the future state distributions induced by different time-zero states.

Using a two-state example, I demonstrate how the cost of information and biases can
be jointly analyzed in this framework and discuss implied deviations from fully rational
behavior. The major advantage of the proposed model is its flexibility. When the cost of
information λ is zero and the agent has correct priors, the model reduces to the standard
neoclassical framework. When λ is non-zero and the agent has correct priors, it is a model
of bounded rationality with endogenous signals and form of information, where the cost
of information reflects the mental capacity of the agent. When λ is zero and the agent has
biased priors, the model reduces to the behavioral framework with standard preferences.
The proposed framework could lay the foundations for multi-periods heterogeneous-agents
models in which the effects of biases and costly information can be jointly analyzed and
its consumption-based formulation might render it useful well beyond the asset pricing
context.

Keywords: Neoclassical Asset Pricing, Behavioral Asset Pricing, Rational Inattention,
Cost of Information, Mental Capacity
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Abstract

Zahrnuji prvky behaviorální a omezené racionality do modelu oceňování aktiv s reprezen-
tativním aktérem řešícím problém volby portfolia ve dvou obdobích Aktér modelu má
zkreslená apriorní očekávání a neúplnou informaci o rozdělení budoucích stavů. Aktér
utváří své posteriorní očekávání dle signálů, které volí ve frameworku racionální nepo-
zornosti s diskrétní volbou vytvořeném Matějkou a Mckayem (2015). Přesnost očekávání
závisí na apriorním očekávání a nákladech na získání informace λ. V případě logaritmické
užitkové funkce je optimální portfolio konvexní kombinací N portfolií, která by investor
volil v některém z N možných stavů, pokud by byly stavy plně pozorovatelné. Váhy kon-
vexní kombinace představují subjektivní posteriorní pravděpodobnosti stavů v čase nula.
Posteriorní očekávání je dáno přehodnocením vah plynoucích z apriorního očekávání, kde
váhy závisí na λ, diskontním faktoru β a relativní entropii rozdělení budoucích stavů
daných rozdílnými stavy v čase nula.

S použitím příkladu o dvou stavech ukazuji, jak náklady na informace a zkreslení mo-
hou být společně zkoumány v popsaném frameworku a diskutuji implikované rozdíly oproti
zcela racionálnímu chování. Hlavní výhodou navrženého modelu je flexibilita. Pokud jsou
náklady na získání informace λ nulové a aktér má správné apriorní očekávání, pak se
model redukuje na standardní neoklasický framework. Pokud je λ nenulová a aktér má
správné apriorní očekávání, pak se jedná o model s omezenou racionalitou s endogenními
signály a náklady na informace odrážejícími mentální kapacitu aktéra. Pokud je λ nulová
a aktér má zkreslené očekávání, pak se model redukuje na behaviorální model se standard-
ními preferencemi. Navržený framework by mohl být rozšířen o vice období a heterogenní
aktéry. Rozšíření by umožnilo zkoumat společný vliv zkreslení a nákladných informací
a reprezentace modelu založená na spotřebě by mohla být užitečná i v aplikacích mimo
oceňování aktiv.

Klíčová slova: neoklasické oceňování aktiv, behaviorální oceňování aktiv, racionální
nepozornost, náklady na informace, mentální kapacita
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1 Introduction1

Standard neoclassical models of portfolio selection assume that investors are ultra-rational:
they are fully informed about the state of the world today, hold correct beliefs about fun-
damental uncertainty tomorrow and always invest their wealth optimally by selecting the
portfolio allocations that maximize their expected utility over a fixed time horizon. These
assumptions, however, are unrealistic and the predictions generated by standard neoclassical
models fail to account for several stylized features of financial data. Two of the perhaps most
popular “puzzles” generated by the neoclassical approach are the risk premium puzzle and
the low risk-free rate puzzle exposed in Mehra and Prescott (1985), who demonstrate that
neoclassical models overpredict the risk-free rate and starkly underpredict the risk premia.

Two strands of literature - motivated, respectively, by bounded rationality and behavioral
approaches - have emerged in response to the shortcomings of the neoclassical approach.
Bounded rationality extends the standard models by imposing cognitive constraints on the
decision-makers. In such models, the state of the world is not observable and thus investors
do not necessarily hold correct beliefs about the future. They gather information to refine
their beliefs and make better decisions, but information is costly to acquire and there is a
limit on the amount that can be processed. Thus, investors choose signals with optimal
cost-usefulness balance and select portfolios that maximize their utilities conditional on the
information conveyed by their chosen signals.

Among models of bounded rationality, Rational Inattention (RI) of Sims (2003) is par-
ticularly relevant to the asset pricing context. It distinguishes itself from other models in
this class through its feature known as the Endogenous Form of Information. Most models
of bounded rationality impose exogenous restrictions on the form of signals a Decision-Maker
(DM) can observe or choose. In RI, however, a decision-maker optimizes by choosing a joint
distribution of a noisy signal s and the state of the world variable x it proxies. Because s

is noisy, it is not perfectly informative, but the nature of signal errors is under the control
of a decision-maker. Given that the DM can choose any joint distribution of s and x her
constraints allow, it follows that there is no restriction on the nature of available signals in RI
framework. Considering the abundance of information in the modern era and the monetary
value an information edge can have in the finance sector, the Endogenous Form of Informa-
tion makes RI much better suited than other models of bounded rationality for studying asset
pricing problems (a reader might refer to Mackowiak et al. (2020) for an extensive review of
Rational Inattention approach and to Gabaix (2014) for an example of a model of bounded
rationality with exogenous form of information acquisition).

Another appealing feature of RI is that loss-minimizing strategies of rationally inattentive
agents can generate behavioral biases akin to those uncovered in experimental settings (see

1Parts of this section have appeared in the final paper submitted to Combined Skills 1.
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e.g. Mackowiak et al. (2020) and Miao and Xing (2020)). Most interestingly, Batchuluun
et al. (2019) show that as their information capacity falls, RI agents save less of their wealth
in the form of risky assets and act as if they were more risk-averse. Similarly, Luo (2006)
shows that the risk premium implied by RI models is higher than the one implied by standard
neoclassical models. This feature of RI is also in line with the ambiguity aversion uncovered
by Kahneman and Tversky (1992) in an experimental setting - when people are presented
with a choice between a certain payment and a lottery, they tend to accept the lower certain
payment instead of the lottery the less information they are provided with about the latter.

Despite the relevance of RI to behavioral biases, it cannot explain all behavioral phe-
nomena. For instance, many of the biases exposed in Kahneman and Tversky (1992) exhibit
themselves in the cases in which respondents face simple problems and are provided with
all relevant information about the context. More generally, Bordalo et al. (2019) argue that
professional analysts form their beliefs using the representativeness heuristic, i.e. they form
wrong expectations about particular stock returns not because they lack information or face
a complicated choice problem, but because they misinterpret a particular feature of the data
available to them. Similarly, Frydman et al. (2018) find that some traders exhibit suboptimal
trading patterns because they trade as if their current mental account is a continuation of an
older one. For this reason, RI alone is insufficient to bridge the gap between the standard
neoclassical assumptions of ultra-rationality and evidence from psychology.

The essence of the behavioral approach is probably best described by Shefrin (2008),
who exposes a general framework for the behavioral modification of neoclassical models. In
this setting, cognitive limitations are not explicitly modeled, but investors are assumed to
have erroneous beliefs and non-standard preferences that reflect behavioral tendencies, where
the nature of modeled errors and behavioral biases are motivated by experimental or other
empirical evidence and could depend on a specific context. Such an approach facilitates
the modeling of market sentiment and allows us to identify and isolate from each other the
fundamental and non-fundamental components of the asset pricing process. For this reason,
behavioral models perform much better empirically than do standard neoclassical models (see
Shefrin (2008) for various examples of these).

Despite its flexibility and better explanatory power, the behavioral approach is oblivious of
the direct effects of cognitive limitations, which could be significant in some contexts. Consider
the case of the risk premium puzzle and the low risk-free rate puzzle. Shefrin (2008) shows
that in a behavioral setting, the risk premium is the sum of the fundamental risk premium
(i.e. the premium implied by the standard neoclassical approach) and sentiment premium,
where the latter arises because of the mispricing of both bonds and risky assets. Hence, the
behavioral approach provides a parsimonious explanation of why neoclassical models might
underpredict the return of the risky asset and overpredict the risk-free rate. However, for the
behavioral argument alone to be fully convincing, the sentiment premium must persist in a
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positive direction and be very large (around 7% on average). This feature is somewhat difficult
to reconcile with both the model and the empirical evidence, because the aggregate investor
errors are time-varying and stochastic in both cases, reflecting the varying composition of the
market by different types of investors. The introduction of RI in the behavioral framework
could potentially remedy this issue by allowing us to model the effects of additional uncertainty
brought forth by unobservable states of the world and the higher degree of risk aversion that
it is likely to generate.

In short, both behavioral and RI approaches modify the neoclassical framework in ways
that are in essence different yet complementary. The merger of the two approaches into a single
modeling framework is thus expected to deliver better insights about financial phenomena than
each can alone. Yet, to the best of my knowledge, no efforts have been made in this direction.
I propose and study an extension of the standard two-period consumption-based portfolio
selection problem in which a representative agent with CRRA preferences has potentially
biased priors, does not observe the current state and thus has incomplete information about
future state probabilities. He forms posterior beliefs using signals that he selects according
to the rational inattention discrete choice framework of Matějka and McKay (2015), where
the precision of the beliefs depend intuitively on the priors and the cost of information λ. In
the case of log-utility, the optimal portfolio is a convex combination of the N portfolios the
investor would have selected in each of the N states if they were fully observable, where the
weights reflect the subjective posterior likelihood of time-zero states. The posterior beliefs are
induced by parsimonious reweighinging of priors, where the weights depend on λ, discount
factor β and the relative entropies of the future state distributions induced by different time-
zero states.

I discuss a two-state example that illustrates how model implications differ from those of
the standard neoclassical approach. I show that when the agent is assumed to have correct
priors, incomplete information and the noisiness of signals induces him to be more risk-averse
relative to the full rationality case in the good state and more risk-seeking in the bad one. I
also demonstrate that when the investor is overconfident, the effects of incomplete information
are mitigated when the signals are correct and exacerbated when the signals are incorrect.

It is hoped that the paper lays the foundations for more advanced models that could
potentially outperform existing ones. The potential of the proposed model rests on its two
main features. First, it is based on a more realistic general axiom. The axiom consists
of two simple points: i) investors potentially have prior biases and face mental capacity
constraints that prevent them from correctly identifying future state probabilities and ii)
investors are not necessarily standard expected utility maximizers and their preferences might
reflect individual dispositions and emotions (this paper focuses on i)). Second, the proposed
model literally builds on and extends existing ones. When the cost of information λ is zero
and the agent has correct priors, the model reduces to the standard neoclassical framework.
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When λ is non-zero and the agent has correct priors, it is a model of bounded rationality with
endogenous signals and form of information, where the cost of information reflects the mental
capacity of the agent. When λ is zero and the agent has biased priors, the model reduces to
the behavioral framework with standard preferences, which should be able to accommodate
behavioral preferences too.

2 Model Description

2.1 General Framework

The economy is inhabited by a continuum of identical agents with CRRA utilities and an
endowment process ω(xt), t = 0,1. x1, the state of the world tomorrow, is uncertain and the
nature of uncertainty depends on x0, the state of the world today. The representative agent
wants to select a feasible consumption plan that maximizes his two-period expected utility,
i.e. the agent wants to solve the following Optimization Problem (OP (x0) henceforth)

max
c(x0),{c(x1)}x1

{︂
u(c(x0))+βEPx1|x0

[u(c(x1))]
}︂

subject to ∑︂
t,xt

q(xt)c(xt) ≤
∑︂
t,xt

q(xt)ω(xt),

where q(x1) denotes a state-price corresponding to x1 and EPx1|x0
[.] denotes the expectation

taken w.r.t Px1|x0 , the conditional distribution of x1 given x0. The agent knows Px1|x0 for any
realization of x0, but since x0 is unobservable, the agent does not know true Px1|x0 and so
solving OP (x0) is not feasible. Instead, the agent observes a realization of signal s that is
informative about x0, forms posterior Px1|s and solves the choice problem using the posterior
beliefs (call the resulting optimization problem OP (s) henceforth). The agent chooses signal
s according to the framework of Matějka and McKay (2015) and updates beliefs according to
Bayes Law.

In general, Px1|x0 need not be the true conditional distribution of x1 given x0 and might
be thought of as the distribution the representative agent associates to x1 conditional on state
x0. When that is the case, we say that the agent has biased beliefs, where the form of biases
depends on underlying assumptions about the agent errors. For instance, the conditional
distributions of an overconfident agent would have smaller variances than corresponding true
distributions. The nature of true Px1|x0 also depends on the underlying assumptions about
the fundamental uncertainty. For instance, if we assume that there are N states and they are
persistent, P

x1|xj
0

can be specified as being concentrated around state j, with probability of
other states becoming smaller the further away they are from state j. Since Px1|s is a convex
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combination of
{︂

P
x1|xj

0

}︂N

j=1
as shown in Section 3.1, such specification would lead to posterior

beliefs that have greater variance than does the true distribution Px1|x0 , which could in turn
induce greater risk aversion on the part of the agent relative to the case with fully observable
x0.

The assumption that the state of the world is unobservable reflects the fact that the real
economy is something very fundamental that cannot be described by numbers, nor everything
that can be expressed in numbers can be accounted for. It reflects the financial standing, in-
tellectual capital, motives, aspirations and abilities of all economic agents in a given area.
Moreover, even something as fundamental as macroeconomic or sector-level indicators are
often released after delay and one often encounters news describing how the market or policy-
makers have been encouraged or disappointed by the past developments that they have only
recently become aware of. Posterior updating then reflects the attempts of the agents to
identify the conditions of the present, on which future developments depend. The informa-
tiveness of the chosen signals depends on the cost of information parameter λ in the rational
inattention framework of Matějka and McKay (2015), who show that when λ = 0, the signals
are perfectly informative (for this model, the result is also proved in Section 3.1). Hence, the
standard neoclassical framework is a special case of the proposed model.

The paper focuses on general CRRA and log preferences for simplicity, though the results
of Sections 2 and 3.1 should be more widely applicable. In Section 5, I comment briefly
about how the CRRA utility function can represent behavioral preferences. The optimization
problem is formulated in terms of a consumption plan selection for its generality and greater
tractability. I show throughout the coming sections that in the two-period model, the con-
sumption plan can be interpreted as a portfolio of assets the pay-off of which coincides with the
chosen consumption level for each state tomorrow. More formally, I show that in a complete
markets setting with N arbitrary assets, the optimal consumption plan has, for any set of
Arrow-Debreu prices, the same pay-off as the optimal portfolio induced by consumption-based
portfolio optimization. I also show that pure consumption and portfolio selection frameworks
induce the identical asset pricing equation.

2.2 Relationship to the Asset Pricing Framework

The optimization problem of the representative agent is posed as a consumption allocation
problem for its relative simplicity and greater generality. In this section, I am going to show
that the consumption allocation problem is in essence a portfolio selection problem, can ex-
plicitly be formulated as such and induces the same asset pricing equation. I proceed as
follows: Firstly, I derive a general asset pricing equation using No Arbitrage Principle in a
complete markets setting and derive its specific form implied by the consumption allocation
problem. Secondly, I show that the consumption-based portfolio selection problem induces
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the same asset pricing equation and that consumption plan induced by the optimal port-
folio coincides with the optimal consumption plan obtained directly from the consumption
allocation problem.

2.2.1 Asset Pricing in Complete Markets Using the No Arbitrage Principle

Let xj
1 denote j−th state of the world tomorrow, j = 1,2, ...,N, and let ADj denote j−th

state Arrow-Debreu security that pays 1 unit of consumption in state xj
1 and zero otherwise.

Further, let τA(xj
1) denote the pay-off of asset A in state xj

1 and assume complete markets
with no frictions or transaction costs. By market completeness, ADj exists for all j and so
the pay-off of any asset can be replicated using the portfolio of Arrow-Debreu securities. To
see this, define

τA ≡

⎡⎢⎢⎢⎢⎢⎣
τA(x1

1)
τA(x2

1)
...

τA(xN
1 )

⎤⎥⎥⎥⎥⎥⎦
and note that since τA ∈ RN and the pay-off vector of ADj is ej,N (an N−dimensional vector
with 1 in its j−th entry and zero elsewhere), τA can be expressed as a linear combination of
the pay-offs of ADj , j = 1,2, ...,N. More specifically,

τA =
N∑︂

j=1
τA(xj

1)ej,N

and so holding an asset A is equivalent to holding a portfolio of Arrow-Debreu securities
consisting of τA(xj

1) units of ADj , j = 1,2, ...,N. The No Arbitrage Principle then implies that
PA, the price of A, coincides with the price of the corresponding Arrow-Debreu portfolio, i.e.
if q(xj

1) denotes the price of ADj ,

PA =
N∑︂

j=1
q(xj

1)τA(xj
1).

Of course, the expression above is not very informative unless we make assumptions about
how q(xj

1) is determined for each j. A common way to proceed is to specify the probability
the market associates to xj

1 as pM (xj
1), j = 1,2, ...,N, and rewrite the price of A as

PA =
N∑︂

j=1
pM (xj

1) q(xj
1)

pM (xj
1)

τA(xj
1) = EpM [mM (x1)τA(x1)] ,
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where EpM [.] denotes the expectation taken w.r.t. the market beliefs and mM (xj
1) ≡ q(xj

1)
pM (xj

1)
is

called the market stochastic discount factor. The intuition behind this formula is that market
prices asset A by discounting its pay-off in each state tomorrow to the present and then
taking the subjective expectation over the discounted pay-offs. mM (xj

1) is a proxy for how
much market values one unit of consumption/pay-off in state j tomorrow and in consumption-
based structural models, it corresponds to the number of units of present-day consumption a
representative investor is willing to give up in exchange for a claim for one unit of consumption
in state j tomorrow.

Further analysis of the asset pricing equation is based on additional assumptions about how
market beliefs and stochastic discount factor are determined. Market beliefs always arise from
some sort of aggregation of the beliefs of individual investors. In a model with a continuum of
identical investors, the market beliefs coincide with the beliefs of the representative investor,
since every investor is a priori assumed to be identical. In a model with heterogeneous
investors, aggregation is non-trivial and requires further assumptions and derivations. In
models of full investor rationality, pM (xj

1) coincides with the true probability of xj
1, while in

the bounded rationality and behavioral models, pM (xj
1) deviates from the true probability

and reflects the biases and errors of individual investors.

2.2.2 Consumption-Based Asset Pricing Equation

In this section, I derive the expressions for pM (xj
1) and mM (xj

1) in the framework of Section
2.1 and under the assumption of complete information and full rationality, i.e. the represen-
tative agent observes the state of the world x0 today, has correct beliefs and solves OP (x0)
(generalization to other cases is straightforward). Since all agents are identical, market beliefs
coincide with the beliefs of the representative investor and so

pM (xj
1) = Px1|x0

(︂
xj

1|x0
)︂

, (2.1)

where Px1|x0

(︂
xj

1|x0
)︂

is the true probability of xj
1 conditional on x0. Since x0 is for now

assumed to be observable, denote Px1|x0

(︂
xj

1|x0
)︂

by pj for simplicity of notation. mM (xj
1) is

then given by q(xj
1)

pj
, which is determined by the solution of OP (x0). To see this, denote the

Lagrangian of OP (x0) by L and note that

L
(︃

c0,
(︂
c(xj

1)
)︂N

j=1
,µ

)︃
= u(c0)+βEPx1|x0

[u(c(x1))]+µ

⎛⎝ω0 +
N∑︂

j=1
q(xj

1)ω(xj
1)− c0 −

N∑︂
j=1

q(xj
1)c(xj

1)

⎞⎠ ,
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where u(c0) = c1−γ
0

1−γ and βEPx1|x0
[u(c(x1))] = β

∑︁N
j=1

c(xj
1)1−γ

1−γ pj . The First Order Conditions of
the Lagrangian w.r.t. c0 and c(xj

1) then imply, respectively, that

c−γ
0 = µ

and
βpjc(xj

1)−γ = µq(xj
1),

which together give
q(xj

1)
pj

= β

(︄
c(xj

1)
c0

)︄−γ

,

where c(xj
1)

c0
is an aggregate consumption growth from period 0 to period 1 in the event that

state j occurs tomorrow.
The preceding discussion implies the following asset pricing equation for A:

PA = EPx1|x0

[︄
β

(︃
c(x1)

c0

)︃−γ

τA(x1)
]︄

. (2.2)

At a first glance, the expression might not appear intuitive, since it relies on x1 - the abstract
notion of the state of the world tomorrow. Note, however, that the distribution of x1 can
be defined w.l.g. so that there is a one-to-one correspondence between the realizations of x1

and those of the consumption growth random variable c(x1)
c0

. Thus, the states of the world can
be defined in terms of aggregate consumption growth, which would make the asset pricing
equation more tractable (one can think of this as a real-life “calibration” of x1). To see that
such a definition of x1 is possible, note from the First Order Condition for c(xj

1) that

c(xj
1) =

(︄
βpj

µq(xj
1)

)︄ 1
γ

, (2.3)

which implies that, for j ̸= j′,
c(xj

1)
c0

= c(xj′

1 )
c0

if and only if
pj

q(xj
1)

= pj′

q(xj′

1 )
. (2.4)

If the equality above fails for all pairs j,j′, then we have a one-to-one correspondence between
the realizations of x1 and those of c(x1)

c0
. If the equality holds for some pairs, we can proceed as

follows. Suppose first that the equality holds for one pair only and assume w.l.g. that the pair
is given by the (N −1)−th and N−th states. We can then redefine states of tomorrow using
the variable x̃1 with (N −1)-sized support, where x̃j

1 = xj
1 for all j < N −1 and x̃N−1

1 denotes

13



an event xN−1
1 ∪xN

1 . The modified optimization problem will then yield solutions c∗(x̃j
1) that

satisfy

c∗(x̃j
1) =

⎧⎨⎩c∗(xj
1), j < N −1

c∗(xN−1
1 ) = c∗(xN

1 ), j = N −1
, (2.5)

which will give us the desired one-to-one correspondence, since, by assumption, (N −1),N is
the only pair that violates (2.4). If we suppose now that (2.4) holds for more than one pair,
we can iterate the procedure for each such pair until no remaining pairs satisfy (2.4).

To demonstrate that (2.5) indeed holds, note first that if we replace the choice variable
c(xN

1 ) by choice variable c(xN−1
1 ) in L, we will get the modified Lagrangian

L′
(︃

c0,
(︂
c(xj

1)
)︂N−1

j=1
,µ

)︃
= c1−γ

0
1−γ

+β
N−2∑︂
j=1

c(xj
1)1−γ

1−γ
pj + c(xN−1

1 )1−γ

1−γ
(pN−1 +pN )+

+µ

⎛⎝ω0 +
N∑︂

j=1
q(xj

1)ω(xj
1)− c0 −

N−2∑︂
j=1

q(xj
1)c(xj

1)− c(xN−1
1 )

(︂
q(xN−1

1 )+ q(xN
1 )
)︂⎞⎠ ,

which is the Lagrangian of OP (x0) under the additional constraint that c(xN
1 ) = c(xN−1

1 ).
However, since at the optimum c(xN

1 ) = c(xN−1
1 ), the additional constraint is non-binding

and so the solution of the modified OP (x0) coincides with the original solution. If we set up
the Lagrangian for the consumption allocation problem using x̃1 instead of x1 as the state
variable, it will coincide with the Lagrangian of the modified OP (x0) and so (2.5) follows.

Hence, the asset pricing equation PA = EPx1|x0

[︃
β
(︂

c(x1)
c0

)︂−γ
τA(x1)

]︃
is now tractable, since

it depends on aggregate consumption growth and its distribution, the time discount factor β,

the coefficient of relative risk aversion γ and the pay-off structure of asset A.

2.2.3 Consumption-Based Asset Pricing Equation in a Portfolio Selection Set-
ting

The derivation of market beliefs and the stochastic discount factor in the previous section
might seem somewhat arbitrary - after all, the expressions for pM (xj

1) and mM (xj
1) come from

a consumption allocation problem that makes no explicit reference to assets or their prices.
Note, however, that the consumption allocation problem is in essence a portfolio selection
problem - by selecting a consumption plan

(︃
c0,
{︂

c(xj
1)
}︂N

j=1

)︃
, the representative agent buys

an asset (or a portfolio of assets) the pay-off of which is given by c(x1). To see this, note
that by choosing c(xj

1) = c∗(xj
1), the agent purchases a claim to c∗(xj

1) units of consumption
in state xj

1 tomorrow, where a claim to one unit of consumption in xj
1 can be interpreted as

ADj , since the former pays one unit if state xj
1 occurs and zero otherwise. Purchasing a claim

to c∗(xj
1) units of consumption in state xj

1 is then equivalent to buying c∗(xj
1) units of ADj

14



and so selecting a consumption plan
(︃

c0,
{︂

c(xj
1)
}︂N

j=1

)︃
can be interpreted as enjoying c0 units

of consumption today and purchasing a portfolio of Arrow-Debreu securities with the pay-off
vector τAD that is given by

τAD ≡

⎡⎢⎢⎢⎢⎢⎣
c(x1

1)
c(x2

1)
...

c(xN
1 )

⎤⎥⎥⎥⎥⎥⎦ .

In Section 2.2.4, I demonstrate that the pay-off of the optimal portfolio of N arbitrary assets
in a complete markets setting indeed coincides with τAD and throughout the rest of this
section, I show that pure consumption and portfolio-based frameworks yield the same asset
pricing equation.

Consider the following portfolio selection problem in a complete markets framework: the
representative investor is endowed with wealth W and wants to allocate it optimally across
consumption today c0 and N assets with different pay-off structures tomorrow. His preferences
are described by CRRA utility function u(c) = c1−γ

1−γ and his beliefs are given by true state
probabilities as before, since x0 is observable. Let Pi and ai denote the price and the number
of purchased units of asset i, respectively, and let τi(xj

1) be the pay-off of asset i in state
xj

1 tomorrow. Then, the optimization problem of the representative investor (call it P(x0)
henceforth, or P for short) can be formulated as follows:

max
co,{ai}N

i=1

⎧⎨⎩ c1−γ
0

1−γ
+β

N∑︂
j=1

c(xj
1)1−γ

1−γ
pj

⎫⎬⎭
subject to

c0 +
N∑︂

i=1
aiPi = W,

c(xj
1) =

N∑︂
i=1

aiτi(xj
1) ∀j.

In words, at time 0, the representative investor decides how much to consume today and invests
the rest of his wealth W − c0 in a portfolio {ai}N

i=1 of assets i priced at Pi, i = 1,2, ...,N, by
choosing co,{ai}N

i=1 in a way that maximizes his two-period expected utility. At time 1, he
receives a pay-off aiτi(xj

1) from his holdings of asset i and so his portfolio pays him a total of∑︁N
i=1 aiτi(xj

1), all of which he consumes.
If we denote c(xj

1,a) ≡
∑︁N

i=1 aiτi(xj
1), a ≡ (ai)N

i=1 , and replace c(xj
1) in the objective function

15



by c(xj
1,a),then the Lagrangian of P can be written as

LP
(︂
c0,(ai)N

i=1 ,µP
)︂

= c1−γ
0

1−γ
+β

N∑︂
j=1

c(xj
1,a)1−γ

1−γ
pj +µP

(︄
W − c0 −

N∑︂
i=1

aiPi

)︄
, (2.6)

where the First Order Condition for c0 and ai are given, respectively, by

c−γ
0 = µP

and

β
N∑︂

j=1
c(xj

1,a)−γτi(xj
1)pj = µPPi,

which together imply that

Pi =
N∑︂

j=1
β

(︄
c(xj

1,a)
c0

)︄−γ

τi(xj
1)pj = E

[︄
β

(︃
c(x1,a)

c0

)︃−γ

τi(x1)
]︄

.

Note that in this framework, it is always true that c(xj
1,a) = c(xj

1): a as an argument in
c(xj

1,a) merely indicates that c(xj
1) is not a free choice variable and is determined by the

selected portfolio, which in turns makes the optimization problem more tractable. Hence,
denoting c(xj

1) induced by the optimal portfolio as c∗
P(xj

1) and recalling from (2.1) that pj ≡
Px1|x0

(︂
xj

1|x0
)︂

, we could rewrite the asset pricing equation above as

Pi = EPx1|x0

[︄
β

(︃
c∗

P(x1)
c0

)︃−γ

τi(x1)
]︄

,

which is the same asset pricing expression derived in the previous section. Note, however,
that this does not yet imply that pure consumption and consumption-based portfolio selection
frameworks yield identical prices for any given asset - to establish the equivalence between
the two asset pricing equations, we need to show that Pi = PA whenever τi = τA, where

PA = EPx1|x0

[︄
β

(︃
c∗(x1)

c0

)︃−γ

τA(x1)
]︄

is the price of asset A as determined by the approach in the previous section. For this it is
sufficient to show that

c∗
P(xj

1) = c∗(xj
1) ∀j. (2.7)

I establish (2.7) in Section 2.2.4. In the framework of a continuum of identical agents, this
can alternatively be demonstrated using the equilibrium conditions, which illustrates how
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the asset market and consumption economy equilibriums are related. The equilibrium of the
economy underlying OP (x0) is given by

c0 = ω0

c(xj
1) = ω(xj

1) ∀j,

and so c0 and c(xj
1) are exogenously determined for all j. Note that this is not mathematically

at odds with OP (x0), since by solving OP (x0) the agent solves for optimal consumption plan
as a function of prices. The equilibrium conditions then indicate that in equilibrium prices
adjust so that the representative agent wants to consume exactly her endowment. To see this,
recall that by the First Order Conditions of OP (x0)

c(xj
1) = c0

(︄
βpj

q(xj
1)

)︄ 1
γ

,

which in equilibrium yields

ω(xj
1) = ω0

(︄
βpj

q(xj
1)

)︄ 1
γ

and so the equilibrium prices are given by

q∗(xj
1) = βpj

(︄
ω(xj

1)
ω0

)︄−γ

.

The intuition behind this result is as follows: suppose that initially prices are such that
c∗(xj

1) > ω(xj
1) for some j and for some agent, i.e. some agent in the economy want to

secure an amount of consumption in state xj
1 that exceeds his endowment in that state. To

do that, he needs to buy additional consumption claims for state xj
1, but since every agent

is identical in this artificial economy, everyone else would want to do the same. With the
supply of consumption claims fixed at ω(xj

1) for each j, the corresponding market would
experience an excess demand for state−j consumption claims and so the price will increase
until c∗(xj

1) = ω(xj
1).

To show that P induces the same consumption choices in equilibrium, we first need to
make the economies underlying the two frameworks comparable. More specifically, we need
to specify the asset supply in the portfolio selection setting exogenously and so that the
total units of consumption available today and in each state tomorrow coincide with the
endowments in the consumption economy. To do that, let as

i denote the number of units of
asset i available in the economy and note that as

i τi(xj
1) is the total amount of consumption

asset i generates in state xj
1. Hence, the total amount of consumption available for state

xj
1 is given by

∑︁N
i=1 as

i τi(xj
1) and the comparability of the consumption selection and asset
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allocation frameworks require that

N∑︂
i=1

as
i τi(xj

1) = ω(xj
1), (2.8)

where the induced system of equation can be written in matrix form as

τPas = ω,

where asis an N−dimensional vector with as
i as its i-th entry, ω is an N−dimensional vector

with ω(xj
1) as its j-th entry and τP is an N ×N matrix with τi(xj

1) as its (j, i)-th entry. The
sought out value for as is then uniquely determined by

as = τ−1
P ω,

where τ−1
P exists, since its i−th column is a pay-off vector of asset i,and in complete markets

with N assets and N states, the asset pay-off vectors are linearly independent.
Now that we have ensured that aggregate endowments in the two economies are the same,

it remains to establish the equivalence of consumption allocations. In the framework of P,

the equilibrium conditions are described by the equality of each asset demand with its supply,
i.e. in equilibrium

ai = as
i ∀i,

which implies that
N∑︂

i=1
aiτi(xj

1) =
N∑︂

i=1
as

i τi(xj
1) ≡ ω(xj

1) ∀j.

Since
∑︁N

i=1 aiτi(xj
1) is the induced consumption plan, i.e. c(xj

1,a) ≡
∑︁N

i=1 aiτi(xj
1), it follows

that in equilibrium
c(xj

1,a) = ω(xj
1) ∀j.

The intuition behind how the equilibrium and the optimization problem interact is analogous
to the one in pure consumption framework. More specifically, suppose the price of asset i is
such that ai > as

i for some investor and some i, i.e. some investor want to hold more asset i

than what he is endowed with. With every other investor having the same endowment and
preferences, and with the supply of asset i fixed at as

i , the market for asset i would experience
an excess demand and its price would adjust until ai = as

i .
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2.2.4 Equivalence Between Consumption Allocation and Portfolio Selection in a
Two-Period Model

In the previous section we claimed that the consumption allocation can be interpreted as
a portfolio selection and showed that in the framework of continuum of identical agents,
the two frameworks yield the same asset pricing equation for an arbitrary asset A. Indeed,
consumption allocation and portfolio selection are inseparable notions: investing in a portfolio
of assets is an indispensable vehicle for allocating consumption across time, and investment
in any asset is always driven by future consumption motive. In this section, I am going
to show that the two-period consumption allocation and a portfolio selection problems are
equivalent - they induce the same optimal consumption plan, which can be described using (or
interpreted as) the pay-off of the optimal portfolio of N arbitrary assets in a complete market
setting. This will be accomplished as follows: first, I will show that P formulated in terms of
Arrow-Debreu securities (call it PAD henceforth) yields the same optimal consumption plan
as OP (x0) and afterwards, I will demonstrate that P formulated in terms of N arbitrary
securities in complete markets setting is equivalent to PAD.

To establish the equivalence between PAD and OP (x0), assume that the representa-
tive investor in P is as wealthy as the representative agent in OP (x0), i.e. let W = ω0 +∑︁N

j=1 q(xj
1)ω(xj

1). Note that this neither complicates nor restricts P in any way, since q(xj
1) is

assumed to be fixed in the optimization problem and q(xj
1),ω(xj

1) > 0 are arbitrary for all j.
Further, note that in the framework of PAD, asset i is given by ADi and so Pi = q(xi

1) and

τi(xj
1) =

⎧⎨⎩1, if i = j

0, otherwise
.

With this formulation, the constraint c(xj
1) =

∑︁N
i=1 aiτi(xj

1) becomes

c(xj
1) = ajτj(xj

1) = aj ≡ aj,AD (2.9)

and we get by (2.6) that the Lagrangian of PAD is given by

LPAD

(︂
c0,(ai,AD)N

i=1 ,µPAD

)︂
= c1−γ

0
1−γ

+β
N∑︂

j=1

aj,AD
1−γ

1−γ
pj +µPAD

⎛⎝ω0 +
N∑︂

j=1
q(xj

1)ω(xj
1)− c0 −

N∑︂
j=1

aj,ADq(xj
1)

⎞⎠ .

Note from LPAD

(︂
c0,(ai,AD)N

i=1 ,µPAD

)︂
that the objective function and the constraint of PAD

are identical to those of OP (x0) (the only difference is notational - in OP (x0), we denote the
choice variables by c0,

(︂
c(xj

1)
)︂N

j=1
, while in PAD, we replace

(︂
c(xj

1)
)︂N

j=1
as choice variables by
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(aj,AD)N
j=1). Hence, µPAD = µ and it follows that

LPAD

(︂
c0,(ai,AD)N

i=1 ,µPAD

)︂
≡ L

(︃
c0,
(︂
c(xj

1)
)︂N

j=1
,µ

)︃
,

where L and µ are the Lagrangian and the Lagrange multiplier of OP (x0), respectively. It is
then immediate that c∗(xj

1) = a∗
j,AD for all j and since cPAD

(xj
1) also equals a∗

j,AD by (2.9),
we get that cPAD

(xj
1) = c∗(xj

1).
It now remains to establish the equivalence between PAD and P. Consider P with N

arbitrary assets in a complete markets setting and let the matrix of asset pay-offs be given by

τP ≡

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

τ1(x1
1) τ2(x1

1) · · · τN−1(x1
1) τN (x1

1)
τ1(x2

1) τ2(x2
1) · · · τN−1(x2

1) τN (x2
1)

...
... · · ·

...
...

τ1(xN−1
1 ) τ2(xN−1

1 ) · · · τN−1(xN−1
1 ) τN (xN−1

1 )
τ1(xN

1 ) τ2(xN
1 ) · · · τN−1(xN

1 ) τN (xN
1 )

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

where (j, i)-th entry of τP is the pay-off of asset i in state j. By market completeness, the
columns of τP are linearly independent and so for any b ∈ RN , there exists α ≡ (αi)N

i=1 such
that τPαT = b (i.e. we can replicate any pay-off vector in RN by selecting an appropriate
linear combination of the N assets). Hence, for each j, there exists unique αj ≡

(︂
αj

i

)︂N

i=1
such

that τP
(︁
αj
)︁T = ej,N , where ej,N is an N−dimensional vector with 1 as its j−th entry and zero

elsewhere. Note that the portfolio consisting of αj
i units of asset i, i = 1,2, ...,N, is equivalent

to ADj , since the two have identical pay-off vectors. Thus, define

q(xj
1) ≡

N∑︂
i=1

αj
i Pi. (2.10)

To see that such definition is well-motivated, note first that the N assets in this framework
may or may not include ADj for any j. If ADj is among the N assets, No-Arbitrage principle
requires that the price of ADj coincides with that of the replicating portfolio. If ADj is not
among the N assets, q(xj

1) can be freely specified, and such definition is justified, since hold-
ing the portfolio given by

(︂
αj

i

)︂N

i=1
in P is equivalent to holding ADj in PAD, and so there is

consistency in the way q(xj
1) is defined across the two settings. Moreover, in the optimization

problem, the prices are assumed to be fixed from the perspective of the investor; hence, to see
whether induced choices in P and PAD are the same or not, we need to compare asset alloca-
tions across the two settings for the same arbitrary fixed set of prices. The definition above
then ensures that the differences, if any, in portfolio selections across the two frameworks do
not arise because the representative investor observes different prices for equivalent securities.
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Next, let “Portfolio
(︂
αj

i

)︂N

i=1
” denote the portfolio consisting of αj

i units of asset i, i =

1,2, ...,N, and note that we can replicate any pay-off vector using
{︃(︂

αj
i

)︂N

i=1

}︃N

j=1
since Portfolio(︂

αj
i

)︂N

i=1
is equivalent to ADj . Hence, analogously to the discussion in (2.2.1), No-Arbitrage

principle implies that the price of asset i can be written as

Pi =
N∑︂

j=1
τi(xj

1)q(xj
1)

and so
N∑︂

i=1
aiPi =

N∑︂
i=1

ai

N∑︂
j=1

τi(xj
1)q(xj

1) =
N∑︂

j=1

(︄
N∑︂

i=1
aiτi(xj

1)
)︄

q(xj
1) ≡

N∑︂
j=1

ājq(xj
1),

where āj ≡
∑︁N

i=1 aiτi(xj
1). Hence, the Lagrangian of P given in (2.6) can be rewritten as

LP
(︂
c0,(ai)N

i=1 ,µP
)︂

= LP
(︂
c0,(āi)N

i=1 ,µP
)︂

= c1−γ
0

1−γ
+β

N∑︂
j=1

ā1−γ
j

1−γ
pj+

+µP

⎛⎝ω0 +
N∑︂

j=1
q(xj

1)ω(xj
1)− c0 −

N∑︂
j=1

ājq(xj
1)

⎞⎠
which is identical to LPAD

(︂
c0,(ai)N

i=1 ,µPAD

)︂
except that in PAD,

{︂
q(xj

1)
}︂N

j=1
is exogenously

given within the optimization problem, while in P,
{︂

q(xj
1)
}︂N

j=1
is derived by (2.10) from

exogenously given asset prices and pay-offs. Hence, to establish the equivalence between LP

and LPAD , we need to show two things:

1. For any positive
{︃(︂

τi(xj
1)
)︂N

j=1

}︃N

j=1
and

{︂
q(xj

1)
}︂N

j=1
, there exist unique {Pi}N

i=1 such that

(2.10) holds for all j;

2. There is a one-to-one correspondence between ā ≡ (āj)N
j=1 and a ≡ (aj)N

j=1 .

1) ensures that P can be formulated in terms of Arrow-Debreu portfolios for any set of fixed
Arrow-Debreu prices

{︂
q(xj

1)
}︂N

j=1
(we have already shown above that the converse is true - for

any fixed {Pi}N
i=1 , Arrow-Debreu prices can be uniquely constructed according to (2.10)). 2)

ensures that we can recover optimal values of a by solving for optimal values of ā. This is
essential for establishing equivalence, since the objective in the original formulation of P is to
solve for optimal {ai}N

i=1 conditional on prices {Pi}N
i=1.

To see 1), let α denote the N ×N matrix the (j, i)−th entry of which is given by αj
i from
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(2.10) and note that by definition of αj
i ,

τPαT =
[︃

τP
(︁
α1)︁T τP

(︁
α2)︁T · · · τP

(︂
αN
)︂T

]︃
=
[︂

e1,N e2,N · · · eN,N

]︂
= IN×N ,

where IN×N is an N × N identity matrix. Hence, αT is invertible and so is α. Further, let q

denote the vector of state-prices with q(xj
1) as its j−th entry and let P denote the vector of

asset prices with Pi as its i−th entry, i, j = 1,2, ...,N. Then, by (2.10),

αP = q

and since α is invertible, P is uniquely determined by

P = α−1q.

To see 2), it is sufficient to show that for any fixed ā, the system of equations in a

āj ≡
N∑︂

i=1
aiτi(xj

1) ∀j

has a unique solution. To see this, write the system in the matrix form

τa = ā

and note that since τ is invertible, a is uniquely determined by

a = τ−1ā.

Hence, we have demonstrated the following:

1. For any set of fixed Arrow-Debreu prices
{︂

q(xj
1)
}︂N

j=1
, the portfolio selection problem

with N arbitrary assets in complete markets setting can be posed as the portfolio selec-
tion problem with N Arrow-Debreu portfolios, and the optimal selection ā∗ of Arrow-
Debreu portfolios induces the optimal selection a∗ of the original N assets.

2. For any set of fixed Arrow-Debreu prices
{︂

q(xj
1)
}︂N

j=1
, ā∗ coincides with a∗

AD, the optimal
selection of Arrow-Debreu securities in PAD.

3. The solution of PAD induces the same consumption plan as that of OP (x0) and so
P, PAD and OP (x0) are all equivalent. More specifically, for any set of fixed Arrow-
Debreu prices

{︂
q(xj

1)
}︂N

j=1
, the three induce the same consumption plan, which is or can

be interpreted as a portfolio of assets that deliver different pay-offs in different states of
the world tomorrow.
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2.3 Optimal Signal Selection: Discrete Choice Problem in Matějka and
McKay (2015)

Matějka and McKay (2015) set up and solve a discrete choice problem in which a decision-
maker (DM) chooses among N actions with a pay-off vector of v ∈ RN , where vi, i−th entry
of v, is a pay-off of i−th action. The DM does not observe v (also called a state of nature)
but optimally chooses a costly information processing strategy that generates a signal s ∈ RN

that proxies v, where the cost increases with signal precision. Given the signal realization s,
the DM updates her prior beliefs G(v) to her optimal posterior F ∗(v|s) and chooses action i

with the highest posterior expected pay-off EF ∗(v|s)(vi). Hence, given the optimal information
strategy and a signal realization s,the pay-ff of the DM is

V (F ∗(.|s)) = max
i

EF ∗(v|s)(vi),

where information strategy F ∗ is optimal in the sense that it maximizes ex ante expected
posterior pay-off net of the cost of information strategy, i.e.

F ∗ = argmax
F

{︄∑︂
v

∑︂
s

V (F (.|s))F (s|v)G(v)− c(F )
}︄

(2.11)

subject to ∑︂
s

F (s,v) = G(v),

where the cost of information strategy c(F ) is modeled as

c(F ) = λ(H(G)−Es [H (F (.|s))]) .

H(G), the entropy of G, measures the uncertainty inherent in prior beliefs, while H (F (.|s))
- the uncertainty inherent in the posterior beliefs after observing s. Es [H (F (.|s))] measures
average entropy of posterior beliefs and hence H(G)−Es [H (F (.|s))] is the average reduction
in the uncertainty about v as a result of knowing s. Positive constant λ is the cost of un-
certainty reduction by one unit and serves as an indirect proxy of the mental capacity of the
agent. Matějka and McKay (2015) show that under F ∗ the probability of choosing action i

(equivalently, of observing a signal that leads to action i) conditional on v is given by

Pi(v) = P0
i evi/λ∑︁N

j=1 P0
j evj/λ

,

where P0
i =

∑︁
v Pi(v)G(v) is the unconditional probability of choosing action i. Matějka and

McKay (2015) also show that F ∗ implies a one-to-one correspondence between actions and
signals (no two distinct signals can lead to the same action if the information strategy is
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optimal), which allows us to index signal realizations using i and rewrite the Pi(v) in terms
of signal probabilities as

Pi(v) = Ps|v (si|v) = Ps(si)evi/λ∑︁N
j=1 Ps(sj)evj/λ

where Ps|v and Ps are conditional and unconditional probability mass functions of signal s.

2.4 Optimal Signal Selection: Consumption-Based Framework

To relate the framework of Matějka and McKay (2015) to the consumption plan choice prob-
lem, let

{︁
xi

0
}︁N

i=1 be the support of x0 and let action i correspond to the consumption plan
optimization as if the state of the world today was xi

0 (i.e. action i corresponds to solving
OP (xi

0), which results in the choice of the consumption plan ci,0,{ci(x1)}x1
). Let xk

0 denote
the true state at time 0 and define the pay-off of action i conditional on xk

0 as

vi ≡ V
(︂
i,xk

0

)︂
= u(ci,0)+βEP

x1|xk
0

[u(ci(x1))] ,

which is the expected utility of consumption plan ci,0,{ci(x1)}x1
in state xk

0. The pay-off
depends on xk

0, because the latter determines the distribution of x1. Since OP (x0) has a
unique solution, V

(︂
k,xk

0

)︂
> V

(︂
i,xk

0

)︂
∀i ̸= k and so the support of V (x0) = (V (i,x0))′

i is
N−sized and bijective to

{︁
xi

0
}︁N

i=1 . Hence, the state of nature v in Matějka and McKay (2015)
can equivalently be described by the state of the world x0 (i.e. a realization of x0 fixes a
value for v and different realizations of x0 fix different values for v) and any probability
distribution over V (x0) is also a distribution over x0 (and vice versa). This allows us to
rewrite the problem in Matějka and McKay (2015) using x0 as a random variable instead of
v and obtain a distribution of s given x0 induced by optimal information processing strategy
as

P ∗
s|xk

0

(︂
si|xk

0

)︂
= Ps(si)eV (i,xk

0)/λ∑︁N
j=1 Ps(sj)eV (j,xk

0)/λ
. (2.12)

P ∗
x1|s can then be derived using Px1|x0 , Px0 and P ∗

s|x0
according to Bayes Law.

A clear motivation for the usage of P ∗
x1|s in OP (s) requires clarifying the relationship

between the pay-off induced by the solution of OP (s) and the pay-off w.r.t which the agent
optimizes signals. According to the framework of Matějka and McKay (2015), the agent
optimizes signals w.r.t. the posterior expected pay-off given by

V
(︂
Px0|s (.|s)

)︂
= max

j
EPx0|s [V (j,x0)] ,

i.e. P ∗
x0|s (.|s) is induced by maximizing the ex ante expectation of V

(︂
Px0|s (.|s)

)︂
net of cost
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of information w.r.t. Px0|s (.|s) . By model assumptions, s is informative about x1 as much as
it informs about x0 and thus s provides no information about x1 conditional on knowing x0.

Hence, Pr(x1|x0) = Pr(x1|x0,s) and so

EPx0|s [V (j,x0)] = u(cj,0)+βEPx1|s [u(cj(x1))] ,

which implies that for any Px0|s (.|s)

V
(︂
Px0|s (.|s = si)

)︂
= max

j
EPx0|si

[V (j,x0)] =

= u(ci,0)+βEPx1|si
[u(ci(x1))] .

In contrast, Ṽ
(︂
Px0|s (.|s = si)

)︂
, the pay-off given by the solution of OP (s) with posterior

beliefs induced by Px0|s (.|s) , is given by

Ṽ
(︂
Px0|s (.|s = si)

)︂
= u(csi,0)+βEPx1|si

[u(csi(x1))] ,

where csi,0,{csi(x1)}x1
is a solution of OP (si). Note that Ṽ

(︂
Px0|s (.|s = si)

)︂
and V

(︂
Px0|s (.|s = si)

)︂
differ only up to the selected consumption plan and by definition of OP (si),

Ṽ
(︂
Px0|s (.|s = si)

)︂
≥ V

(︂
Px0|s (.|s = si)

)︂
.

Since the solution to OP (si) is unique,

Ṽ
(︂
Px0|s (.|s = si)

)︂
> V

(︂
Px0|s (.|s = si)

)︂
if and only if (︂

csi,0,{csi(x1)}x1

)︂
̸=
(︂
ci,0,{ci(x1)}x1

)︂
.

It turns out that the two consumption allocations are indeed different and so the inequality
is strict. To see this, assume first that the two allocations are equal. Under this assumption,
csi,0 = ci,0 and by (2.3),

csi(x
j
1) = ci(xj

1)

implies
Px1|si

(x1|si) = Px1|x0(x1|xi
0),

which is a contradiction, since

Px1|si
(x1|si) =

N∑︂
l=1

Pr
(︂
x1|xl

0

)︂
Pr
(︂
xl

0

)︂ eV (i,xl
0)/λ

EPs

[︂
eV (j,xl

0)/λ
]︂ ,
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as will be shown in the next section.
In words, the model design can be summarized as follows: the agent has prior beliefs

about N possible states of nature and knows the portfolio she would select in each. She
gathers information to refine her beliefs about present (and future) and selects one of the N

portfolios she finds preferable to remaining N − 1 given her information. The agent refines
her information gathering strategy over time through sophisticated trial and error until she
concludes that her information-action strategy induces optimal outcomes on average with re-
spect to her initial crude optimizing behavior (selecting one of N portfolios). Once she evolves
to the point at which her information strategy is in this way optimal, she starts rethinking
her approach to portfolio selection and realizes that given her information strategy, the crude
way of choosing is sub-optimal and starts selecting portfolios in a way that maximizes her
posterior expected utility with beliefs induced by her information strategy. I show in Section
3.3 that in the case of log-utility, the posterior optimal portfolio is a convex combination of
the N portfolios the investor would have selected in each of the N states if they were fully
observable, where the weights reflect the subjective posterior likelihood of time-zero states.
Hence, the agent optimizes signals with the aim of differentiating among N portfolios she has
in mind and then selects a combination of them she finds optimal given her posterior beliefs.

3 Posterior Beliefs

3.1 General Properties

Posterior beliefs have three intuitive properties. First, they are expressed as the convex
combination of future state distributions induced by different time-zero states, where the
weights reflect the posterior likelihood of time-zero states. Second, as the cost of information
goes to zero, the probability that the agent has posterior beliefs that coincide with true
probabilities goes to one (assuming that the agent has correct priors). Third, when the cost
of information is infinitely high, the posterior beliefs coincide with priors. I demonstrate these
features formally next and provide intuition about how weights adjust with changes in the
cost of information.

I begin with a preliminary lemma that will be useful throughout the paper.

Lemma 3.1. For any λ > 0,

∑︂
x0

eV (i,x0)/λ

EPs

[︁
eV (j,x0)/λ

]︁ Pr(x0) = 1 ∀i.

Proof. By Bayes Law,
Psλ

(si) =
∑︂
x0

Pr(si|x0)Pr(x0)
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and by (2.12),

∑︂
x0

Pr(si|x0)Pr(x0) = Psλ
(si)

∑︂
x0

eV (i,x0)/λ

EPsλ

[︁
eV (j,x0)/λ

]︁ Pr(x0) ,

where EPsλ

[︂
eV (j,x0)/λ

]︂
=
∑︁N

j=1 Psλ
(sj)eV (j,x0)/λ. Hence,

Psλ
(si) = Psλ

(si)
∑︂
x0

eV (i,x0)/λ

EPs

[︁
eV (j,x0)/λ

]︁ Pr(x0)

and so ∑︂
x0

eV (i,x0)/λ

EPsλ

[︁
eV (j,x0)/λ

]︁ Pr(x0) = 1.

Alternatively, one could also observe that

Pr(x0|si) = Pr(si|x0)Pr(x0)
Psλ

(si)
= eV (i,x0)/λ

EPsλ

[︁
eV (j,x0)/λ

]︁ Pr(x0)

and since by definition of a probability distribution

∑︂
x0

Pr(x0|si) = 1,

Lemma 3.1 follows.

Proposition 3.1. Let Px1|sλ
(x1|si) denote the distribution of x1 conditional on sλ = si. Then,

Px1|sλ
(x1|si) =

∑︂
x0

Pr(x0,x1) eV (i,x0)/λ

EPsλ

[︁
eV (j,x0)/λ

]︁ .
.

Proof. Note first that

Px1|si
(x1|si) =

∑︂
x0

Pr(x0,x1|si) =
∑︂
x0

Pr(x1|x0,si)Pr(x0|si) .

By model assumptions, Pr(x1|x0,si) = Pr(x1|x0) , and by Bayes Law and (2.12),

Pr(x0|si) = Pr(si|x0)Pr(x0)
Pr(si)

= Pr(x0) eV (i,x0)/λ

EPs

[︁
eV (j,x0)/λ

]︁ , (3.1)
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where EPs

[︂
eV (j,x0)/λ

]︂
=
∑︁N

j=1 Ps(sj)eV (j,x0)/λ. Hence,

Px1|sλ
(x1|si) =

∑︂
x0

Pr(x1|x0)Pr(x0) eV (i,x0)/λ

EPs

[︁
eV (j,x0)/λ

]︁ =

=
∑︂
x0

Pr(x0,x1) eV (i,x0)/λ

EPs

[︁
eV (j,x0)/λ

]︁ .
It now remains to show that Px1|si

(x1|si) is indeed a probability mass function, i.e. want to
prove that Px1|si

(x1|si) ≥ 0 ∀x1 and
∑︁

x1 Px1|si
(x1|si) = 1. The first part is obvious. For the

second part, note that

∑︂
x1

Px1|si
(x1|si) =

∑︂
x1

∑︂
x0

Pr(x0,x1) eV (i,x0)/λ

EPs

[︁
eV (j,x0)/λ

]︁ =

=
∑︂
x0

eV (i,x0)/λ

EPs

[︁
eV (j,x0)/λ

]︁∑︂
x1

Pr(x0,x1) =
∑︂
x0

eV (i,x0)/λ

EPs

[︁
eV (j,x0)/λ

]︁ Pr(x0) = 1,

where the last equality follows from Lemma 3.1.

As an additional sanity check, note also that by Bayes Law,

Pr(x1) =
∑︂

i

Px1|sλ
(x1|si)Psλ

(si) .

If we replace Px1|sλ
(x1|si) on the RHS with the expression from Proposition 3.1, we get

Pr(x1) =
∑︂

i

∑︂
x0

Pr(x0,x1) eV (i,x0)/λ

EPs

[︁
eV (j,x0)/λ

]︁Ps (si) =

=
∑︂
x0

Pr(x0,x1)
∑︂

i

eV (i,x0)/λPsλ
(si)

EPs

[︁
eV (j,x0)/λ

]︁ =
∑︂
x0

Pr(x0,x1) = Pr(x1) .

The result of Proposition 3.1 has an intuitive interpretation: upon observing a signal si, the
agent re-weights the joint probability of x0 and x1 by eV (i,x0)/λ

EPs [eV (j,x0)/λ] for any given x0 and x1.

eV (i,x0)/λ is a monotone-increasing transformation of the pay-off of action i in state x0, while
EPs

[︂
eV (j,x0)/λ

]︂
is the average transformed pay-off in state x0. If the pay-off of action i in

state x0 is above the average pay-off in state x0, then for any x1, Pr(x0,x1) receives a weight
greater than 1 and vice versa. Moreover, the greater the difference between eV (i,x0)/λ and
EPs

[︂
eV (j,x0)/λ

]︂
, the higher the weight Pr(x0,x1) receives for any x1. This is the consequence

of optimal signal selection - upon observing a signal under which action i is optimal, the states
under which action i has relatively high pay-off become more likely and vice versa. Moreover,
we will see in Section 3.2 that the weights eV (i,x0)/λ

EPs [eV (j,x0)/λ] are particularly simple and intuitive
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when the agent preferences are described by log-utility.
Alternatively, the re-weighting could be interpreted as follows: prior to observing any

information, the probability the agent associates to date-event pair x1 is given by

Px1(x1) =
∑︂
x0

Pr(x1|x0)Pr(x0) ,

which is the convex combination of conditional probabilities Pr(x1|x0) taken over x0, with
weights given by Pr(x0) . Upon observing the signal realization si, the agent updates his beliefs
about x0 from Pr(x0) to Pr(x0|si) and adjusts his belief about x1 by replacing the weights
{Pr(x0)}x0

in the convex combination above by weights {Pr(x0|si)}x0
, where

Pr(x0|si) = Pr(x0) eV (i,x0)/λ

EPs

[︁
eV (j,x0)/λ

]︁ ,
as shown in (3.1). The intuition about eV (i,x0)/λ

EPs [eV (j,x0)/λ] can then be applied to the prior proba-
bilities of {x0}x0

instead of the joint probability Pr(x0,x1) .

The precision of posterior beliefs is intuitively related to λ. When λ is high,

eV (i,x0)/λ

EPsλ

[︁
eV (j,x0)/λ

]︁ ≈ 1 ∀i,

and so

Px1|sλ
(x1|si) =

∑︂
x0

Pr(x1|x0)Pr(x0) eV (i,x0)/λ

EPs

[︁
eV (j,x0)/λ

]︁ ≈

≈
∑︂
x0

Pr(x1|x0)Pr(x0) = Pr(x1) .

When the cost of information λ is close to zero and the current state is xk
0, the probability of

an incorrect signal is very low and

eV (i,x0)/λ

EPs

[︁
eV (j,x0)/λ

]︁ ≈ 0 ∀i ̸= k,

eV (k,x0)/λ

EPs

[︁
eV (j,x0)/λ

]︁ ≈ 1
Pr
(︁
xk

0
)︁ ,

i.e. with probability close to 1,

Px1|si
(x1|sλ) = Px1|si

(x1|sk) =
∑︂
x0

Pr(x1|x0)Pr(x0) eV (k,x0)/λ

EPs

[︁
eV (j,x0)/λ

]︁ ≈
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≈ Pr
(︂
x1|xk

0

)︂
Pr
(︂
xk

0

)︂ 1
Pr
(︁
xk

0
)︁ = Pr

(︂
x1|xk

0

)︂
.

Hence, the signals are perfectly informative in the limit as λ → 0 and perfectly uninformative
as λ → ∞. This will be demonstrated formally using Propositions 3.2 and 3.3 that rely on
Lemmas which are proved first.

Lemma 3.2. Let i and l index signal realizations and states, respectively, and define

Dλ (i, l) ≡ eV (i,xl
0)/λ∑︁N

j=1 Psλ
(sj)eV (j,xl

0)/λ
. (3.2)

Then, the following are true
i) for any i and l such that i ̸= l,

lim
λ→0

Dλ (i, l) = 0.

ii) for any i and l such that i = l,

lim
λ→0

Dλ (i, l) = 1
Px0(xi

0)
.

Proof. To prove i), take arbitrary i and note that if we divide both the numerator and de-
nominator of Dλ (i, l) by eV (l,xl

0)/λ, we get

Dλ (i, l) = e(V (i,xl
0)−V (l,xl

0))/λ

Psλ
(sl)+

∑︁
j ̸=l Psλ

(sj)e(V (j,xl
0)−V (l,xl

0))/λ
, (3.3)

where Psλ
(si) > Px0(xi

0)−
∑︁

j ̸=i Psλ
(sj)e(V (j,xi

0)−V (i,xi
0))/λ by (??). Thus,

0 < Dλ (i, l) <
e(V (i,xl

0)−V (l,xl
0))/λ

Px0(xi
0)

,

where, for l ̸= i,

lim
λ→0

e(V (i,xl
0)−V (l,xl

0))/λ

Px0(xi
0)

= 0,

since V
(︂
j,xl

0

)︂
− V

(︂
l,xl

0

)︂
< 0 (see Section 2.4). Hence, we get by Squeeze Lemma from

Calculus that
lim
λ→0

Dλ (i, l) = 0 ∀l ̸= i, (3.4)

as desired.
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To prove ii), take arbitrary i and note by Lemma 3.1 that for any λ > 0,

N∑︂
l=1

Dλ (i, l)Px0(xl
0) = 1

and so

lim
λ→0

N∑︂
l=1

Dλ (i, l)Px0(xl
0) =

N∑︂
l=1

Px0(xl
0) lim

λ→0
Dλ (i, l) = 1.

By (3.4), we further get

N∑︂
l=1

Px0(xl
0) lim

λ→0
Dλ (i, l) = Pr

(︂
xi

0

)︂
lim
λ→0

Dλ (i, i)+
∑︂
l ̸=i

Px0(xl
0) lim

λ→0
Dλ (i, l) = Pr

(︂
xi

0

)︂
lim
λ→0

Dλ (i, i)

and so

Px0(xi
0) lim

λ→0
Dλ (i, i) = 1, (3.5)

or
lim
λ→0

Dλ (i, i) = 1
Px0(xi

0)
.

Lemma 3.3. Let Px0(x0) and Psλ
(s) denote the prior probability mass functions of x0 and

sλ, respectively, and let si denote the realization of sλ which signals that the state of the world
is xi

0. Then, for any i,
lim
λ→0

Psλ
(si) = Px0(xi

0).

Proof. Take arbitrary i and note by (3.3) that

Dλ (i, i) = 1
Psλ

(si)+
∑︁

j ̸=i Psλ
(sj)e(V (j,xi

0)−V (i,xi
0))/λ

, (3.6)

where
0 ≤ Psλ

(sj)e(V (j,xi
0)−V (i,xi

0))/λ ≤ e(V (j,xi
0)−V (i,xi

0))/λ.

Since V
(︁
j,xi

0
)︁
−V

(︁
i,xi

0
)︁

< 0,

lim
λ→0

e(V (j,xi
0)−V (i,xi

0))/λ = 0 ∀j ̸= i,

and so, by Squeeze Lemma from Calculus,

lim
λ→0

Psλ
(sj)e(V (j,xi

0)−V (i,xi
0))/λ = 0 ∀j ̸= i
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and

lim
λ→0

∑︂
j ̸=l

Psλ
(sj)e(V (j,xi

0)−V (i,xi
0))/λ =

∑︂
j ̸=l

lim
λ→0

Psλ
(sj)e(V (j,xi

0)−V (i,xi
0))/λ = 0. (3.7)

Putting (3.5), (3.6) and (3.7) together, we get

Px0(xi
0) lim

λ→0
Dλ (i, i) = Px0(xi

0) 1
limλ→0 Psλ

(si)
= 1 (3.8)

and so
lim
λ→0

Psλ
(si) = Px0(xi

0).

Lemma 3.4. Let sj denote the realization of sλ which signals that the state of the world is
xj

0 and let xk
0 denote the true state of the world at time 0. Then, as λ → 0,

sλ|xk
0

p→ sk.

Proof. To prove the lemma, it is sufficient to show that

lim
λ→0

Psλ|xk
0

(︂
sk|xk

0

)︂
= 1.

By (2.12) and (3.2),
Psλ|xk

0

(︂
sk|xk

0

)︂
= Psλ

(sk)Dλ (k,k)

and by Lemma 3.3,

lim
λ→0

Psλ|xk
0

(︂
sk|xk

0

)︂
= lim

λ→0
Psλ

(sk) lim
λ→0

Dλ (k,k) = Px0

(︂
xk

0

)︂
lim
λ→0

Dλ (k,k) .

Noting that Px0

(︂
xk

0

)︂
limλ→0 Dλ (k,k) = 1 by (3.8), we get that

lim
λ→0

Psλ|xk
0

(︂
sk|xk

0

)︂
= 1,

as desired.

Simply put, Lemma 3.4 indicates that the probability of sλ generating a wrong signal
vanishes as the cost of information goes to zero.

Proposition 3.2. Let xk
0 be the true state of the world at time 0. Then, as λ → 0,

Px1|sλ
(x1|sλ) p→ Px1|xk

0

(︂
x1|xk

0

)︂
.
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Proof. Note first that

Px1|sλ
(x1|sλ) = Px1|sλ

(x1|sλ)−Px1|sλ
(x1|sk)+Px1|sλ

(x1|sk)

and so

plimλ→0Px1|sλ
(x1|sλ) = plimλ→0

(︂
Px1|sλ

(x1|sλ)−Px1|sλ
(x1|sk)

)︂
+plimλ→0Px1|sλ

(x1|sk) .

Hence, to prove the proposition, it is sufficient to show that

plimλ→0

(︂
Px1|sλ

(x1|sλ)−Px1|sλ
(x1|sk)

)︂
= 0 (∗)

and
lim
λ→0

Px1|sλ
(x1|sk) = Px1|xk

0

(︂
x1|xk

0

)︂
(∗∗).

To show (∗), note that Px1|sλ
(x1|.) is a composition of continuous functions and thus is itself

continuous. Hence, because sλ|xk
0

p→ sk by Lemma 3.4, we have by the Continuous Mapping
Theorem of Mann-Wald that

Px1|sλ
(x1|sλ) p→ Px1|sλ

(x1|plimλ→0sλ) = Px1|sλ
(x1|sk) .

To show (**), note that

lim
λ→0

Px1|sλ
(x1|sk) = lim

λ→0

∑︂
x0

Pr(x1|x0)Pr(x0) eV (k,x0)/λ

EPs

[︁
eV (j,x0)/λ

]︁ =

= Pr
(︂
x1|xk

0

)︂
Pr
(︂
xk

0

)︂
lim
λ→0

eV (k,xk
0)/λ

EPs

[︂
eV (j,xk

0)/λ
]︂ +

∑︂
l ̸=k

Pr(x1|x0)Pr(x0) lim
λ→0

eV (k,xl
0)/λ

EPs

[︂
eV (j,xl

0)/λ
]︂ =

= Pr
(︂
x1|xk

0

)︂
Pr
(︂
xk

0

)︂ 1
Pr
(︁
xk

0
)︁ +

∑︂
l ̸=k

Pr(x1|x0)Pr(x0)×0 = Pr
(︂
x1|xk

0

)︂
,

where the last line follows from Lemma 3.2.

Proposition 3.3. Let si denote the realization of sλ which signals that the state of the world
is xi

0 and let Px1(x1) denote prior beliefs about x1. Then, for any i,

lim
λ→∞

Px1|sλ
(x1|si) = Px1(x1).

Proof. Note first that by limit laws,

lim
λ→∞

Px1|sλ
(x1|si) = lim

λ→∞

∑︂
x0

Pr(x0,x1) eV (i,x0)/λ

EPsλ

[︁
eV (j,x0)/λ

]︁ =
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=
∑︂
x0

Pr(x0,x1) lim
λ→∞

eV (i,x0)/λ

EPsλ

[︁
eV (j,x0)/λ

]︁ ,
where eV (i,x0)/λ

EPsλ
[eV (j,x0)/λ] is a continuous function of 1

λ , since it is a composition of continuous

functions in 1
λ . Hence, for any x0,

lim
λ→∞

eV (i,x0)/λ

EPsλ

[︁
eV (j,x0)/λ

]︁ = lim
1/λ→0

eV (i,x0) 1
λ

EPsλ

[︂
eV (j,x0) 1

λ

]︂ = eV (i,x0)×0

EPsλ

[︁
eV (j,x0)×0]︁ = 1

and so
lim

λ→∞
Px1|sλ

(x1|si) =
∑︂
x0

Pr(x0,x1) = Px1(x1).

Lastly, I prove a proposition that provides an insight regarding how the weights evolve
with marginal changes in λ at any given λ.

Proposition 3.4. Let Dλ (i, l) ≡ e
V (i,xl

0)/λ∑︁N

j=1 Psλ
(sj)eV (j,xl

0)/λ
. Then, for any i and l,

∂

∂λ
Dλ (i, l) = λ−2Dλ (i, l)×EPsλ

[︃
Dλ (j, l)

(︃
λ2 ∂ logPsλ

(sj)
∂λ

+V
(︂
j,xl

0

)︂
−V

(︂
i,xl

0

)︂)︃]︃
.

Proof. Note first that for any i and l,

∂

∂λ

(︂
eV (i,xl

0)/λ
)︂

= −λ−2V
(︂
i,xl

0

)︂
eV (i,xl

0)/λ

and by the Chain Rule of differentiation,

∂

∂λ

⎛⎝ N∑︂
j=1

Psλ
(sj)eV (j,xl

0)/λ

⎞⎠=
N∑︂

j=1

(︃
−λ−2V

(︂
j,xl

0

)︂
eV (j,xl

0)/λPsλ
(sj)+eV (j,xl

0)/λ ∂Psλ
(sj)

∂λ

)︃
.

Applying again the Chain Rule to eV (i,xl
0)/λ

(︂∑︁N
j=1 Psλ

(sj)eV (j,xl
0)/λ

)︂−1
, we get

∂

∂λ

⎛⎝ eV (i,xl
0)/λ∑︁N

j=1 Psλ
(sj)eV (j,xl

0)/λ

⎞⎠=
∂

∂λ

(︂
eV (i,xl

0)/λ
)︂∑︁N

j=1 Psλ
(sj)eV (j,xl

0)/λ(︂∑︁N
j=1 Psλ

(sj)eV (j,xl
0)/λ

)︂2 −

−
eV (i,xl

0)/λ ∂
∂λ

(︂∑︁N
j=1 Psλ

(sj)eV (j,xl
0)/λ

)︂
(︂∑︁N

j=1 Psλ
(sj)eV (j,xl

0)/λ
)︂2
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and inserting the expressions for partial derivatives yields

∂

∂λ

⎛⎝ eV (i,xl
0)/λ∑︁N

j=1 Psλ
(sj)eV (j,xl

0)/λ

⎞⎠=
−λ−2V

(︂
i,xl

0

)︂
eV (i,xl

0)/λ∑︁N
j=1 Psλ

(sj)eV (j,xl
0)/λ(︂∑︁N

j=1 Psλ
(sj)eV (j,xl

0)/λ
)︂2 −

−
eV (i,xl

0)/λ∑︁N
j=1

(︂
−λ−2V

(︂
j,xl

0

)︂
eV (j,xl

0)/λPsλ
(sj)+eV (j,xl

0)/λ ∂Psλ
(sj)

∂λ

)︂
(︂∑︁N

j=1 Psλ
(sj)eV (j,xl

0)/λ
)︂2 .

If we factor out λ−2 e
V (i,xl

0)/λ∑︁N

j=1 Psλ
(sj)eV (j,xl

0)/λ
from the RHS, we further get

∂

∂λ

⎛⎝ eV (i,xl
0)/λ∑︁N

j=1 Psλ
(sj)eV (j,xl

0)/λ

⎞⎠= λ−2 eV (i,xl
0)/λ∑︁N

j=1 Psλ
(sj)eV (j,xl

0)/λ
×

×
N∑︂

j=1

−V
(︂
i,xl

0

)︂
eV (j,xl

0)/λPsλ
(sj)+V

(︂
j,xl

0

)︂
eV (j,xl

0)/λPsλ
(sj)+λ2eV (j,xl

0)/λ ∂Psλ
(sj)

∂λ
1

Psλ
(sj)Psλ

(sj)∑︁N
j=1 Psλ

(sj)eV (j,xl
0)/λ

,

while factoring out e
V (j,xl

0)/λ
Psλ

(sj)∑︁N

j=1 Psλ
(sj)eV (j,xl

0)/λ
from the ratio inside the summand on the last line

gives
∂

∂λ

⎛⎝ eV (i,xl
0)/λ∑︁N

j=1 Psλ
(sj)eV (j,xl

0)/λ

⎞⎠= λ−2 eV (i,xl
0)/λ∑︁N

j=1 Psλ
(sj)eV (j,xl

0)/λ
×

×
N∑︂

j=1

(︄
λ2 ∂Psλ

(sj)
∂λ

1
Psλ

(sj) +V
(︂
j,xl

0

)︂
−V

(︂
i,xl

0

)︂)︄ eV (j,xl
0)/λ∑︁N

j=1 Psλ
(sj)eV (j,xl

0)/λ
Psλ

(sj).

Finally, setting Dλ (i, l) ≡ e
V (i,xl

0)/λ∑︁N

j=1 Psλ
(sj)eV (j,xl

0)/λ
and observing that ∂Psλ

(sj)
∂λ

1
Psλ

(sj) = ∂ logPsλ
(sj)

∂λ ,

we get

∂

∂λ
Dλ (i, l) = λ−2Dλ (i, l)×

N∑︂
j=1

Dλ (j, l)
(︃

λ2 ∂ logPsλ
(sj)

∂λ
+V

(︂
j,xl

0

)︂
−V

(︂
i,xl

0

)︂)︃
Psλ

(sj) =

= λ−2Dλ (i, l)×EPsλ

[︃
Dλ (j, l)

(︃
λ2 ∂ logPsλ

(sj)
∂λ

+V
(︂
j,xl

0

)︂
−V

(︂
i,xl

0

)︂)︃]︃
.

Hence, since λ−2Dλ (i, l) > 0, the proposition above implies that for a given value of λ, a
marginal decrease in the cost of information will induce the agent to assign a higher weight
to state xl

0 upon observing a signal realization si if and only if
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EPsλ

[︃
Dλ (j, l)

(︃
λ2 ∂ logPsλ

(sj)
∂λ

+V
(︂
j,xl

0

)︂
−V

(︂
i,xl

0

)︂)︃]︃
< 0.

3.2 Posterior Beliefs With Log-Utility

In the case of log-utility, which is a special case of the CRRA utility u(c) = c1−γ−1
1−γ corre-

sponding to γ = 1 (i.e. limγ→1 u(c) = logc), the posterior beliefs are particularly intuitive,
since they are described solely in terms of cost of information λ, discount factor β and the rel-
ative entropies of the future state distributions induced by different time-zero states. Relative
Entropy from distribution Q to distribution P, also known as the Kullback-Leibler Divergence
of Q from P and denoted by KL(P ||Q) , is a well-known mathematical object that measures
how much distribution Q differs from distribution P. Assuming the two distributions have the
same support and letting x denote an arbitrary element in the common support, KL(P ||Q)
is defined as

KL(P ||Q) ≡
∑︂

x

P (x) log P (x)
Q(x) = EP

[︃
log P (x)

Q(x)

]︃
,

i.e. KL(P ||Q) is defined as the expected log-difference between the probabilities implied by
the two distributions, where the expectation is taken w.r.t P. KL(P ||Q) is always non-negative
and equals zero if and only if P = Q.

I start with deriving the solution of OP (xi
0), which will be used for deriving a specific

algebraic form of posterior beliefs implied by log-utility. Let Lxi
0,log

(︃
c0,
(︂
c(xj

1)
)︂N

j=1
,µxi

0,log

)︃
denote the Lagrangian of the optimization problem of the agent with log-utility in fully ob-
served state xi

0 and note that

Lxi
0,log

(︃
c0,i,

(︂
ci(xj

1)
)︂N

j=1
,µxi

0,log

)︃
= logc0,i +β

N∑︂
j=1

logci(xj
1)pi

(︂
xj

1

)︂
+

µxi
0,log

⎛⎝ω0 +
N∑︂

j=1
q(xj

1)ω(xj
1)− c0,i −

N∑︂
j=1

q(xj
1)ci(xj

1)

⎞⎠ ,

where pi

(︂
xj

1

)︂
≡ Px1|x0

(︂
xj

1|xi
0

)︂
and ω0 and ω(xj

1) are the endowments of the representa-
tive agent at time 0 and in state j tomorrow, respectively. Consumption choice variables
c0,i,

(︂
ci(xj

1)
)︂N

j=1
are indexed by i to explicitly indicate the dependence of choices on the cur-

rent state (or on the beliefs Px1|x0

(︁
.|xi

0
)︁

induced by current state xi
0). By the First Order

Conditions of the optimization problem w.r.t c0,i and ci(xj
1), respectively, we have

1
c0,i

= µxi
0,log
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and
β

1
ci(xj

1)
pi

(︂
xj

1

)︂
= µxi

0,logq(xj
1),

which together imply that

ci(xj
1) = c0,iβ

pi

(︂
xj

1

)︂
q(xj

1)
. (3.9)

Next, I use the First Order Conditions to obtain a specific expression for eV (i,xl
0)/λ. Recall

from Section 2.4 that the pay-ff of action i in state xl
0 is given by

V
(︂
i,xl

0

)︂
= u(ci,0)+βEP

x1|xl
0

[u(ci(x1))] ,

where action i corresponds to selecting c0,i,
(︂
ci(xj

1)
)︂N

j=1
(optimizing as if the state of the world

was xi
0) and the pay-off corresponds to the expected utility of c0,i,

(︂
ci(xj

1)
)︂N

j=1
. In the case of

log-utility and by (3.9),

V
(︂
i,xl

0

)︂
= logc0,i +β

N∑︂
j=1

logci(xj
1)pl

(︂
xj

1

)︂
= logc0,i +β

N∑︂
j=1

log

⎛⎝c0,iβ
pi

(︂
xj

1

)︂
q(xj

1)

⎞⎠pl

(︂
xj

1

)︂
,

where, by the properties of the logarithmic function,

N∑︂
j=1

log

⎛⎝c0,iβ
pi

(︂
xj

1

)︂
q(xj

1)

⎞⎠pl

(︂
xj

1

)︂
=

N∑︂
j=1

log

⎛⎜⎜⎝
⎛⎝c0,iβ

pi

(︂
xj

1

)︂
q(xj

1)

⎞⎠pl(xj
1)
⎞⎟⎟⎠= log

N∏︂
j=1

⎛⎝c0,iβ
pi

(︂
xj

1

)︂
q(xj

1)

⎞⎠pl(xj
1)

.

Note that by a trivial rearrangement of the terms in the product,

N∏︂
j=1

⎛⎝c0,iβ
pi

(︂
xj

1

)︂
q(xj

1)

⎞⎠pl(xj
1)

= (c0,iβ)
∑︁

j
pl(xj

1)
N∏︂

j=1

(︄
1

q(xj
1)

)︄pl(xj
1) N∏︂

j=1
pi

(︂
xj

1

)︂pl(xj
1) =

= Ac0,i

N∏︂
j=1

pi

(︂
xj

1

)︂pl(xj
1)

, (3.10)

where the last equation follows by
∑︁

j pl

(︂
xj

1

)︂
= 1 and A ≡ β

∏︁N
j=1

(︃
1

q(xj
1)

)︃pl(xj
1)

. Hence, V
(︂
i,xl

0

)︂
can be written as

V
(︂
i,xl

0

)︂
= logc0,i +β log

⎛⎝Ac0,i

N∏︂
j=1

pi

(︂
xj

1

)︂pl(xj
1)
⎞⎠= logc0,i +log

⎛⎝Aβcβ
0,i

N∏︂
j=1

pi

(︂
xj

1

)︂βpl(xj
1)
⎞⎠=
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= log

⎛⎝Aβc1+β
0,i

N∏︂
j=1

pi

(︂
xj

1

)︂βpl(xj
1)
⎞⎠

and so

eV (i,xl
0)/λ = e

log

(︄(︃
Aβc1+β

0,i

∏︁N

j=1 pi(xj
1)

βpl(x
j
1)
)︃ 1

λ

)︄
=

⎛⎝Aβc1+β
0,i

N∏︂
j=1

pi

(︂
xj

1

)︂βpl(xj
1)
⎞⎠ 1

λ

. (3.11)

Next, I derive e
V (i,xl

0)/λ

Es

[︂
e

V (h,xl
0)/λ

]︂ , where Es

[︂
eV (h,xl

0)/λ
]︂

≡
∑︁N

h=1 eV (h,xl
0)/λPsλ

(sh) . Recall that

sh denotes a signal realization that suggests that the state of the world is xh
0 and that

leads to action h in the signal selection stage described in Section 2.4. Note further that∏︁N
j=1 pi

(︂
xj

1

)︂βpl(xj
1) in (3.11) can be written as

N∏︂
j=1

pi

(︂
xj

1

)︂βpl(xj
1) = e

log
(︃∏︁N

j=1 pi(xj
1)

βpl(x
j
1)
)︃

= e
β
∑︁N

j=1 pl(xj
1) logpi(xj

1) =

= eβEl[logpi(x1)],

where El [.] denotes the expectation object induced by Px1|x0

(︂
.|xl

0

)︂
. Hence, (3.11) can be

written as

eV (i,xl
0)/λ =

(︂
Aβc1+β

0,i eβEl[logpi(x1)]
)︂ 1

λ = Aβ/λc
(1+β)/λ
0,i e

β
λ

El[logpi(x1)]

and observing that A does not depend on the signal realization, we get

eV (i,xl
0)/λ

Es

[︂
eV (h,xl

0)/λ
]︂ =

Aβ/λc
(1+β)/λ
0,i e

β
λ

El[logpi(x1)]

Aβ/λEs

[︂
c

(1+β)/λ
0,h e

β
λ

El[logph(x1)]
]︂ =

c
(1+β)/λ
0,i e

β
λ

El[logpi(x1)]

Es

[︂
c

(1+β)/λ
0,h e

β
λ

El[logph(x1)]
]︂ . (3.12)

Further, I am going to demonstrate that c0,h above is same across all h and hence, the
consumption terms can be dropped too from (3.12). To see this, note that for any given prices{︂

q(xj
1)
}︂N

j=1
and a fixed budget, the budget constraint and (3.9) imply that the consumption

plan c0,h,
(︂
ch(xj

1)
)︂N

j=1
satisfies

ω0 +
N∑︂

j=1
q(xj

1)ω(xj
1) = c0,h +

N∑︂
j=1

q(xj
1)

⎛⎝c0,hβ
ph

(︂
xj

1

)︂
q(xj

1)

⎞⎠

38



and so

ω0 +
N∑︂

j=1
q(xj

1)ω(xj
1) = c0,h +βc0,h

N∑︂
j=1

ph

(︂
xj

1

)︂
= c0,h (1+β) .

Hence, for given state prices
{︂

q(xj
1)
}︂N

j=1
and for any h,

c0,h =
ω0 +

∑︁N
j=1 q(xj

1)ω(xj
1)

1+β
(3.13)

and so
eV (i,xl

0)/λ

Es

[︂
eV (h,xl

0)/λ
]︂ =

c
(1+β)/λ
0,i e

β
λ

El[logpi(x1)]

c
(1+β)/λ
0,h Es

[︂
e

β
λ

El[logph(x1)]
]︂ = e

β
λ

El[logpi(x1)]

Es

[︂
e

β
λ

El[logph(x1)]
]︂ .

Finally, I obtain e
V (i,xl

0)/λ

Es

[︂
e

V (h,xl
0)/λ

]︂ in terms of relative entropies KL(Pl (.) ||Ph (.)) , h = 1,2, ...,N,

where Ph (.) ≡ Px1|x0

(︂
.|xh

0

)︂
. Note that if we multiply both the numerator and the denominator

on the RHS of (3.12) by e− β
λ

El[logpl(x1)], we get

eV (i,xl
0)/λ

Es

[︂
eV (h,xl

0)/λ
]︂ = e

β
λ

El[logpi(x1)]e− β
λ

El[logpl(x1)]

Es

[︂
e

β
λ

El[logph(x1)]e− β
λ

El[logpl(x1)]
]︂ =

= e
β
λ

El[logpi(x1)−logpl(x1)]

Es

[︂
e

β
λ

El[logph(x1)−logpl(x1)]
]︂ ,

where

El [logph (x1)− logpl (x1)] = EPl

[︃
log ph (x1)

pl (x1)

]︃
= −EPl

[︃
log pl (x1)

ph (x1)

]︃
= −KL(Pl (.) ||Ph (.))

and so
eV (i,xl

0)/λ

Es

[︂
eV (h,xl

0)/λ
]︂ = e− β

λ
KL(Pl(.)||Pi(.))

Es

[︂
e− β

λ
KL(Pl(.)||Ph(.))

]︂ . (3.14)

Hence, by Proposition 3.1, the probability of xj
1 given a signal realization si can be written

as

Px1|sλ
(xj

1|si) =
∑︂

l

Pr
(︂
xj

1|xl
0

)︂
Pr
(︂
xl

0

)︂ e− β
λ

KL(Pl(.)||Pi(.))

Es

[︂
e− β

λ
KL(Pl(.)||Ph(.))

]︂ . (3.15)

Using and following Proposition 3.1 in Section 3.1, we showed that the agent updates his
beliefs about xj

1 by replacing the weights Pr
(︂
xl

0

)︂
in the convex combination defining the
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prior belief about xj
1,

Px1(xj
1) =

∑︂
l

Pr
(︂
xj

1|xl
0

)︂
Pr
(︂
xl

0

)︂
,

by weights Pr
(︂
xl

0

)︂
e

V (i,xl
0)/λ

Es

[︂
e

V (h,xl
0)/λ

]︂ that represent the updated probabilities of xl
0 based on a

signal realization si. We also provided intuition behind re-weighting prior beliefs about xl
0

by e
V (i,xl

0)/λ

Es

[︂
e

V (h,xl
0)/λ

]︂ . In the case of log-utility, the intuition is particularly sharp. Note that

e− β
λ

KL(Pl(.)||Pi(.)) is a monotone-decreasing transformation of KL(Pl (.) ||Pi (.)) and hence the
closer Pl (.) is to Pi (.) , the larger the e− β

λ
KL(Pl(.)||Pi(.)) term. Hence, e− β

λ
KL(Pl(.)||Pi(.)) can be

interpreted as a measure of how close the two distributions are on a scale from zero to 1, with
1 corresponding to perfect proximity, since KL(Pl (.) ||Pi (.)) = 0 if and only if Pl (.) = Pi (.)

and so e− β
λ

KL(Pl(.)||Pi(.)) = 1 if and only if Pl (.) = Pi (.). e
− β

λ
KL(Pl(.)||Pi(.))

Es

[︂
e

− β
λ

KL(Pl(.)||Ph(.))
]︂ can then be

interpreted as a measure of the proximity of Pl (.) to Pi (.) relative to the signal-probability-
weighted average proximity of Pl (.) to all other distributions induced by

{︂
xh

0

}︂N

h=1
. If the

proximity of Pl (.) to Pi (.) is above the average, then the updated probability of xl
0 is greater

than its prior probability and vice versa. In other words, upon observing a signal realization
that suggests the state of the world is xi

0, the distribution over x1 induced by xi
0 and other

similar distributions receive greater weight in the determination of the updated probabilities
of xj

1, j = 1,2, ...,N. For instance, the weight xi
0 receives in the event of si being observed is

always greater than 1, since e− β
λ

KL(Pi(.)||Pi(.)) = 1 > e− β
λ

KL(Pi(.)||Ph(.)) for all h.

3.3 Optimal Portfolio Induced by Posterior Beliefs and Log-Utility

Interestingly, with log-utility, the optimal portfolio is a convex combination of the N portfolios
the investor would have selected in each of the N states if they were fully observable, where
the weights reflect the subjective posterior likelihood of time-zero states. To see this, recall
by (3.9) that for a fixed set of Arrow-Debreu prices, the optimal consumption plan in state
xi

0, if it were fully observable, is given by

ci(xj
1) = c0β

pi

(︂
xj

1

)︂
q(xj

1)
,

where c0 is invariant across i by (3.13). Recall also by Section 2.2.4 that in state xj
1, the

pay-off of the optimal portfolio selected in complete markets setting in fully observable xi
0

coincides with ci(xj
1), assuming the same wealth endowments in the two cases. Further, it is

straightforward to show that the optimal consumption plan csh
(xj

1) induced by OP (sh) with
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log-utility satisfies

csh
(xj

1) = c0,sh
β

psh

(︂
xj

1

)︂
q(xj

1)
,

where psh

(︂
xj

1

)︂
= Px1|sλ

(︂
xj

1|sh

)︂
and c0,sh

= c0, where the latter can be seen from (3.13). Thus,
since

Px1|sλ
(xj

1|sh) =
∑︂

i

Pr
(︂
xj

1|xi
0

)︂
Pr
(︂
xi

0|sh

)︂
=
∑︂

i

pi

(︂
xj

1

)︂
Pr
(︂
xi

0|sh

)︂
,

we get that

csh
(xj

1) = c0β
1

q(xj
1)

∑︂
i

pi

(︂
xj

1

)︂
Pr
(︂
xi

0|sh

)︂
=
∑︂

i

Pr
(︂
xi

0|sh

)︂
c0β

pi

(︂
xj

1

)︂
q(xj

1)
=

=
∑︂

i

Pr
(︂
xi

0|sh

)︂
ci(xj

1).

Since csh
(xj

1) is the pay-off of the optimal portfolio induced by OP (sh) and since all portfolios
with identical pay-offs in all states are equivalent, the optimal portfolio in the case of in-
complete information can be interpreted as the convex combination of the optimal portfolios
induced by xi

0, i = 1,2, ...,N.

4 Two-State Example With Log-Utility

The following two-state example with log-utility illustrates how incomplete information dis-
torts choice and how the distortions exhibit when the investor also has prior biases.

4.1 Portfolio Selection With Arbitrary Beliefs

I begin by solving a simple portfolio selection problem with arbitrary beliefs p1 and p2 about
the two states of the world tomorrow, 0 < p1 < 1 and p2 = 1−p1 (i.e. the representative investor
associates probabilities p1 and p2 to the occurrences of states 1 and 2, respectively). Consider
a two-period setting with two states in each period and two assets - a safe asset and a risky
asset. The safe asset has a gross rate of return Rf in each state of the world tomorrow, while
the risky asset has gross returns R1 and R2 in x1

1 and x2
1, respectively, R2 > Rf > R1 (i.e. think

of x2
1 as the good state and x1

1 as the bad one). The representative investor is endowed with
wealth W, consumes c0 units of consumption at time zero and allocates the rest of his wealth
between the two assets by investing ws (W − c0) in the safe asset and wr (W − c0) in the risky
asset, ws + wr = 1. His portfolio defined by ws and wr pays ws (W − c0)Rf + wr (W − c0)R1

in x1
1 and ws (W − c0)Rf + wr (W − c0)R2 in x2

1, all of which he consumes at time 1. The
objective of the investor is to select c0,ws,wr such that the triple maximizes his two-period
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expected utility subject to his wealth. Hence, the optimization problem of the representative
investor can be written as follows:

max
c0,ws,wr

⎧⎨⎩logc0 +β
2∑︂

j=1
pj logc(xj

1)

⎫⎬⎭
subject to

c(xj
1) = ws (W − c0)Rf +wr (W − c0)Rj

ws +wr = 1.

If we plug in the first constraint into the objective function, the Lagrangian of the optimization
problem can be written as

L(c0,ws,wr,µ) = logc0 +β
2∑︂

j=1
pj log

(︂
ws (W − c0)Rf +wr (W − c0)Rj

)︂
+µ [1−ws −wr] ,

where the First Order Conditions w.r.t ws and wr yield, respectively,

β
2∑︂

j=1
pj

(W − c0)Rf

ws (W − c0)Rf +wr (W − c0)Rj
= µ

and

β
2∑︂

j=1
pj

(W − c0)Rj

ws (W − c0)Rf +wr (W − c0)Rj
= µ.

Note that W − c0 can be factored out from the denominator in both expressions and so the
First Order Conditions can be rewritten as

2∑︂
j=1

pjRf 1
wsRf +wrRj

= µ

β

and
2∑︂

j=1
pjRj

1
wsRf +wrRj

= µ

β
.

Note that the derivations could perhaps be simplified if we replaced wr by 1 − ws. However,
because the following approach is generalizable to the case of N states and N assets, I proceed
as follows: denote

zj ≡ 1
wsRf +wrRj

, j = 1,2

and note that the first order conditions can be written in matrix form as

Az = b,
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where A =
[︄

p1Rf p2Rf

p1R1 p2R2

]︄
, z =

[︄
z1

z2

]︄
and b =

[︄
µ/β

µ/β

]︄
. Hence, observing that the discrim-

inant of A is given by

DA = p1p2Rf R2 −p1p2Rf R1 = p1p2Rf (R2 −R1) > 0,

the inverse of A can be written as

A−1 = 1
DA

[︄
p2R2 −p2Rf

−p1R1 p1Rf

]︄

and so

z = A−1b = µ

βDA

[︄
p2R2 −p2Rf

−p1R1 +p1Rf

]︄
= µ

βDA

⎡⎣ p2
(︂
R2 −Rf

)︂
p1
(︂
Rf −R1

)︂ ⎤⎦ .

Next, assume for simplicity that R2 −Rf = Rf −R1 ≡ ER and note that

z = µER

βRf (R2 −R1)

⎡⎣ 1
p1
1
p2

⎤⎦= 1
K

µ

⎡⎣ 1
p1
1
p2

⎤⎦ ,

where K ≡ βRf (R2−R1)
ER . Thus, by definition of z,

wsRf +wrRj = K

µ
pj j = 1,2,

where the pair of equations can be written in matrix form as

Ãw = b̃,

where Ã =
[︄

Rf R1

Rf R2

]︄
, w =

[︄
ws

wr

]︄
and b̃ =

⎡⎣ K
µ p1
K
µ p2

⎤⎦ . Hence,

w = Ã
−1

b̃ = 1
Rf (R2 −R1)

[︄
R2 −R1

−Rf Rf

]︄⎡⎣ K
µ p1
K
µ p2

⎤⎦=

= 1
Rf (R2 −R1)

K

µ

[︄
p1R2 −p2R1

Rf (p2 −p1)

]︄
= β

µER

[︄
p1R2 −p2R1

Rf (p2 −p1)

]︄

and since ws +wr = 1,
β

µER
(p1ER +p2ER) = 1
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and
µ = β.

Thus, the optimal weights are given by

w = 1
ER

[︄
p1R2 −p2R1

Rf (p2 −p1)

]︄
.

The solution above provides a simple and intuitive insight about how investor beliefs affect
portfolio selection: the higher the likelihood the investor associates with the good state (rela-
tive to the bad one), the higher the p2 −p1 term and so investment in the risky asset increases.
Since the weights on the risky and safe assets add up to one, investment in the safe asset de-
creases (this can also be seen by direct inspection). Hence, to understand how incomplete
information and prior biases affect investment in this simple setting, it is sufficient to analyze
how investor beliefs deviate from true probabilities as we introduce biases and the scarcity of
information into the analysis. This will be accomplished in the sections that follow.

4.2 Posterior Beliefs and Their Properties

We know by (3.15) that the posterior beliefs in the case of log-utility and N states are given
by

Px1|sλ
(xj

1|si) =
N∑︂

l=1
Pr
(︂
xj

1|xl
0

)︂
Pr
(︂
xl

0

)︂ e− β
λ

KL(Pl(.)||Pi(.))

Es

[︂
e− β

λ
KL(Pl(.)||Ph(.))

]︂ .

In our example, N = 2 and recall from the previous section that state 2 denotes a good state
and state 1 denotes a bad state. For simplicity and greater tractability, I make three additional
assumptions:

1. Uniform Priors: The representative investor finds both states equally likely before ob-
serving any information; Pr

(︁
x1

0
)︁

= Pr
(︁
x2

0
)︁

= 1
2 .

2. Persistent States: Given xj
0, xj

1 is more likely than x3−j
1 , j = 1,2, i.e.

Pr
(︂
x1

1|x1
0

)︂
> Pr

(︂
x2

1|x1
0

)︂
and

Pr
(︂
x2

1|x2
0

)︂
> Pr

(︂
x1

1|x2
0

)︂
.

3. Symmetric Conditional Distributions: given p > 1
2 ,

Pr
(︂
x1

1|x1
0

)︂
= Pr

(︂
x2

1|x2
0

)︂
= p
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and
Pr
(︂
x2

1|x1
0

)︂
= Pr

(︂
x1

1|x2
0

)︂
= 1−p.

(1) and (3) together imply that unconditional signal probabilities are also uniform. To see
this, note first that the symmetry of the conditional distributions implies the symmetry of
the relative entropies: with Pi

(︂
xj

1

)︂
≡ Pr

(︂
xj

1|xi
0

)︂
, i = 1,2, we have

KL(P1 (.) ||P2 (.)) = P1
(︂
x1

1

)︂
log P1

(︁
x1

1
)︁

P2
(︁
x1

1
)︁ +P1

(︂
x2

1

)︂
log P1

(︁
x2

1
)︁

P2
(︁
x2

1
)︁ =

= p log p

q
+ q log q

p
= P2

(︂
x2

1

)︂
log P2

(︁
x2

1
)︁

P1
(︁
x2

1
)︁ +P2

(︂
x1

1

)︂
log P2

(︁
x1

1
)︁

P1
(︁
x1

1
)︁ = KL(P2 (.) ||P1 (.)) .

Since KL(P2 (.) ||P2 (.)) = KL(P1 (.) ||P1 (.)) = 0, denote KL(P1 (.) ||P2 (.)) = KL(P2 (.) ||P1 (.)) ≡
KL. Next, recall by Lemma 3.1 that for any λ > 0 and i = 1,2, ...,N,

∑︂
x0

eV (i,x0)/λ

EPs

[︁
eV (j,x0)/λ

]︁ Pr(x0) = 1.

In our example, this condition translates into

2∑︂
l=1

e− β
λ

KL(Pl(.)||Pi(.))

Es

[︂
e− β

λ
KL(Pl(.)||Ph(.))

]︂ 1
2 = 1, (4.1)

which can be expanded as

e− β
λ

KL(P1(.)||Pi(.))

Es

[︂
e− β

λ
KL(P1(.)||Ph(.))

]︂ 1
2 + e− β

λ
KL(P2(.)||Pi(.))

Es

[︂
e− β

λ
KL(P2(.)||Ph(.))

]︂ 1
2 = 1,

where

Es

[︂
e− β

λ
KL(P1(.)||Ph(.))

]︂
≡

2∑︂
h=1

Psλ
(sh)e− β

λ
KL(P1(.)||Ph(.)) = Psλ

(s1)+Psλ
(s2)e− β

λ
KL

and

Es

[︂
e− β

λ
KL(P2(.)||Ph(.))

]︂
≡

2∑︂
h=1

Psλ
(sh)e− β

λ
KL(P2(.)||Ph(.)) = Psλ

(s1)e− β
λ

KL +Psλ
(s2) .
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Hence, assuming for now that i = 1,2 condition (4.1) can be written as

1
Psλ

(s1)+Psλ
(s2)e− β

λ
KL

1
2 + e− β

λ
KL

Psλ
(s1)e− β

λ
KL +Psλ

(s2)
1
2 = 1. (4.2)

It is straightforward to see that if we set Psλ
(s1) = Psλ

(s2) = 1
2 , the condition above is satisfied

and it can be shown using Lemma 2 in Matějka and McKay (2015) that the solution of (4.2)
is unique.3 Hence, the posterior beliefs in our example can be written as

Px1|sλ
(xj

1|s1) = Pr
(︂
xj

1|x1
0

)︂ 1
1+e− β

λ
KL

+Pr
(︂
xj

1|x2
0

)︂ e− β
λ

KL

1+e− β
λ

KL
j = 1,2 (4.3)

and

Px1|sλ
(xj

1|s2) = Pr
(︂
xj

1|x1
0

)︂ e− β
λ

KL

1+e− β
λ

KL
+Pr

(︂
xj

1|x2
0

)︂ 1
1+e− β

λ
KL

j = 1,2. (4.4)

Note that because of uniform prior beliefs about x0, the prior probability assigned to xj
1 is a

simple average of Pr
(︂
xj

1|x1
0

)︂
and Pr

(︂
xj

1|x2
0

)︂
and so

Px1(xj
1) = Pr

(︂
xj

1|x1
0

)︂ 1
2 +Pr

(︂
xj

1|x2
0

)︂ 1
2 = 1

2 ,

where the last equality follows from Pr
(︂
xj

1|x2
0

)︂
= 1 − Pr

(︂
xj

1|x1
0

)︂
, which in turn holds by

Assumption 3. The posterior probability assigned to xj
1 is also a convex combination of

Pr
(︂
xj

1|x1
0

)︂
and Pr

(︂
xj

1|x2
0

)︂
, but now the weights are uneven: Pr

(︂
xj

1|x1
0

)︂
receives a higher

weight if s1 is observed and Pr
(︂
xj

1|x2
0

)︂
receives a higher weight if s2 is observed. Moreover,

the smaller the cost of information λ, the more acute the re-weighting is. To see this, note
that

∂

∂λ

(︄
1

1+e− β
λ

KL

)︄
= − βKLe− β

λ
KL

λ2
(︂
1+e− β

λ
KL
)︂2 < 0, (4.5)

which implies that a decrease in λ increases the weight 1
1+e

− β
λ

KL
at all values of λ. Since the

two weights 1
1+e

− β
λ

KL
and e

− β
λ

KL

1+e
− β

λ
KL

add up to one for any λ, a decrease in λ always decreases

e
− β

λ
KL

1+e
− β

λ
KL

. In line with the results of Section 3.1, when λ is very close to zero, re-weighting is

very sharp and so posterior belief Px1|sλ
(xj

1|si) is almost the same as Pr
(︂
xj

1|xi
0

)︂
, while when

λ is very large, there is almost no re-weighting at all and so Px1|sλ
(xj

1|si) is almost identical
2 i = 2 yields the same solution.
3 Using Lemma 2 in Matějka and McKay (2015), condition (4.2) can equivalently be obtained as a linear

equation in Psλ (s1) that has 1
2 as a root.
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to priors:
lim
λ→0

1
1+e− β

λ
KL

= 1
1+limλ→0 e− β

λ
KL

= 1,

lim
λ→0

⎛⎝ e− β
λ

KL

1+e− β
λ

KL

⎞⎠= 1− lim
λ→0

1
1+e− β

λ
KL

= 0

and
lim

λ→∞

1
1+e− β

λ
KL

= 1
1+limλ→∞ e− β

λ
KL

= 1
2 ,

lim
λ→∞

⎛⎝ e− β
λ

KL

1+e− β
λ

KL

⎞⎠= 1− lim
λ→∞

1
1+e− β

λ
KL

= 1
2 .

4.3 Portfolio Selection With Incomplete Information and Correct Priors

We showed in Section 4.1 that when the investor assigns probability pj to state j tomorrow,
j = 1,2, the optimal weights on the safe and risky assets are given, respectively, by

w = 1
R2 −Rf

[︄
p1R2 −p2R1

Rf (p2 −p1)

]︄
,

where w = (ws,wr)T . When the investor has correct prior beliefs and fully observes the true
state of the world xk

0, his beliefs about tomorrow coincide with true probabilities: pj =
Pr
(︂
xj

1|xk
0

)︂
, j = 1,2. When the state of the world xk

0 is not fully observable, the investor
observes a signal realization si instead, i not necessarily equal to k, and updates his prior
beliefs based on si : pj = Px1|sλ

(xj
1|si), j = 1,2. Since

wr = Rf (p2 −p1)
R2 −Rf

,

ws = 1− Rf (p2 −p1)
R2 −Rf

and
p2 −p1 = p2 − (1−p2) = 2p2 −1

the differences in portfolio allocations across the complete and incomplete information cases
can be fully described by analyzing how p2 differs across the two cases. Since there are two
possible states at time 0 and two possible signal realizations for each state, there are a total
of four possible scenarios that could occur. For each case, let wc

s and ws denote the weights
on the safe asset in the cases of complete and incomplete information, respectively, and recall
that state 2 denotes the good state and state 1 denotes the bad state. I discuss each of the
four scenarios separately.
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• (x2
0, s2) : Suppose state 2 occurs at time zero and the investor observes a correct signal

realization s2. The true probability of state 2 tomorrow is thus given by Pr
(︁
x2

1|x2
0
)︁
,

while the posterior formed based on s2 is described according to (4.4) as

p2 = Px1|sλ
(x2

1|s2) = Pr
(︂
x2

1|x1
0

)︂ e− β
λ

KL

1+e− β
λ

KL
+Pr

(︂
x2

1|x2
0

)︂ 1
1+e− β

λ
KL

.

Since, Pr
(︁
x2

1|x2
0
)︁

> Pr
(︁
x2

1|x1
0
)︁

by Assumption 2 in Section 4.2, Pr
(︁
x2

1|x2
0
)︁

> Px1|sλ
(x2

1|s2)
and so ws > wc

s. The intuition behind this result is that the investor is aware of the
possibility that the signal might wrongly indicate that the state of the world today is
good and decides to invest more in the safe asset relative to the complete information
case to mitigate the additional source of risk arising from imperfect signals. Moreover,
by (4.5),

∂

∂λ
Px1|sλ

(x2
1|s2) < 0

and so the additional risk aversion induced by signal noisiness increases as the cost of
information λ rises.

• (x2
0, s1) : Suppose state 2 occurs at time zero and the investor observes an incorrect

signal realization s1. The true probability of state 2 tomorrow is thus given by Pr
(︁
x2

1|x2
0
)︁
,

while the posterior formed based on s1 is described according to (4.3) as

p2 = Px1|sλ
(x2

1|s1) = Pr
(︂
x2

1|x1
0

)︂ 1
1+e− β

λ
KL

+Pr
(︂
x2

1|x2
0

)︂ e− β
λ

KL

1+e− β
λ

KL
.

Since, Pr
(︁
x2

1|x2
0
)︁

> Pr
(︁
x2

1|x1
0
)︁

by Assumption 2 in Section 4.2, Pr
(︁
x2

1|x2
0
)︁

> Px1|sλ
(x2

1|s1)
and so ws > wc

s. The intuition here is straightforward: s1 wrongly suggests that the bad
state is more likely tomorrow than the good state and so the investor buys more of the
safe asset relative to the full information case. However, since by (4.5),

∂

∂λ
Px1|sλ

(x2
1|s1) > 0,

the additional investment in the safe asset falls with increasing cost of information λ.

This is because with higher λ signals are less reliable and so the investor gives relatively
higher weight to his prior beliefs when choosing a portfolio allocation.

Note that since Px1|sλ
(x2

1|s2) > Px1|sλ
(x2

1|s1), the investment in the safe asset following the bad
signal is higher than the investment following the good signal. However, in good state of the
world x2

0, the investment in the safe asset is higher relative to the full information case for any
signal realization: the incorrect signal encourages greater investment by wrongly suggesting
that the good state is unlikely tomorrow, while the correct signal induces additional investment
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in the safe asset because it carries the risk of being wrong (the investor then insures himself
against the possibility that the state of the world is not as favorable as suggested by the
signal). Hence, incomplete information induces greater risk aversion relative to the complete
information case.

• (x1
0, s1) : Suppose state 1 occurs at time zero and the investor observes a correct signal

realization s1. The true probability of state 2 tomorrow is thus given by Pr
(︁
x2

1|x1
0
)︁
,

while the posterior formed based on s1 is described according to (4.3) as

p2 = Px1|sλ
(x2

1|s1) = Pr
(︂
x2

1|x1
0

)︂ 1
1+e− β

λ
KL

+Pr
(︂
x2

1|x2
0

)︂ e− β
λ

KL

1+e− β
λ

KL
.

Since, Pr
(︁
x2

1|x2
0
)︁

> Pr
(︁
x2

1|x1
0
)︁

by Assumption 2 in Section 4.2, Pr
(︁
x2

1|x1
0
)︁

< Px1|sλ
(x2

1|s1)
and so ws < wc

s. The intuition is as follows: the investor is aware of the possibility
that the signal might wrongly indicate that the current state is bad and the good state
tomorrow - unlikely. This possibility induces him to be more hopeful of the good state
tomorrow than he would have been if the state of the world was fully observable. Since,
the risky asset pays more in the good state, the investor purchases more of it. When the
cost of information is high, the signals are less accurate and so the investor is relatively
more hopeful of the good state given the bad signal realization. As a result, he buys
more of the risky asset. This can be seen formally by

∂

∂λ
Px1|sλ

(x2
1|s1) > 0,

which in turn follows from (4.5).

• (x1
0, s2) : Suppose state 1 occurs at time zero and the investor observes an incorrect

signal realization s2. The true probability of state 2 tomorrow is thus given by Pr
(︁
x2

1|x1
0
)︁
,

while the posterior formed based on s2 is described according to (4.4) as

p2 = Px1|sλ
(x2

1|s2) = Pr
(︂
x2

1|x1
0

)︂ e− β
λ

KL

1+e− β
λ

KL
+Pr

(︂
x2

1|x2
0

)︂ 1
1+e− β

λ
KL

.

Since, Pr
(︁
x2

1|x2
0
)︁

> Pr
(︁
x2

1|x1
0
)︁

by Assumption 2 in Section 4.2, Pr
(︁
x2

1|x1
0
)︁

< Px1|sλ
(x2

1|s2)
and so ws < wc

s. The incorrect signal induces excess optimism and the investment in the
risky asset increases. When the cost of information is high, the signals are less reliable
and hence induced excess optimism is weaker. As a result, the excess investment in the
risky asset falls with increasing λ. This can be seen formally by

∂

∂λ
Px1|sλ

(x2
1|s2) < 0,
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which in turn follows from (4.5).

To summarize, when the signals are not perfectly accurate, the investor factors in signal
reliability into the decision-making. In the good state, this induces risk aversion relative to
the complete information case, while in the bad state - risk-seeking.

4.4 Portfolio Selection With Incomplete Information and Biased Beliefs

So far we have assumed that the representative investor has correct prior beliefs and have
analyzed the effects of incomplete information only. Below, I discuss two cases in which the
investor has incorrect prior beliefs and analyze how the prior biases affect belief formation
and investment behavior in the presence of incomplete information.

4.4.1 Overconfidence

The previous sections assumed that the investor beliefs conditional on fully observing the
state of the world at time zero were given by true probabilities

Pr
(︂
x1

1|x1
0

)︂
= Pr

(︂
x2

1|x2
0

)︂
= p,

Pr
(︂
x2

1|x1
0

)︂
= Pr

(︂
x1

1|x2
0

)︂
= 1−p,

p > 1
2 . Assume now that the investor is overconfident, i.e. the conditional variance of x1

implied by his beliefs is smaller than the true conditional variance. If we let p̃ ̸= p describe
investor beliefs and recall that the variance of Bernoulli distribution with parameter p is
p(1−p) , the overconfidence condition can be written as

p(1−p) > p̃(1− p̃) .

In the case of two states and under the assumption that p̃ > 1
2 , the overconfidence implies

p̃ > p. Hence, an overconfident investor inflates the probability of the good state tomorrow
when the current state is good and exaggerates the likelihood of the bad state tomorrow when
the current state is bad, i.e. he is excessively optimistic in the good state and excessively
pessimistic in the bad state. Let P̃ x1|sλ

(.|si) denote the posterior beliefs of the overconfident
investor and note that by p̃ > p,

P̃ x1|sλ
(x2

1|s2) > Px1|sλ
(x2

1|s2)

and
P̃ x1|sλ

(x2
1|s1) < Px1|sλ

(x2
1|s1).
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i.e. since the weights in the posterior do not depend on the conditional probabilities, prior
overconfidence translates into the posterior overconfidence. Thus, relative to the unbiased
investor with incomplete information, the biased imperfectly informed investor is risk-seeking
when he observes a good signal and risk-averse when he observes a bad signal.

To see how the overconfidence bias interacts with the cost of information, note first that
by p̃ > p and the discussion in Section 4.3, overconfidence in the case of complete information
induces risk-seeking in the good state and risk-aversion in the bad state relative to the fully
rational behavior. Since the non-zero cost of information has an exactly opposite effect when
the signal is correct, the two effects mitigate the deviations of each other from the full ratio-
nality case. When the signal is incorrect, however, the effects of incomplete information and
overconfidence act in the same direction and so the deviation from optimal behavior is more
severe.

4.4.2 Excess Optimism

Recall that the prior distribution of the states is uniform and suppose now that the investor
is excessively optimistic: he finds the good state more likely at time zero than the bad state.
If we let Pr̃

(︁
x2

0
)︁

denote the probability the investor associates to the good state at time zero,
we then have that Pr̃

(︁
x2

0
)︁

> Pr
(︁
x2

0
)︁

= 1
2 and

Pr̃
(︂
x2

1

)︂
= Pr

(︂
x2

1|x1
0

)︂
Pr̃
(︂
x1

0

)︂
+Pr

(︂
x2

1|x2
0

)︂
Pr̃
(︂
x2

0

)︂
> Pr

(︂
x2

1

)︂
= 1

2 .

Note that with the biased priors, condition (4.2) given by

1
Psλ

(s1)+Psλ
(s2)e− β

λ
KL

1
2 + e− β

λ
KL

Psλ
(s1)e− β

λ
KL +Psλ

(s2)
1
2 = 1

is replaced by

1
Psλ

(s1)+Psλ
(s2)e− β

λ
KL

(︂
1−Pr̃

(︂
x2

0

)︂)︂
+ e− β

λ
KL

Psλ
(s1)e− β

λ
KL +Psλ

(s2)
Pr̃
(︂
x2

0

)︂
= 1. (4.6)

Since 1
Psλ

(s1)+Psλ
(s2)e− β

λ
KL

and e
− β

λ
KL

Psλ
(s1)+Psλ

(s2)e− β
λ

KL
now have uneven weights, Psλ

(s1) = Psλ
(s2) =

1
2 does not solve (4.6) any more, i.e.

1
1
2 + 1

2e− β
λ

KL

(︂
1−Pr̃

(︂
x2

0

)︂)︂
+ e− β

λ
KL

1
2e− β

λ
KL + 1

2

Pr̃
(︂
x2

0

)︂
=
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= 1
1+e− β

λ
KL

2
(︂
1−Pr̃

(︂
x2

0

)︂)︂
+ e− β

λ
KL

e− β
λ

KL +1
2Pr̃

(︂
x2

0

)︂
< 1.

It can be seen using Lemma 2 in Matějka and McKay (2015) that (4.6) implies Psλ
(s2) > 1

2
whenever Pr̃

(︁
x2

0
)︁

> 1
2 . Hence, biases in prior beliefs induces biased signals, which in turn enter

into the posterior beliefs that are given by

P̃ x1|sλ
(x2

1|s2) = Pr
(︂
x2

1|x1
0

)︂
Pr̃
(︂
x1

0

)︂ e− β
λ

KL

Psλ
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(s2)e− β
λ

KL
+Pr

(︂
x2

1|x2
0

)︂
Pr̃
(︂
x2

0

)︂ 1
Psλ

(s1)e− β
λ

KL +Psλ
(s2)

and

P̃ x1|sλ
(x2

1|s1) = Pr
(︂
x2

1|x1
0

)︂
Pr̃
(︂
x1

0

)︂ 1
Psλ

(s1)+Psλ
(s2)e− β

λ
KL

+Pr
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x2

1|x2
0

)︂
Pr̃
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x2

0

)︂ e− β
λ

KL

Psλ
(s1)e− β

λ
KL +Psλ

(s2)
.

Note that
Psλ

(s1)e− β
λ

KL +Psλ
(s2) >

1
2e− β

λ
KL + 1

2
and

Psλ
(s1)+Psλ

(s2)e− β
λ

KL <
1
2e− β

λ
KL + 1

2 .

Hence, for any signal realization, Pr
(︁
x2

1|x2
0
)︁

receives a lower posterior weight relative to the
incomplete information case without prior biases and Pr

(︁
x2

1|x1
0
)︁

- higher one. Hence, the
distortion in prior beliefs about x0 induces a distortion in the unconditional signal probabilities
and the two counteract each other when posterior beliefs are formed.

4.5 Implications For Asset Pricing

Note that for any asset A with pay-off τA(x1), the return is given by

τA(x1)
PA

,

where PA is the price of asset A. Thus, by assuming so far in Section 4 that the returns
of the assets are predetermined, we have assumed that prices are fixed and have analyzed
how the demand for the risky and safe assets change as we introduce biases and incomplete
information. In equilibrium, however, the demand for either asset equals its exogenously
specified supply (see (2.8) for details) and so prices adjust to reflect the preferences of the
representative agent. To see how prices reflect the agent preferences in our example, recall by
(2.2) that the price of asset A in fully observable state x0 is given by

PA = EPx1|x0

[︄
β

(︃
c(x1)

c0

)︃−γ

τA(x1)
]︄

.
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When we replace the general CRRA utility function and Px1|x0 by log-utility and Px1|sλ
,

respectively, in the derivations in Section 2.2.2, the asset pricing equation becomes

PA = EPx1|sλ

[︂
βg(x1)−1τA(x1)

]︂
,

where g(x1) ≡ c(x1)
c0

denotes the aggregate consumption growth exogenously determined in
equilibrium, since market clearing in the endowment economy requires that c(xt) = ω(xt) ∀xt,

t = 1,2. Hence, in our two-state example,

PA = βg(x1
1)−1τA(x1

1)Px1|sλ

(︂
x1

1|si

)︂
+βg(x2

1)−1τA(x2
1)Px1|sλ

(︂
x2

1|si

)︂
and so the price of the safe asset As is given by

PAs = βg(x1
1)−1Px1|sλ

(︂
x1

1|si

)︂
+βg(x2

1)−1Px1|sλ

(︂
x2

1|si

)︂
.

Recall that in our example, state 2 denotes the good state (g(x1
1)−1 > g(x2

1)−1) and that the
demand for the safe asset decreases whenever the probability of the good state increases.
Note that PAs above is a convex combination of βg(x1

1)−1 and βg(x2
1)−1 and so whenever

the probability of the good state increases, βg(x2
1)−1 receives a higher weight and so PAs

drops. Hence, PAs depends on the probability assigned to the good state in the same way
the demand for As does. Analyzing the price of the risky asset in a similar way shows
that whenever the probability of the good state increases, the price differential between the
risky and the safe asset widens. Since we have discussed the implications of prior biases and
incomplete information in terms of the effect they have on the probability assigned to the
good state, the discussion in previous sections readily applies to the prices.

5 Directions For Future Research

The long-term goal of the research undertaken in this paper is to create a realistic model
which builds on the merits of its predecessors and facilitates a joint analysis of the effects of
behavioral biases and incompleteness of information on asset prices. If such a generalization
is accomplished without model tractability being sacrificed, the framework should ultimately
be able to provide better insights into the financial phenomena by providing a more holistic
description of human decision-making. Previous sections laid out simple first steps towards
that goal. Next, I discuss the generalizations and modifications of the model that could push
it closer towards the aim.
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5.1 Agent Preferences

We saw in Section 3.2 that in the case of the log utility, the weights using which the agent
forms posterior beliefs upon observing a signal realization i is given by

eV (i,xl
0)/λ

EPsλ

[︂
eV (j,xl

0)/λ
]︂ = e− β

λ
KL(Pl(.)||Pi(.))

Es

[︂
e− β

λ
KL(Pl(.)||Ph(.))

]︂ .

In general, however, the weights depend on preferences since

V
(︂
i,xl

0

)︂
= u(ci,0)+βEP

x1|xl
0

[u(ci(x1))] .

This is an interesting feature, since it implies that the information strategy and the posterior
beliefs of the agent depends on his preferences and so the signals as well as reactions to them
reflect the attitudes of the agent. In this light, deriving the weights for general CRRA utility
would be a fruitful next step, since it has two major advantages over log-utility. Firstly,
log-utility is a special case of the general CRRA utility u(c) = c1−γ−1

1−γ corresponding to γ = 1.

Deriving the weights using u(c) = c1−γ−1
1−γ is thus expected to illustrate how signal probabilities

and posterior weights depend on the risk aversion parameter γ. For instance, a risk averse
agent might optimize signals in a way that make them relatively more precise at correctly
identifying bad states of the world.

Secondly, Shefrin (2008) shows that a behavioral framework of choice based on Securities,
Potential and Aspirations (SP/A) theory of Lopes (1987) can be posed in terms of CRRA
expected utility maximization with modifications to agent endowments and beliefs. Therefore,
the CRRA-based framework might also facilitate the analysis of how individual dispositions
affect information strategy and portfolio selection in the context of incomplete information.

5.2 Belief Formation Using Representativeness Heuristic

Section 4.4 illustrates how prior biases and incomplete information can be jointly analyzed by
considering two simple cases, while Section 4.5 illustrates the effects on asset prices. While
the framework should facilitate analysis of various biases, it seems particularly well-suited for
incorporating the representativeness heuristic, a behavioral tendency professional investors
seem to be exhibiting (see e.g. Shefrin (2008) and Bordalo et al. (2019)). Formally, the
representativeness heuristic is a distortion of Bayesian updating.4 More specifically, for any
events A and B, the posterior of A conditional on B is given by

Pr(A|B) = Pr(B|A)
Pr(B) Pr(A) ,

4The discussion that follows builds on the basic ideas in Shefrin (2008) and Bordalo et al. (2019) about
modeling representativeness heuristic.
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where Pr(B|A)
Pr(B) denotes representativeness, since it indicates the degree by which event A is

representative of event B, or how much the occurrence of event A makes event B more likely
relative to the unconditional probability of the latter. We say that the agent exhibits the
representativeness heuristic if he judges relative likelihood of events A1 and A2 conditional
on event B by comparing how representative they are of event B, or more generally, by
discounting the differences between base probabilities Pr(A1) and Pr(A2) when comparing
Pr(A1|B) and Pr(A2|B) .

The framework proposed in this paper is particularly well suited for analyzing represen-
tativeness heuristic, since the agent reweighs his beliefs upon observing a signal si using
representativeness, i.e.

Px1|sλ
(x1|si) =

∑︂
x0

Pr(x1|x0)Pr(x0) eV (i,x0)/λ

EPs

[︁
eV (j,x0)/λ

]︁ ,
where eV (i,x0)/λ

EPs [eV (j,x0)/λ] is the representativeness of si by x0, since

Pr(x0|si) = Pr(x0) eV (i,x0)/λ

EPs

[︁
eV (j,x0)/λ

]︁ .
The representativeness heuristic can then be modeled using posterior beliefs in which Pr(x0)
receives less weight relative to eV (i,x0)/λ

EPs [eV (j,x0)/λ] . For instance, in the extreme case, the representativeness-

biased agent can be modeled as reweighing Pr(x1|x0) using eV (i,x0)/λ

EPs [eV (j,x0)/λ] alone so that

Px1|sλ
(x1|si) = C

∑︂
x0

Pr(x1|x0) eV (i,x0)/λ

EPs

[︁
eV (j,x0)/λ

]︁ ,
where C is a positive constant that ensures posterior probabilities sum up to 1. Hence, re-
placing the posterior beliefs of the agent using the representativeness-induced analogue should
provide insights about how representativeness heuristic might affect investment decisions in
the presence of incomplete information.

5.3 Heterogeneity and More Than Two Periods

So far we have assumed that the economy is inhabited by a continuum of identical investors
and so the discussion about the behavior of the representative agent was implicitly assumed
to apply to the aggregate economy (or the whole market). Clearly, a continuum of identical
agents is a simplifying assumption that does not hold in reality. This, however, does not make
the representative agent model useless, since the latter constitutes a building block of more
realistic heterogeneous agents models in which the behavior of individual investor is modeled
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analogously to that of the representative investor (except agents now potentially differ in their
beliefs, preferences, endowments and the cost of information). The natural first step towards
introducing heterogeneity in this framework would be analyzing the economy inhabited by
two types of agents who differ, among other things, in their cost of information. It would
be particularly interesting to analyze how market beliefs are formed in this case and what
happens when the realizations of their private signals do not agree.

Like the homogeneity assumption, the two-period time frame of choice is too simplistic,
since most investment decisions have a larger horizon and are not governed by the simple
motive of allocating consumption between today and the next period only. In this light, it
would be insightful to analyze whether the incompleteness of information induces the agent
(relative to the full rationality case) to have a different attitude about distant future and thus
select a different portfolio of assets.

6 Summary

Behavioral and bounded rationality approaches to asset pricing attempt to account for essen-
tial features of human decision-making absent in standard neoclassical models, which assume
full investor rationality. The bounded rationality approach studies the direct effects of cog-
nitive limitations and costly information acquisition without modeling biases of judgement
explicitly, while the behavioral school of thought directly models the biases of judgement
often unrelated to the limited information or mental capacity. Even though the models of
bounded rationality can explain some behavioral biases, the two frameworks in general have
different assumptions and implications, yet those assumptions are only complementary and
together provide a more holistic axiom underlying investor behavior: investors have limited
mental capacity that prevent them from always correctly identifying the probabilities of fu-
ture states and they potentially exhibit prior biases in beliefs and behavioral tendencies in
preferences.

I incorporate behavioral and bounded rationality elements into a single framework by
studying an extension of the standard two-period consumption-based portfolio selection prob-
lem in which a representative agent with CRRA preferences has potentially biased priors, does
not observe the current state and is not certain about future state probabilities. He selects
signals in the rational inattention discrete choice framework of Matějka and McKay (2015) in
order to learn about the current state and upon observing a signal realization, forms posterior
beliefs about the likelihood of future states. The generated posterior is a convex combina-
tion of the future state distributions induced by different time-zero states, where the weights
reflect the subjective posterior likelihood of time-zero states. In the case of log-utility, the
posterior beliefs are induced by parsimonious reweighing of priors, where the weights depend
on λ, discount factor β and the relative entropies of the conditional future state distributions.
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Moreover, the optimal portfolio induced by the log-utility is a convex combination of the N

portfolios the investor would have selected in each of the N states if they were fully observable,
where the weights coincide with those in the posterior.

The precision of the posterior beliefs in general depend on the priors and the cost of
information λ. When λ is very high, posterior beliefs are almost identical to priors, while as λ

gets arbitrarily small and when the agent has correct priors, the posterior beliefs converge in
probability to the true distribution. The implications for behavior depend on the underlying
assumptions about the nature of investor beliefs. Using a two-state example with log-utility,
I demonstrate that when the agent is assumed to have correct priors, incomplete information
and the noisiness of signals induces him to be more risk-averse relative to the full rationality
case in the good state and more risk-seeking in the bad one. I also show that when the
investor is overconfident, the effects of incomplete information are mitigated when the signals
are correct and exacerbated when the signals are incorrect.

The proposed framework is promising since it facilitates a holistic modeling of human
decision-making and is a direct generalization of standard neoclassical and behavioral ap-
proaches, which are special cases of the general model. Moreover, its usefulness is not limited
to asset pricing context, since the model is originally formulated in terms of a consumption
allocation problem. The extended framework also seems particularly well-suited for incorpo-
rating the representativeness heuristic and CRRA-based behavioral preferences into analysis,
and could lay the foundation for multi-period heterogeneous agents model that outperform
existing ones by allowing us to analyze the effects of costs of information and behavioral biases
into a single framework.
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