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Abstract

Strokes are roughly twice more likely to be missed among Black patients compared to non-
Black patients, with most of the disparity arising from physicians testing Black patients less
often. We develop a method to quantify the role of disparate treatment by physicians in
driving this difference in testing. Specifically, we leverage a unique feature of strokes: whether
a patient actually had a stroke can be inferred retrospectively even if initially misdiagnosed.
This allows us to benchmark testing decisions against racially objective predictions of stroke
risk made by a machine learning model trained on the true underlying stroke states. We
decompose disparate treatment into two forces: an unjustified skill gap, where physicians
make noisier risk assessments for Black patients; and racial prejudice, where physicians are
less likely to test Black patients conditional on their risk assessment. Disparate treatment
accounts for about 65% of the racial disparity in testing. Removing racial prejudice would
lower testing disparities by half.
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I. INTRODUCTION

Racial disparities in health outcomes are widely prevalent and persistent (Institute of Medicine,
2003). These disparities may result from multiple aspects; such as racial differences in the
quality of facilities that patients go to (Chandra et al., 2024), differences in communication
and self-advocacy (Alsan et al., 2019), differences in symptomatic presentations, or differ-
ential treatment by providers (Chandra & Staiger, 2010; Institute of Medicine, 2003; Balsa
& McGuire, 2003). We can broadly classify these aspects into two groups: those that drive
racial disparity via differential access to care, and those that drive disparity via their effect
on clinical decision-making within a facility. With improvements in diagnostic technology
and insurance coverage, Chandra et al. (2024) report a substantial decline in the quality
difference between facilities that Black and non-Black patients seek care at. In this paper,
we focus on the latter: disparity in outcomes that arise from clinical decision-making, and
more specifically the role of disparate treatment by providers, where “treatment” means the
physicians’ behavior towards the patient or the handling of their case.

Disparate treatment refers to when a physician makes clinical decisions differently for one
group of patients than for another, in a way that is not justified by medicine. Conceptually, it
encompasses taste-based discrimination (Becker, 1957) as well as the use of incorrect priors,
beliefs, or stereotypes in decision-making (Bohren et al., 2024; Hull, 2021).

In this paper, we describe a framework for studying disparity in clinical decision-making
when the underlying state of whether the patient actually has the disease can be inferred by
the econometrician. The ‘outcome’ that we focus on is the quality of physicians’ decisions
i.e. does it match the underlying state or not. We then ask whether the racial disparity in
outcomes comes from disparate treatment, and undertake a quantitative assessment of its
contribution relative to other relevant factors.

We apply this framework to study racial disparity in stroke diagnosis in emergency depart-
ments (EDs). Strokes are one of the leading causes of mortality and long-term neurological
disability worldwide, and in particular in the United States (CDC, 2024). For instance, in
2021, the burden of stroke totaled 160.4 million disability-adjusted life years, and 7.44 million
deaths worldwide (Institute for Health Metrics and Evaluation, 2024; Martin et al., 2024).
Strokes are cerebrovascular events characterized by a rapid deterioration in brain function;
and so patients who are misdiagnosed in their initial visit soon find themselves back again in
the hospital, allowing us to retrospectively infer whether an ED visit was indeed occasioned
by a stroke, based on patient revisits (Arch et al., 2016; Newman-Toker et al., 2014, 2022).

Using comprehensive administrative healthcare data from the Healthcare Cost and Utiliza-
tion Project (HCUP), we track patient visits in Florida for the years 2016-2017 across emer-
gency departments, in-patient settings, and ambulatory or out-patient settings. Our primary
sample spans 1,368,560 visits serviced in the ED in 2016, made by patients aged between
18-80 years and presenting with any symptom associated with stroke. For each visit, we code
a binary indication of whether or not the visit was actually due to a stroke—which we call as
the latent stroke state. It is ‘latent’ because at the time of physician decision-making, the un-
derlying state is unknown to them. With latent stroke states known, we assess the quality of
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two sequential decisions of the physician—testing (i.e. whether neuroimaging was ordered)
and diagnosis—and examine how it varies with patient race. Starting with diagnosis, we
trace back to testing decisions to pinpoint the origin of disparity.

We find that strokes are missed 75% more often for Black patients, with a 28% false negative
rate compared to 16% for non-Black patients. The logisitic odds of a missed diagnosis are
about 2.74 times higher for Black patients. The disparity remains this large even after
patients’ sex, age, comorbidity-profile, and insurance status are controlled for. The rate
of false positives is low overall (about 0.03%), with no significant difference by race. In
testing, we again find disparity, with Black stroke patients 11.5 percentage points less likely
to be tested in accordance with the stroke protocol. Conditional on being tested adequately,
however, we find no significant difference in misdiagnosis rate by patient race. Components
analysis reveals that over 90% of the observed disparity in missed diagnosis can be attributed
to differential testing, highlighting the relevant decision to examine for disparate treatment
to be of testing.

Disparities in testing do not necessarily indicate disparate treatment. They can also arise
from the potential selection of patients across differently skilled physicians and facilities, or
from structural differences in the quality of information available to the physician based on
which stroke risk is inferred.1 The quality of information matters because if it were harder to
predict stroke risk for a group, a physician would make more errors in determining whom to
test in that group despite being unbiased. Some ways in which information quality may vary
across racial groups are through differences in symptomatic presentation, symptom reporting
behavior, or the quality and availability of past medical records.

Within-facility comparisons of outcomes, and the exploitation of quasi-random assignment
of physicians to cases in the ED address the first of these concerns—that of selection into
varying qualities of care. To address the second concern about the quality of information
being different across groups, we define objective risk assessments or the best prediction of
stroke risk for each visit conditional on the information available to the physician at the time
of decision-making, whatever its quality.

We use machine learning to obtain the objective stroke risk assessments. Machine learning
models are non-parametric and can identify non-linear and complex patterns in data, outper-
forming traditional statistical methods. We train a machine learning algorithm (XGBoost)
to take as input the information available to physicians at the time of decision-making, in-
cluding patient race, and predict the latent stroke state. For this, we rely on comprehensive
encounter-level information providing administrative details, patient demographics, and a
detailed representation of the health encounter in the form of alphanumeric diagnosis codes
and procedure codes. We also obtain patient history and risk factors from all previous en-
counters made by the patient in the year, across different care-settings. The challenge here
though is that we may not be observing all of which the physician observes about the patient.
To the extent that such unobservables are correlated with race and relevant to stroke, the in-
clusion of race as a feature assures that the algorithm learns from all race-correlated patterns

1The difference in information quality is synonymous to the subgroup validity problem in Ayres (2002).
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in the data, including those mediated via unobserved factors. The predictions made by the
algorithm therefore subsume race-specific and race-correlated differences in assessable stroke
risk, allowing cross-group comparisons. Disparate treatment is then indicated by differential
rates of testing within a facility and conditional on the same objective stroke risk assessment.

We find, conditional on the same decile of objective risk, testing is 24% lower for Black
patients. The difference persists even among patients who do not have contraindications to
any imaging modality. Notably, disparate treatment explains 65% of the racial difference in
testing rates.

Next, we model physicians’ decision to test, and formalize two mechanisms driving dis-
parate treatment in testing: racial prejudice and unjustified skill gap. Racial prejudice refers
to physicians using different thresholds for different racial groups when deciding whether to
test them. The latter, unjustified skill gap, refers to physicians systematically making noisier
stroke risk assessments for one group relative to the other. We evaluate the noise in physi-
cians’ risk assessments relative to the objective risk predictions, to account for differences in
the quality of information available. Any differential accuracy is therefore unjustified by sta-
tistical differences in risk or informativeness of the presentation, and originates specifically
from physician error that systematically disfavors one of the groups. It can be interpreted
to be a consequence of low physician effort, the use of incorrect priors and stereotypes, or of
race-insensitive medical protocols.

We model physicians to be heterogeneous in their choice of threshold and in the quality of
risk assessments they make; both of which vary with the “type” of the patient defined over
a finite set of patient traits including race. Physicians’ choice of threshold is determined by
their preferences in how they trade-off disutility from false negatives relative to that from
false positives. The quality of their risk assessment, or skill, determines the variance of their
subjective assessments around the objective risk. The lower the physician’s skill, the more
false negative and false positive decisions are made. Threshold and skill are then jointly
identified by the size and the ratio of the false negative and false positive decisions made by
the physician. To estimate the model, we use Hierarchical Bayes and sample the parameters
from the joint posterior using a Monte Carlo Markov Chain (MCMC) Gibbs sampler.

We find that physicians both use higher thresholds and make noisier risk assessments for
Black patients. Equalizing thresholds by race, all else same, closes the racial difference in
false negatives by half. As for unjustified skill gap, the standard deviation in subjective log
odds assessments is, on average, 19% higher for Black patients. The distinction between the
two mechanisms is not only conceptual but also in how they inform policymaking. Combin-
ing physicians’ testing decision with recommendations from a machine learning model guards
patients against unjustified skill gap, while lowering costs of filing malpractice lawsuits (or
more generally, imposing external costs on false negatives) should lower thresholds. Poli-
cies that separately attend to either the skill gap or threshold differences would lower false
negatives for both racial groups but would disproportionately benefit non-Black patients,
who are advantaged in the other dimension. To effectively reduce racial disparities in care,
policies must address both mechanisms simultaneously.
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Related Literature. Our research builds on the empirical literature that tests for taste-
based discrimination in decisions. Some settings studied in this literature include: stop and
search by police officers (Knowles et al., 2001; Anwar & Fang, 2006; Antonovics & Knight,
2009; Feigenberg & Miller, 2022), bail-setting by judges (Arnold et al., 2018, 2022), loan
approvals (Dobbie et al., 2021), screening for disability insurance (Low & Pistaferri, 2019),
foster care placement (Baron et al., 2024), and academic journal evaluations (Card et al.,
2020), among others. Our contribution to this literature is in identifying disparate treatment
that arises not only from taste-based discrimination, but also from biased risk prediction.
Arnold et al. (2022) also model decision-makers to vary in racial prejudice and in “skill”
i.e. the informativeness of the signals drawn for each racial group. Differently from their
approach, we are able to use objective risk assessments to separate informativeness of the
signal generated from the decision-maker’s ability to infer risk from it.

This paper also relates to the literature on variations in physician practice styles (Abaluck et
al., 2016; Chandra & Staiger, 2020; Chan et al., 2022; Gowrisankaran et al., 2023). Although
this literature focuses on heterogeneity in decision-making and does not make between-
group comparisons, our research borrows from it when modeling physician heterogeneity
and extends it by examining how physician heterogeneity interacts with patient type. Our
paper is closest to Chan et al. (2022) in its approach; the difference is that when making
cross-group comparison of physician skill, we also allow the informativeness of the signal to
differ by patient race or other race-correlated characteristics.

Methodologically, the paper also complements a growing literature that uses machine learn-
ing to evaluate the quality of human decisions. Most notably, Kleinberg et al. (2018) and
Dobbie et al. (2021) test if machine learning predictions can achieve more favorable outcomes
compared to human decision-makers in the contexts of bail setting and consumer lending re-
spectively. Similarly, Mullainathan and Obermeyer (2022) use machine learning predictions
of heart attack risk to identify prevalence of under-testing and over-testing. Differently from
these applications, we don’t compare physicians against a machine learning model. Instead,
we use machine learning predictions as a stand-in for variations in the quality of information
that physicians have access to, enabling cross-group comparisons.

Finally, this paper contributes to a large multi-disciplinary literature on racial disparity in
health. Disparities have been shown to be a consequence of differences in access, inequalities
in social determinants of health, and barriers to patient-physician interactions (Chandra et
al., 2024; Alsan et al., 2019; Jayaraman, Ray, & Wang, 2014). Operating simultaneously
with these structural aspects, provider bias has also been found to be a key contributing
factor (Singh & Venkataramani, 2024; Institute of Medicine, 2003; Balsa & McGuire, 2003).
Our contribution to this scholarship is in studying its underlying mechanisms.

The remainder of this paper is organized as follows. Section II provides a background on
strokes and our data, including the imputation of latent stroke states. Section III outlines
the framework and empirical strategy used in Section IV to document the racial disparity in
outcomes and in treatment. Section V models testing decisions, formalizing the two mecha-
nisms of disparate treatment, which is then taken to data. Finally, Section VII concludes.
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II. SETTING AND DATA

II.A. Strokes

Strokes are cerebrovascular events during which blood supply to a part of the brain gets
interrupted. If the interruption is caused by blockages in blood vessels the event is called
an ischemic stroke, and if caused by the rupture of blood vessels it is called a hemorrhagic
stroke. Ischemic strokes are more common and constitute about 80− 90% of all stroke cases
(Tsao et al., 2023). The abrupt interruption in blood supply cuts off the access of brain cells
to oxygen and nutrients, thereby causing rapid damage or death of brain tissue. As a result,
strokes come with a high risk of permanent loss of brain function, long-term disability, or even
death. Consequently, strokes are considered medical emergencies that warrant immediate
medical attention.

The symptoms of stroke depend on the part of the brain that is affected. They range from
more specific and typical indications such as weakness on one side of the body, facial drooping,
difficulty in speech and comprehension, or even paralysis, to several non-specific and diffuse
symptoms such as headaches, confusion, lack of balance, or dizziness. The symptomatic
presentation of stroke is also found to vary by race, sex, and stroke subtype (Rathore et al.,
2002). Common risk factors include high blood pressure, diabetes, atrial fibrillation, high
cholesterol levels, and a personal or family history of stroke; some of which are differently
prevalent across racial groups.

An accurate diagnosis of stroke calls for an ability to carefully examine the presenting symp-
toms, the patient’s history, and neurological function; relying greatly on the physician’s
attentiveness and subjective risk assessment. Diagnostic errors are very costly and can
potentially result in preventable deaths or serious long-term neurological disabilities. The
longer a stroke episode goes untreated, the greater is the damage to the brain as more
cells and tissue in the affected area continue to die. And yet, stroke is frequently misdiag-
nosed in the emergency department, and is one of the leading causes of death in the United
States (Newman-Toker et al., 2022). Since emergency departments (EDs) are fast-paced
and high-volume environments, the scope for diagnostic errors and delays is even greater
(Newman-Toker et al., 2014; Tarnutzer et al., 2017).

II.A.1. Diagnostic Pathway for Stroke

All visits to an ED are first triaged, registered, and then assigned to physicians available
at the time on a priority basis. The assignment of physicians to cases is typically random
conditional on the physicians’ shift schedules. Physicians assess their patients, review vitals
and relevant history, and order tests before diagnosis. If a physician evaluates a reasonably
high stroke risk, the stroke protocol is activated.

The stroke protocol dictates that all suspected cases receive emergency neuroimaging, fol-
lowed by immediate neurological assessment and prioritized blood work. If the patient is
brought in already under suspicion for stroke, some of these procedures are done by the
Emergency Medical Services (EMS) themselves and the ED is alerted in advance to rush the
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patient for immediate neuroimaging upon arrival. Similarly, if the triage suspects stroke for
a walk-in patient, the ED physician is notified and the patient is rushed for neuroimaging.
Registration and initial blood-work are all prioritized at the bedside.

Neuroimaging is the principal step under any protocol for suspected stroke. It is performed
to confirm stroke, assess the extent of brain injury, and to identify the type of stroke and its
precise location. Although neuroimaging is ordered by the physician, the scans produced are
generally read and interpreted by a radiologist whom the attending physician can consult
with when necessary. Non-contrast computed tomography (CT) is the primary imaging
modality recommended in the protocol. This is because CT is fast, taking approximately 20
minutes, and is widely available. CT, however, has low sensitivity for identifying ischemic
strokes compared to other imaging procedures (Mullins et al., 2002; Chalela et al., 2007). For
cases where the CT doesn’t detect a stroke, physicians may order additional scans for higher
quality of evidence.2 If there are signs of hemorrhage or infarction on the initial CT images,
follow-up imaging is unnecessary, and the patient is diagnosed and treated accordingly. In
rare scenarios, stroke may be also diagnosed in the absence of neuroimaging, based on clinical
presentation, risk factors, and neurological evaluation.

While scans from neuroimaging procedures are analyzed by radiologists, attending physicians
are responsible for the overall diagnosis and treatment plan of the patient. Importantly, the
decision to order imaging is typically made by the attending physician (Broder et al., 2016).

The monetary cost of neuroimaging is identical for all patients, but contraindications to
testing may be differently prevalent across racial groups. Nevertheless, contraindications
rarely cause a patient to receive no neuroimaging at all, since any of several neuroimaging
modalities can be utilized to identify stroke. Appendices E.4 and E.5 lists the different
testing modalities that can be used and also their contraindications. Patients’ ability to pay
for the test shouldn’t matter in case of stroke because the Emergency Medical Treatment and
Active Labor Act (EMTALA) 1986 guarantees to all individuals who present to an ED with
an emergency medical condition the access to medical screening/exams and the necessary
treatment for stabilization regardless of their ability to pay.

Once stroke is confirmed, patients are treated appropriately based on the stroke-type. The
longer a stroke goes untreated, the more substantial in the loss in brain tissue and function;
as is emphasized in the phrase “Time is Brain”. The chances of complete recovery are the
highest for patients diagnosed within 3-4 hours of the first symptoms (National Institute of
Neurological Disorders and Stroke rt-PA Stroke Study Group, 1995; Bluhmki et al., 2009).

II.A.2. Transient Ischemic Attacks or ‘Mini-Strokes’

Transient ischemic attack (TIA) or a ‘mini-stroke’ is an event where the interruption of
blood supply is only temporary, and resolves by itself when the clot moves away within a
few minutes or a few hours. TIAs still constitute a medical emergency and have the same

2Follow-up imaging modalities ordered by physicians include: CT Perfusion (CTP), CT Angiography
(CTA), Magnetic Resonance Imaging (MRI), Magnetic Resonance Diffusion, Magnetic Resonance Imaging
Perfusion, or Magnetic Resonance Angiography (MRA).
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main symptoms as stroke, except that the symptoms are temporary. TIAs are however an
important risk factor and warning sign for an impending stroke. They are often followed by
an episode of acute stroke, with the highest risk of incidence being within the first few days
and up to a week after.

Monitoring and testing TIA cases is therefore crucial for preventing impending acute strokes.
Cases of TIA are hence recommended to be tested for blockages, plaque in arteries, or blood
clots, and monitored for new or returning symptoms. Once again, neuroimaging is the
principal step recommended for TIA cases. While TIAs are not caught on CT scans, the
objective of neuroimaging is to rule out signs of an impending stroke. This is then followed
by procedures such as contrast CT, MRI, Carotid Ultrasound, Transcranial Doppler, or 12-
lead Echocardiogram, to identify the source of blood clots. When such a source is identified,
the fact of high stroke risk is communicated to the patient and appropriate treatment is
given to regulate blood pressure, lower cholesterol, and prevent new clots.

The analysis in this paper focuses specifically on how acute stroke is diagnosed in the emer-
gency department. However, when defining latent stroke states in Section II.C.2, we also
classify missed TIAs that subsequently result in a stroke, as cases of ‘missed’ stroke. This
is both because strokes that occur after missed TIAs could have been prevented had the
underlying cause been treated, and because missed TIAs are observationally equivalent to
missed strokes. The incidence of ischemic strokes, as well the recurrence of stroke following
TIA is substantially higher among Black adults compared to non-Black adults (Kamel et al.,
2020). When assessing the quality of stroke diagnoses, however, we compare rates of false
negatives and false negatives across groups, making this differences in incidence irrelevant.

II.B. Data

The primary sample for our analyses consists of all ED visits in Florida in 2016 where a
patient between the ages of 18 and 80 presents with any symptom associated with stroke.

The data on ED visits is sourced from the State Emergency Department Databases (SEDD)
of the Healthcare Cost and Utilization Project (HCUP). HCUP databases are derived from
administrative data provided by participating states, and contain detailed visit-level ab-
stracts of inpatient stays, ambulatory surgery or services visits, and emergency department
encounters.3 We combine the data on ED visits with the State Ambulatory Surgery and Ser-
vices Databases (SASD) and the State Inpatient Databases (SID), to comprehensively record
all hospital visits made in the years 2016 and 2017, across facilities and care-settings, linked
by patient and physician identifiers. The cross-linking of ED visits to other care-settings is
relevant for inferring the latent stroke state for each ED visit, as detailed under Section II.C.

From a total of 8,884,669 ED visits made in 2016, we narrow down to visits by patients in

3The Florida Agency for Health Care Administration (AHCA) provides HCUP with data on: ED visits
to all licensed hospital-owned EDs in the state; inpatient stays in non-federal Florida hospitals, freestanding
comprehensive rehabilitation facilities, and acute care psychiatric hospitals; and outpatient services from
hospital-owned and non-hospital-owned (including physician-owned) ambulatory surgery centers, lithotripsy
centers, and cardiac catheterization laboratories.
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the specified age range, presenting with at least one of the many symptoms of stroke, and
excluding visits obviously unrelated to stroke (caused by external causes of morbidity such
as animal bites, poisoning, among others).4 We also exclude visits to EDs that don’t see any
stroke patient visit during the year 2016, and those with missing information on the ED and
visit time. This gives us the primary sample for our analysis, covering a total of 1,368,560
ED visits made over the year by 1,031,793 unique patients. Appendix E lists all the stroke
symptoms used in our inclusion criteria, as well as the external causes of morbidity used for
exclusion.

Each record in the data represents a unique patient visit. For each visit, the data provides
information on the patient, the facility, the attending physician, and the specifics of the the
visit. Patient information includes a patient identifier and associated patient demographics
such as age, sex, race, patient location, and income quartile of the patient’s zipcode within
the state. Patients are categorized into racial groups based on the patient race available
on record.5 We refer to Black and Black Hispanic patients collectively as Black patients in
this paper. Specifics of the visit include the hour of admission, quarter, facility identifier,
physician identifier, duration of visit, and discharge information. The record also details the
primary expected payor (insurance) for the visit, and up to 10-31 alphanumeric ICD-10-CM
diagnoses codes and 35 ICD-10-PCS/HCPCS/CPT procedure codes.6 The data on each
visit consists of the specifics from the current visit, as well as the details from the patient’s
history of all previous healthcare encounters.

The diagnoses and procedure codes listed on each record offer a detailed representation
of the particular health encounter. The merit of this dataset lies in this comprehensive
description of each patient visit, which is ideal for our analysis. Diagnosis codes specify
disorders, symptoms, abnormal findings, patient risk factors, and the nature of the encounter.
Each diagnosis code can be potentially specified up to seven alpha-numeric characters, with
each additional character hierarchically describing the general category of disease, etiology,
anatomic site, severity, and episode of care. In the same way, procedure codes specify all
medical tests, procedures, and services delivered during the patient encounter, including
the use of any drugs, specialized services, or equipment. Together, the two sets of codes
summarize the medical aspects of the patient’s visit. It is in the interest of the provider
to code patient visits accurately since procedure codes are used for medical billing, and
the diagnosis codes on record attest to the medical necessity of the procedures performed.

4A visit is defined as a unique combination of the patient identifier, visit date, admission hour, discharge
hour, and care-setting. This is to avoid counting separately billed instances from the same encounter as
separate visits. In case of duplicates (there are 37 such cases), we keep the last record.

5Race information is missing for about 0.4% of the visits in the primary sample.
6ICD-10 is a comprehensive medical classification system managed by the World Health Organisation

with over 70,000 ICD-10-PCS procedure codes and 69,000 ICD-10-CM diagnoses codes. CPT (Current
Procedural Terminology) is a code set managed by the American Medical Association that describes medical
procedures and services delivered, using more than 11,000 numeric codes. HCPCS (Healthcare Common
Procedure Coding System) is another standardized coding system maintained by the Centers for Medicare
and Medicaid Services with about 8000 alphanumeric codes used to identify services provided to Medicare
and Medicaid patients. All these coding systems are regularly revised and updated to keep up with advances
in medical knowledge and technology.
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Over-billing and under-documentation are constrained by the risk of the insurer denying the
claim.7

Further, we use facility identifiers to identify the level of stroke certification for each ED—
none, primary, or comprehensive—as of January 1, 2016, using reports from the Florida
Department of Health. Patient county FIPS code is also used to obtain county level data on
the age adjusted rate of stroke hospitalizations and stroke deaths in the years 2013-15.

Table 1 provides a summary of the overall data sample as well as a breakdown by patient
race. Visits by Black patients constitute about 25 percent of the primary sample. It is
interesting to note at the outset that Black patients in our sample differ from non-Black
patients on several counts. They are younger, have fewer comorbidities (age-adjusted), are
predominantly female, and also less likely to be insured. Patients from the two racial groups
also present with different types of symptoms, with Black patients somewhat more likely to
experience non-specific symptoms like headache, weakness, or nausea.

II.C. Definition of Key Variables

II.C.1. Stroke Diagnosis

For every ED visit in the sample (indexed by i), we encode the attending physician j(i)’s
diagnosis of stroke as Dij. We code Dij = 1 if either (1) the main diagnosis on the visit record
is stroke, or (2) the ED record indicates a transfer of the patient to an in-patient facility,
with the admit reason or diagnosis on the in-patient record listed as stroke. Otherwise, we
code Dij = 0.

II.C.2. Latent Stroke State

Since strokes are acute, symptomatic, and an emergency condition, a stroke episode that is
missed by the physician at initial presentation will eventually need to be brought again to
the health system very soon. We exploit this feature to assign the latent state of whether or
not a visit was truly occasioned because of stroke (denoted by Si ∈ {0, 1}), based on patient
revisits. Identification of missed stroke cases based on retrospective visit review or chart
review has been done previously in the medical literature; see for example Arch et al. (2016);
Newman-Toker et al. (2014, 2022). It is possible for us to unambiguously do this because
we use the unique patient identifier associated with each ED visit to track all other visits
made by the specific patient in the year, across emergency departments, in-patient settings,
and ambulatory or outpatient settings in the state of Florida.

If any patient is diagnosed with a stroke (or its sequelae) in any facility, and had visited an
ED in the last 14 days prior to it with similar symptoms, the associated relevant prior ED
visit is coded as Si = 1 as long as it wasn’t diagnosed as TIA. Our rationale for a 14-day
interval is that it also captures cases of missed transient strokes (TIA) or mini-strokes that

7Codes are generally entered by physicians or medical coders based on physician documentation and
patient chart. They are not only used for medical billing or medical documentation of patient history, but
also to track disease statistics, utilization and cost.
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Table 1 :
Summary Statistics of the Sample

Visits by Visits by Visits by
All Non-Black Black

patients patients

(1) (2) (3)

Patient Characteristics

Black 0.2517 0.0000 1.0000
Age 45.5272 46.9634 41.2585
Female 0.6338 0.6226 0.6668
Hispanic 0.1740 0.2240 0.0254
Uninsured 0.1686 0.1553 0.2081
Charlson Comorbidity Index (age-adjusted) 1.3594 1.4243 1.1663
Personal History of Stroke 0.0387 0.0386 0.0392

Visit Characteristics

Duration (Hours) 7.8029 7.9477 7.3734
Weekend 0.2585 0.2583 0.2593
Number of Procedure Codes 11.0945 11.4292 10.0997
Number of Diagnosis Codes 4.5262 4.6321 4.2112

Presenting Symptoms∗

General 0.7903 0.7862 0.8027
Sensory 0.0512 0.0524 0.0476
Speech 0.0062 0.0069 0.0043
Muscular 0.0095 0.0103 0.0070
Facial 0.0037 0.0041 0.0023
Visual 0.0221 0.0227 0.0207
Alertness/Consciousness 0.1679 0.1741 0.1494

Neuroimaging 0.2872 0.2959 0.2613

Total Visits 1,368,560 1,024,027 344,533

Notes: This table provides a summary of the primary sample. The primary sample consists of all ED visits
in Florida in 2016 where a patient aged between 18-80 years presented with any symptom associated with
stroke. It excludes visits caused due to accidents or events that are obviously unrelated to stroke but may
have a symptom in common. ∗The specific ICD-10-CM codes for the symptoms under each category are
specified under Appendix E.
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later present as strokes which could have been prevented or prepared for. Visits with Si = 1
and Dij = 0 would therefore be those with missed acute strokes and missed TIAs that were
followed by stroke within the next 14 days. We refer to these cases of false negatives as
missed diagnoses. In our analyses later, we show that our findings are robust to interval
choices that are different from the 14-day window.

For visits that are diagnosed with stroke in the ED, if (1) the patient returns to the health
system within the next 60 days with similar symptoms and is instead diagnosed with a stroke
mimic,8 and (2) the personal history of stroke is not recorded in any of the patients’ future
visits, we code Si = 0 even though Dij = 1. These visits with a false positive diagnosis
are referred to as cases of incorrect diagnoses. Patients who are incorrectly diagnosed with
stroke end up returning to the health system for one or more of two reasons: the underlying
stroke mimic that is not yet diagnosed recurs, or the unnecessary stroke treatment results
in complications, such as angioedema or intracranial haemorrhage (Buck et al., 2021). For
all other visits, we set Si = Dij.

In the case of ED visits following which the patient doesn’t revisit the health system again
in the year or even in 2017, there are two possibilities: either the patient doesn’t need any
medical care during this period, or the patient died relatedly or unrelatedly. There are
257,061 such visits in the sample.9 If we set Si = Dij for these visits, we possibly risk
underestimating the rate of missed diagnoses for visits with Dij = 0 and underestimating
the rate of incorrect diagnoses for visits with Dij = 1. Dropping these visits from the sample,
on the other hand, would most likely overestimate the rate of incorrect and missed diagnoses
since the denominator would fall. We report estimates from both these approaches, but
decidedly err on the side of underestimating misdiagnosis in the rest of our analysis.

The ICD-10 CM codes used to identify diagnoses of stroke, stroke sequela, and stroke mimics,
are detailed under Appendix E.

II.C.3. Neuroimaging and Test for Stroke

We use the term neuroimaging to refer to the use of any diagnostic brain-imaging technology
used for strokes (such as CT, CTP, MRI, and others listed under Appendix E) during the
patient’s visit. However, neuroimaging is done not only for the diagnosis of stroke, but also
to detect traumatic brain injuries, tumors, aneurysms, and epilepsy, among other brain dis-
orders. To obtain a stronger indicator for whether or not the physician specifically suspected
stroke and sought to test for it, we define the testing variable Tij. We code Tij based on
whether the imaging ordered for the patient aligns with the stroke protocol.

We assign Tij = 1 if (a) the patient gets a non-contrast CT and is diagnosed with stroke,

8Stroke mimics are conditions or acute neurological symptoms that present with symptoms that may be
erroneously attributed to stroke. For example, seizure, migraine, or hypoglycemia are some stroke mimics
(Fernandes et al., 2013; Anathhanam & Hassan, 2017).

9The share of visits following which the patient doesn’t revisit the health system again in 2016-17 is roughly
20% for non-Black patients, and 13% for Black patients regardless of whether or not they are diagnosed with
stroke or TIA during the visit. The difference is therefore unrelated to strokes or its diagnosis.
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or (b) the patient gets a non-contrast CT combined with a follow-up imaging modality, or
gets a high-stroke-sensitivity imaging modality such as MRI, or (c) the patient is diagnosed
without imaging. We set Tij = 0 otherwise. Conditions (a) and (b) are fairly obvious given
stroke protocol guidelines and the differential sensitivity of non-contrast CT for ischemic
strokes. Condition (c) allows to include the minority of cases in which a patient is evaluated
for stroke without the use of neuroimaging.10 Effectively, Tij = 1 combines the physician’s
two separate decisions of ordering initial imaging and follow-up imaging (if necessary), into
one composite decision variable. Note here that for visits where a stroke episode gets missed
because the physician failed to order follow-up imaging, Tij would be assigned 0 by this rule
since the patient wasn’t “sufficiently” tested.

II.C.4. Facility

For each ED visit in our primary sample, we define the ‘facility’ at the level of the specific
ED, the admission hour of the visit, an indicator for weekend visits, and the quarter of
the year. Treating each ED at a specific admission hour as a different ‘facility’ allows us
to account for variations in patient volume, personnel staffing, availability of equipment or
technicians, and other factors that may be relevant for diagnosis. We index facilities by the
subscript f .

III. CONCEPTUAL FRAMEWORK

The diagnostic pathway for stroke can be summarized broadly as the physician making three
key decisions sequentially: assessing the stroke risk for the case, deciding whether to test for
stroke, and making the final diagnosis.

Stroke Risk Assessment

πij ∈ (0, 1)

Neuroimaging / Testing

Tij

Diagnosis

Dij

The data permits us to directly observe the second and third of these, as described in
Section II, but not the first. Our analysis of disparity must therefore rest on the testing and
diagnostic decisions alone.

III.A. Disparity in Outcomes

The ‘outcome’ that we focus on is the quality of physicians’ decisions. For binary decisions
such as stroke diagnosis Dij ∈ {0, 1}, the quality of the decision can be judged based on
whether or not it matches the underlying latent stroke state Si ∈ {0, 1}. False negatives
(with Dij = 0, Si = 1) are missed diagnoses, and false positives (with Dij = 1, Si = 0) are
incorrect diagnoses.

Racial disparity in the quality of diagnosis is the difference in diagnosis rates between Black

10For about 94% of the stroke diagnoses made in the sample, neuroimaging had been done. Diagnosis
without testing may be done for patients who are contraindicated for neuroimaging but have fairly obvious
stroke presentations and need immediate treatment.
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(Ri = b) and non-Black (Ri = w) patients who visit the ED with the same latent state.

∆D
S ≡ E [D |S,R = b]− E [D |S,R = w] (1)

For instance, ∆D
S=1 < 0 means that the rate of missed diagnosis among Black patients

is higher than among non-Black patients, and ∆D
S=0 > 0 means that the rate of incorrect

diagnosis is higher among Black patients than among non-Black patients. Likewise, ∆D
S=1 > 0

and ∆D
S=0 < 0 indicate a higher rate of missed diagnosis and a higher rate of incorrect

diagnosis, respectively, among the non-Black patients instead.

Considering the sequential nature of physicians’ decisions in the stroke diagnostic pathway,
disparity in any of the physician preceding decisions of stroke assessment or testing con-
tributes subsequently to disparity in diagnosis. Section IV estimates the racial disparity in
the quality of stroke diagnoses delivered in emergency departments as well as disparity in
testing decisions. To trace the origin of disparity along the sequence of physicians’ decisions,
we then test for disparity in the quality of diagnosis conditional on getting tested.

Even so, racial disparity in the quality of diagnosis or testing decisions are examples of
disparity in outcomes, and cannot be conclusively inferred to stem from disparate treatment
by physicians.11 For example, the rate of missed diagnoses (when Si = 1, Dij = 0) may be
higher for a group that systematically selects into EDs with a lower quality of care, despite
EDs treating all groups equally—then there would be a disparity of outcomes, but not in
treatment. Disparity in the quality of stroke diagnoses, therefore, represents the joint impact
of all factors relevant to diagnoses. These factors may either be inherently different by race
or effected by discriminatory practices at various points of the healthcare delivery system.

Disparate treatment can be determined only if racial differences in physicians’ decision rates,
of either diagnosis or testing, persist even after we account for all underlying race-correlated
aspects medically relevant to the decision. Further, quantifying the role of disparate treat-
ment informs of its contribution to the overall disparity in outcomes relative to other con-
tributing factors such as inequitable access to care, variation in health behaviors, or social
determinants of health. While race-correlated aspects such as insurance status, age, sex,
co-morbidity profile, as well as facility and physician fixed effects, can be controlled for,
the empirical challenge is in accounting for underlying statistical differences in stroke risk
and any structural differences in the quality of information available based on which the
physician is expected to infer stroke risk, as discussed next.

III.B. Disparate Treatment

The physician’s decision to test a patient for stroke is based on whether or not they think the
patient has stroke. Effectively, the physician first assesses the stroke risk for the case i.e. the
probability that this patient may have stroke; and then orders a test if the risk assessment
is high enough that it exceeds some threshold. We don’t observe the risk assessments that
physicians make for each patient, but any error made in assessing risk also translates to
incorrect testing decisions, and in turn to poor quality of the final diagnoses.

11“Treatment” here refers to physicians’ behavior towards the patient or their handling of the case, and
not the remedial administration of medicine, therapy, or surgery.

14



Unlike disparate outcomes, we cannot define disparity in treatment by conditioning on the
the latent state Si. This is because the physician doesn’t observe Si, but must infer it
based on the symptomatic presentations of the patient and the patients’ history and risk
factors. Stroke presentations with non-traditional or atypical symptoms such as generalized
weakness, dizziness, or altered gait may be harder to diagnose and more likely to be missed in
the ED (Lever et al., 2013). Underlying racial differences in the symptomatic presentations
of stroke or in the symptom reporting behavior of patients can therefore affect the quality of
information available to the physician and drive differential rates of testing by race. If, for
example, stroke presented with diffuse and general symptoms such as headache or nausea in
one group of patients as opposed to more typical symptoms such as slurred speech or facial
drooping in another, inferring stroke for the former will be harder despite the two groups of
patients sharing the same latent state.

An inference of disparity in treatment across racial groups must hence be made conditional
on the probability of the visit being a stroke episode given the information available to the
physician. Let Ii denote the information on visit i that is available to the physician. We
define Pi = P(Si = 1|Ii) to be the objective stroke risk assessment for visit i. It represents
the “best” stroke risk assessment that an unbiased or racially objective physician can make
for the visit given the available information.

Any differences in the quality of information available to the physician, either due to different
symptomatic presentation of stroke, behavioral differences in the reporting of symptoms,
or even in the environmental risk factors indicated by the socio-economic status of the
patient, are all reflected in the physician’s information set Ii. Basing cross-race comparisons
conditional on Pi should therefore not only exclude the effect of all statistical differences by
race, but also any structural differences in the quality of information available. Even though
the distribution of stroke risk for patients in one group may be different from that of patients
in another, at any given level of Pi the expected yield from diagnostic testing is identical
and hence the patients must be tested with the same propensity. If they aren’t, then it is
disparate treatment.12

If Pi were known, disparity in treatment could be estimated using the following specification:

Tij = δBlacki + γPi quantile + γfacility(i) + υij (2)

where Tij = 1 if the physician tested the patient for stroke, and Blacki = 1 if Ri = b. Here,
δ captures the differential testing of Black patients relative to others despite the same level
(or range) of objective risk. The additive form in the specification assumes implicitly that
the quality of care available within any facility is comparable across race. With our granular
definition of a facility and the quasi-random assignment of physician, this assumption is not
unreasonable. If δ ̸= 0, we can conclude that there is disparity in treatment of patients on
the basis of their race when it comes to making testing decisions. Estimating the disparity
in testing separately for different risk quantiles will additionally describe how this disparate
treatment varies with the level of stroke risk.

12Note though that this definition of disparate treatment is defined only over the common support of the
objective risk distributions of the two racial groups.
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Physician-specific estimates of disparate treatment can likewise be estimated using the fol-
lowing regression specification

Tij =
∑
j

θjZij +
∑
j

δjZijBlacki + γPi quantile + γfacility(i) + υij (3)

where Zij are indicators of physician assignment. Zij = 1 if physician j is assigned to visit i,
and is 0 otherwise. The coefficient δj captures racial disparity in testing decisions made by
physician j for patients who visit the same facility and have the same stroke risk quantile.
We can interpret δj as physician j’s disparate treatment by race, as long as υij is uncorrelated
with ZijBlacki.

The challenge in estimating disparity in treatment is that the objective risk Pi is unknown.
More importantly, the information set Ii that the objective stroke risk assessment is based
on, may not be completely observed by the econometrician. We therefore proceed as follows.
We begin with the information that is in fact available to the econometrician, denoted by Ĩi,
where presumably Ĩi ⊂ Ii. It is a rich set which, as already detailed, contains information
ranging from symptoms at presentation to all co-occurring conditions, but possibly excludes
some features that might be available to the physician on the site, such as patient demeanor.
We use the information Ĩi to train a machine learning algorithm that predicts stroke risk,
generating a proxy P̂i for unobserved objective risk assessment Pi. That is, P̂i = P(Si = 1|Ĩi).

Section III.C describes in detail the algorithm design used to obtain P̂i and how we avoid
algorithmic bias in our predictions. Importantly, the inclusion of race as a feature in the
machine learning algorithm ensures that the algorithm identifies all patterns in the data that
relate Blacki to the target Si—whether directly or indirectly (via unobservables). We have

P̂i = P(Si = 1|Ĩi) = E
[
E [Si|Ii] |Ĩi

]
= E

[
Pi|Ĩi

]
Since Blacki is included in (or measurable with respect to) Ĩi, any additional information
from unobservables that improves the risk prediction cannot be systematically related to
patient race, i.e. Pi − P̂i must be uncorrelated with patient race. This is only true if the
algorithm is trained on a random non-selective sub-sample, esnsuring that the relationship
between race and any unobservables is the same in the training sample as it is in the test
sample. Note that we do not argue that machine learning predictions are equal to the
objective risk despite being trained only on observables; but that the deviations would be
similar on average for both the racial groups. In the event that certain unobservables were
more informative in terms of predicting stroke risk for only one of the racial groups, the
machine learning predictions for the other group would be noisier. But if such a symptom
or characteristic that doctors could see had really been consistently used in assessing stroke
risk, it would have been given an alphanumeric code, entered to the database of ICD-10
diagnosis codes, and included in our data.

Later, in Section V, we use the machine learning predictions again to separately quantify
the mechanisms driving the estimated disparate treatment in testing.
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III.C. Stroke Risk Benchmarking using Machine Learning

To facilitate between-race comparisons of physician decisions, we defined Pi as the racially
objective conditional probability of stroke given the information available with the physician
at the time of the visit i. Effectively, Pi already accounts for underlying differences in the
prevalence and presentation of stroke and hence can serve as an objective benchmark against
which physicians’ decisions can be compared. Since Pi is unknown, we obtain predictions of
the objective risk, denoted by P̂i, using machine learning.

III.C.1. Algorithm Design

To obtain P̂i, we train a machine learning algorithm to build a stroke risk predictor. The
algorithm takes as input, data that would have been available to the physician at the time
they were making testing decisions. It includes patient characteristics such as sex, age,
race; and visit-specific information such as the visit reason, symptoms at the time of the
visit, external causes of morbidity, patient vitals, and any co-occurring illnesses. All this
information is taken from the patient record of the current visit, and from the records of
the patient’s previous care-seeking encounters in the year. We don’t blind the algorithm to
patient race so that the algorithm can learn from any systematic race-correlated patterns
in the symptomatic presentation of stroke or in the quality of chart documentation (arising
either from differences in patient reporting behavior or provider bias during documentation).

The target variable that the algorithm is supervised to learn to predict is the latent stroke
state (Si) and transient ischemic attack (TIA). The inclusion of TIA in our target is due
to two reasons. First, our definition of a missed stroke diagnosis also includes cases of
undiagnosed TIA that eventually recur as full blown stroke. Second, and more importantly,
TIA presents with similar symptoms as an acute stroke. Thus, from the physician’s point of
view, the prediction of S or TIA is an identical prediction problem.

We train the predictor model using an ensemble method of extreme gradient boosting, also
called XGBoost (Friedman, 2001; Chen & Guestrin, 2016). It begins with simple decision
trees or base learners to make state predictions,13 and then sequentially generates and com-
bines new base learners to incrementally improve upon the predictive performance of previous
learners using gradient descent on the specified objective. By focusing on misclassified in-
stances when training the new base learners, the algorithm forces the model to improve its
predictive accuracy even on the challenging samples. The ensemble model thus obtained
captures all underlying patterns in the data, however complex and non-linear, when mak-
ing predictions. XGBoost’s strength is in that it combines sequential learning with parallel
computation in the construction of individual learners for efficiency.

We train the algorithm on a random sixty percent of the primary sample, and then use the

13Decision trees start at a root node containing the entire dataset. The algorithm then chooses an input
feature and splits the data into two subsets based on a condition defined on the feature. At each of the
new nodes created, the algorithm then chooses another feature and splits the subsets further. This process
continues until it reaches a stopping condition. At each of the final nodes, the algorithm then determines
the prediction for all the data points in that node.
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model to predict stroke risk for visits in the remaining forty percent of the test sample that
are unseen by the algorithm.

We avoid algorithmic bias in the following ways. First, the algorithm uses as target the
latent stroke state that we eventually want to predict, instead of a proxy.14 Importantly, the
target variable is inferred retrospectively and are not based on potentially biased physicians’
decisions. For example, if physicians selectively misdiagnosed patients of one race, any algo-
rithm trained on physicians’ diagnoses would also mispredict risk for that race. Algorithms
that otherwise learn from past discriminatory human decisions, or that which are trained
on select data generated as a consequence of potentially biased decisions, typically repro-
duce the bias in their predictions; as is summarized by the popular phrase “bias in, bias
out”. Second, since the latent stroke states are non-selectively known, the random train-test
split ensures that we train our algorithm on a random sample of patient visits regardless of
whether they were tested or diagnosed for stroke. This allows for the joint-distribution of
observables and unobservables to be different among patients who are diagnosed from among
those who aren’t. Third, the inclusion of race as an input feature allows the algorithm to
identify all patterns that relate patient race to the target—whether directly or indirectly via
unobservables. Appendix C discusses additional considerations in our algorithm design.

The random split between training and test data is target label-stratified. Label imbalance
of minority stroke states is improved by synthetic minority oversampling (SMOTE) such
that the positive latent stroke states constitute at least 5 percent of the training data.
The features used as input include: patient characteristics, one-hot encodings of diagnoses
codes (ICD-10-CM) representing co-morbidities, symptoms, health risk factors, and external
causes of morbidity, vector embeddings of the ICD-10-CM code listed as the visit reason,15

and frequency counts for each ICD-10-CM code listed in any of the patients’ previous visits.
As part of feature selection, ICD-10-CM codes listed in fewer than 0.05 percent of the visits
for both stroke and non-stroke states are excluded. A total of 1,729 features is finally used
for training.

Since we are interested only in probabilistic predictions, we train the algorithm to mini-
mize log loss or cross-entropy loss. Hyperparameters are tuned with stratified 3-fold cross-
validation to maximize the area under the receiver operating characteristic curve (ROC
AUC),16 and the F1-score.17 The probability predictions are then calibrated by fitting a
non-parametric isotonic regressor.

14Obermeyer et al. (2019) describe one such algorithmic bias born out of using medical expenditures as
the proxy target variable for predicting health needs. An algorithm trained on medical expenditures as
a proxy for health needs would under-predicted the needs of Black adults because of their lower health
spending overall. As a consequence, the algorithm failed to target Black adults for enrollment in high-risk
care-management programs.

15Embeddings are vector representations of non-numeric values/objects. We use 10-dimensional embed-
dings for ICD-10-CM codes from Kane et al. (2023) that are generated using BioGPT Large Language
Model.

16Receiver operating characteristic (ROC) curve plots the true positive rate (TPR) against the false positive
rate (FPR) for each threshold used for classification.

17F1 score is the harmonic mean of the precision and recall of the binary classification.

18



III.C.2. Evaluating the Stroke Risk Predictions

The algorithm trains a model that predicts the likelihood of the target variable when given
any input data. We use the trained model to predict stroke risk for the visits in the remaining
forty percent of the primary sample. Appendix Figure A1 plots the distribution of the ML
predicted stroke risks by patient race and the latent stroke state. Note that the supports of
the predicted stroke risks are largely overlapping for the two racial groups, thus making our
comparisons that are conditional on predicted risk a valid exercise.

The quality of the probabilistic stroke risk predictions made by the ML trained model can be
evaluated based on how well the predicted stroke risk probabilities match the true share of
stroke incidences, i.e. by evaluating whether the probability predictions are well-calibrated
or not. Appendix Figure A2 plots the calibration curve for patient visits in the test data—
both overall, and separately by patient race. The calibration curves in each case are close to
the 45 degree identity line, suggesting that our risk predictions do in fact reflect true stroke
likelihoods on average. Importantly, the algorithm does not systematically over-predict or
under-predict stroke risk for patients of either race.18 In Appendix Figure A3, we also present
the calibration curves for visits where a diagnosis of stroke is made, separately from visits
where it is not. The figure illustrates that the algorithm makes reasonable risk predictions
regardless of the physician diagnosis.

Another way of gauging the performance of the trained model is to check the quality of its
binary predictions of the target. The performance of a binary classifier is typically measured
by the area under the receiver operating characteristic curve (ROC AUC) that represents
the classifier’s ability to discriminate between the positive (stroke) and negative (non-stroke)
labels when thresholds are varied. ROC AUC ranges from 0 to 1, where random guessing
would produce a score of 0.5, and perfect prediction would result in 1. Our ML stroke risk
predictor has an ROC AUC of 0.79 which would be considered reasonably good. The ROC
AUC for non-Black patients is 0.79, which is comparable to the 0.74 for Black patients.

It is also relevant for our analysis to check if physicians’ decisions agree with the algorithmic
risk predictions. We verify this by testing if physicians’ decision rates of testing and diagnosis
are increasing in predicted risk. Appendix Figure A4 plots the proportion of patients for
whom physicians order neuroimaging and whom physicians diagnose with stroke, at varying
deciles of the algorithmic stroke risk prediction. The decisions rates are increasing in the
predicted risk confirming that physicians’ perceptions of stroke risk are broadly consistent
with the algorithmic risk predictions.

Lastly, we compare distributions of machine learning predicted risk for visits that were
misdiagnosed. As shown in Appendix Figure A5, stroke episodes missed in the ED were
mostly those with low predicted stroke risk. Visits for which the algorithm infers high levels
of risk, were indeed correctly diagnosed as stroke. Similarly, non-stroke episodes that are
incorrectly diagnosed as stroke typically have high levels of predicted stroke risk.

18We also confirm that the standard error in the algorithmic risk predictions is low (∼ 3 percentage points)
and comparable by race. We measure it as the standard deviation in predictions made across individuals
trees in our ensemble model.
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When training the algorithm, we included patient race as an input feature so that the
algorithm can learn from any underlying racial differences in symptomatic presentations
for stroke and non-stroke visits. To check if indeed patient race is relevant in predicting
stroke risk given clinical symptoms, we look at the importance of race as a feature in the
model algorithm. Race is the eighth most importance feature according to Shapley value—
a measure of each feature’s contribution in the prediction of an instance. Based on gain,
another metric of feature importance that captures the improvement in the accuracy at
all tree-based nodes where the feature is used to split, race is one of the twenty five most
important features.

III.D. Quasi-Experimental Assignment of Physicians

An important assumption in our empirical estimation of physician-specific parameters of
disparate treatment is that within each facility the assignment of physicians to cases is
random. In other words, conditional on the patient visiting an ED at a particular hour of a
specific day in the week during a given quarter, physicians’ decisions rates and the quality
of these decisions should be independent of patient characteristics.

Quasi-experimental assignment is a plausible assumption in our setting because after pa-
tients are triaged, physician assignment is typically based on availability conditional on shift
schedules. Additionally, the shift and staffing schedules of attending physicians are made
separately from those of triage nurses, radiologists, or other laboratory technicians. We can
therefore study the effects of physicians’ decisions separately from its joint effects with other
heath workers and lab or imaging services. At the very least, we can interpret the effects of
physicians’ decisions as the physicians’ average effect taking as given the other healthcare
staff on duty. Even if a healthcare worker were tied specifically to a unique physician in the
facility, we would effectively be examining the decisions of a ‘care-giving unit’.19

To validate the plausibility of quasi-random assignment, we first calculate leave-out measures
of stroke diagnosis rate, rate of false negatives in stroke diagnosis, rate of false positives in
stroke diagnosis, and the propensity to test for stroke—averaged across all other patients
seen by the attending physician. We then test how well patient characteristics predict
these leave-out measures within each facility, using OLS regressions. All continuous patient
covariates are standardized. Appendix Figure A6 shows the coefficients from our regressions
of various leave-one-out measures on patient covariates. The panels also report the respective
F-statistic and p-value of the joint F-test of all patient covariates. We find all coefficients
to be small and not significantly different from zero statistically. We fail to reject the null
of quasi-random assignment at conventional levels of statistical significance only in a few
specifications though.

19HCUP SEDD for Florida specifies up to three physician identifiers per visit. In our primary sample, a
unique physician is listed for about 87.35% of the visits. For visits diagnosed with stroke in particular, the
corresponding shares disaggregated by race are 86.24% for Black patients and 84.45% for non-Black patients.
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IV. DISPARITY IN OUTCOMES AND IN TREATMENT

In this section, we document racial disparity in two outcomes: the quality of stroke diagnosis,
and testing rates. Considering the sequential nature of physicians’ decisions, with testing
decisions preceding diagnosis, any disparity in testing would also translate to disparity in
diagnosis. Therefore, to then trace the origin of disparity along the sequence of physicians’
decisions, we first examine disparity in diagnosis decisions and then move backwards to
examine testing decisions.

IV.A. Disparate Outcomes

IV.A.1. Disparity in the quality of stroke diagnosis and testing

Disparity in diagnosis quality is estimated using the following specification that compares
diagnosis rates across race, given a latent stroke state.

Dij = const+ β1Si + β2Blacki + β3SiBlacki + errorij (4)

Here, β2 records the racial difference in diagnosis rates for visits with latent stroke state Si = 0
(i.e. false positives), and β3 records the racial difference in diagnosis rates for visits with
latent stroke state Si = 1 (and hence the difference in false negatives). Table 2 specification
(1) reports the estimates. While 16% of the stroke episodes among non-Black patients are
missed in the ED, roughly 28% of stroke cases are missed for Black patients—that is, 75%
higher.20 The rate of false positives i.e. non-stroke cases being incorrectly diagnosed as
stroke is very low (about 0.03 %) with no significant difference by race. Racial disparity in
the quality of stroke diagnosis is hence driven mostly by the large gap in the rate of missed
diagnoses.21 The estimated disparity is also robust to the choice of time interval used in
the inference of the latent stroke state; as shown in Appendix Table B1 which reports the
estimates of racial disparity when latent stroke states are inferred from patient revisits over
10-days, 14-days, 20-days, and 30-days since the initial encounter.

To rule out the possibility that the disparity in quality of diagnosis is driven solely by
underlying differences between the two race groups, specification (2) in Table 2 revisits the
comparison by including facility fixed effects and other controls such as the patients’ sex,
age, insurance status, income quartile of zip in state, and the co-morbidity profile of the
patient quantitated by the Charlson Comorbidity Index. Our estimates of the disparity in
diagnosis quality are robust to these controls, and also to physician fixed effects included
under specification (3) in Table 2. The robustness of the estimated racial disparity to facility
and insurance level controls strengthens our motivation of examining disparity arising from
physician’s decisions.

With a non-linear specification such as the logistic, the odds of a missed diagnosis are about
2.7 times higher for Black patients; see Figure 1. This difference by race is separate from the

20The rate of missed diagnoses among White patients specifically, is also 16%, and that among non-White
patients is around 23%—about 1.5 times higher.

21In terms of raw counts, the number of visits that are missed (false negatives) are roughly 4 times as
large as the count of visits that are incorrectly diagnosed as stroke (false positives) for Black patients. The
ratio is approximately 2.5 for non-Black patients.
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Table 2 :
Racial disparity in the quality of stroke diagnosis

Linear Probability Model for
Stroke Diagnosis (D = 1)

(1) (2) (3)

Latent Stroke State (S = 1) 0.8395∗∗∗ 0.8373∗∗∗ 0.8355∗∗∗

(0.005) (0.005) (0.005)

Black × Latent Stroke State (S = 1) −0.1202∗∗∗ −0.1211∗∗∗ −0.1205∗∗∗

(0.014) (0.013) (0.013)

Black −0.0000∗∗∗ 0.0002∗∗∗ 0.0002∗∗∗

(0.000) (0.000) (0.000)

Constant 0.0003∗∗∗

(0.000)

Observations 1,368,560 1,367,438 1,360,817
Facility FE × ×
Controls × ×
Physician FE ×
Adjusted/Within R2 0.756 0.754 0.752

∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Notes: This table reports the estimates of racial disparity in the quality of stroke diagnosis based on the
specification in Equation (4). Columns (2) and (3) subsequently add controls to this specification. Controls
for columns (2) and (3) include: patients’ age and sex, income quartile of patient’s zipcode in state, the
primary expected payer (insurance), the Charlson Comorbidity Index at the time of the visit, and facility
fixed effects, where a facility is defined at the level of the specific ED, the quarter of the visit, indicator for
weekends, and the admission hour. Additionally, column (3) also includes fixed effects for the attending ED
physician. Heteroskedasticity-consistent MacKinnon and White (1985) HC3 standard errors are reported in
parentheses.

one mediated by other factors potentially correlated with race, such as sex, age, insurance
status, or the symptomatic presentation. To account more carefully for the differences in
quality of insurance coverage, we also estimate disparity in diagnosis quality for patients
covered by Medicare and Medicaid in Appendix Table B2, and consistently find equally
large differences in missed diagnosis rates by patient race. Our findings are also robust to
the inclusion of visits by patients who don’t make any subsequent visits during year; see
Appendix Table B3. We consistently find the missed diagnosis rate to be almost twice as
large for Black patients under all these specifications.

These diagnostic errors are costly. Stroke patients who are missed at their initial presentation
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Figure 1 :
Odds ratio for missed stroke diagnosis given patient characteristics

Notes: This figure shows the odds ratios and 95% confidence intervals from a logistic specification for a
stroke episode being missed in the ED. The error bars indicate the 95% confidence intervals.

make roughly 2.5 additional visits within the year on average, costing an excess of about
$78, 263 over these future visits (excluding professional fees and non-covered charges). In the
case of non-stroke visits incorrectly diagnosed as stroke, patients make 0.6 additional visits
on average, costing roughly $161, 073 more.

Having documented racial disparity in the quality of diagnosis, we proceed backwards to
examine testing (or neuroimaging) decisions. Table 3 compares the rate at which neu-
roimaging is ordered, disaggregated by patient race and the underlying latent stroke state.
Neuroimaging is ordered for roughly 30% of the visits in our primary sample. However, the
neuroimaging rate is lower for Black patients by a statistically significant difference of 3.5
percentage points. Specifically among patients who present with stroke, Black patients are
roughly five percentage points less likely to get any diagnostic neuroimaging at all. Most (∼
94%) of the visits that get neuroimaging are ordered a non-contrast computed tomography
(CT), which is the primary imaging modality recommended for the evaluation of patients
with suspected stroke. Due to low sensitivity of non-contrast CT for ischemic strokes, physi-
cians who strongly suspect stroke also order follow-up imaging such as contrast CT or MRI.
Once again, we note that there is racial disparity in how often follow-up imaging is ordered
for the ischemic stroke-type. Black patients presenting with an ischemic type are about eight
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percentage points (roughly 20 percent) less likely to get additional follow-up imaging; see
Table 3. On the hand, for patients presenting with hemorrhagic stroke, follow-up imaging is
ordered only 9% of the times, and the difference by race is not statistically significant.

Table 3 :
Neuroimaging rates, by patient race

Non-Black Black Difference

(1) (2) (1) - (2)

Panel A
Any neuroimaging at all

for all 0.2959 0.2613 0.0346∗∗∗

(0.000) (0.000)

for visits with latent stroke state S = 1 0.8808 0.8334 0.0474∗∗∗

(0.004) (0.011)

for visits with latent stroke state S = 0 0.2929 0.2593 0.0336∗∗∗

(0.000) (0.000)

Follow-up imaging, in addition to non-contrast CT

for visits with latent stroke state S = 1

of Ischemic§ type 0.3521 0.2734 0.0787∗∗∗

(0.009) (0.017)

of Hemorrhagic§ type 0.0926 0.1124 -0.0198
(0.007) (0.017)

Panel B
Testing for Stroke (T = 1)

for all 0.0385 0.0250 0.0135∗∗∗

(0.000) (0.000)

for visits with latent stroke state S = 1 0.8510 0.7364 0.1146∗∗∗

(0.005) (0.012)

for visits with latent stroke state S = 0 0.0343 0.0224 0.0119∗∗∗

(0.000) (0.000)

Two-sample t-test ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Notes: Panel A reports differences in rates of initial and follow-up neuroimaging by patient race. Panel B
reports the differences in the composite decision variable ‘Test for Stroke’ or Ti that combines these two
decisions, as described in Section II.C.3. Standard errors are in parenthesis. §Stroke type is as identified
upon the patient’s revisit when the stroke gets diagnosed.
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As a summary, in Panel B of Table 3, we compare rates of testing based on our composite
variable of stroke testing Tij that combines the two decisions of initial neuroimaging and
follow-up imaging, as described in Section II.C.3. We find that Black patients are less
likely to be tested for stroke in general, and in the case of stroke patients in particular, the
difference is of 11.46 percentage points, corresponding roughly to a shortfall of 13.5% for
Black patients.

IV.A.2. Contribution of disparity in testing to the disparity in missed diagnosis rates

So far we have documented that the rates of stroke diagnosis and that of testing differ
significantly across race. Considering the sequential nature of physicians’ decisions, with
testing decisions preceding diagnosis, any disparity in the quality of physicians’ testing de-
cisions also contributes subsequently to disparity in diagnosis. Alternately, there may also
be factors that contribute to disparity in diagnosis after testing decisions are made. For
example, it may be that testing modalities are differently accurate for some patients, or that
attending physicians or radiologists discriminate when reading or interpreting the test scans.
Consequently, it is critical to quantify the extent to which testing disparities contribute to
disparity in the quality of diagnosis. If disparity in testing rates account for most of the
disparity in diagnosis, then the relevant decision of the physician that we must examine for
disparate treatment should be that of testing.

Table 4 reports the rates of missed diagnoses (or false negatives) conditional on testing status,
by patient race. For hemorrhagic stroke types—that non-contrast CT scans can detect with
high sensitivity—missed diagnosis rate is around 6-8% with no significant difference by race
(Table 4). Ischemic strokes, on the other hand, have higher missed diagnosis rates if non-
contrast CT is the only modality used and no additional imaging is ordered. Missed diagnosis
rates for ischemic sub-types is significantly higher for Black patients—with a difference of
about 12 percentage points—possibly due to differential rates of follow-up imaging. Among
patients who receive follow-up imaging and those who are screened using high-sensitivity
modalities other than CT, the difference in missed diagnosis rates by race is insignificant.
These findings make clear that there is no significant racial disparity in diagnosis after a
patient is appropriately tested for stroke.

To then quantify the role of disparity in testing in driving the disparity in diagnosis, we
do components analysis as detailed in Kitagawa (1955). By representing aggregate missed
diagnosis rates as a weighted sum of the testing-status-specific missed diagnosis rates, we
can decompose the aggregate difference by patient race into the effects of differential testing
and of disparity in testing-status-specific missed rates. The Kitagawa (1955) decomposition
calculates counterfactual missed diagnosis rates for Black and non-Black patients had testing
rates and missed diagnosis rate conditional on testing, been separately equalized across the
two racial groups. When any component is equalized across groups, it is set equal to the
average value of the component between the two groups. Difference in counterfactual missed
diagnosis rates when only one component is allowed to vary, captures how much of the
total difference in aggregates can be attributed to that component. Table 5 reports the
counterfactual rates from this method.
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Table 4 :
Missed diagnosis rates, by patient race and testing status

Missed Diagnosis Rate

Non-Black Black Difference

Panel A: Crude rates of missed stroke diagnoses

0.1602 0.2805 −0.1203∗∗∗

(0.005) (0.013)

Panel B: Missed stroke diagnoses conditional on testing

For stroke patients who get any neuroimaging
all§ types 0.1032 0.1913 −0.0881∗∗∗

(0.004) (0.012)

Ischemic§ type 0.1363 0.2538 −0.1175∗∗∗

(0.006) (0.016)

Hemorrhagic§ type 0.0618 0.0831 −0.0213
(0.006) (0.015)

For stroke patients who get non-contrast CT with
follow-up imaging, or get MRI

Ischemic§ type 0.0527 0.0766 −0.0238
(0.007) (0.018)

Panel C: Missed stroke diagnoses conditional on ‘Test for Stroke’

when Tij = 1 0.0131 0.0229 −0.0097∗∗

(0.002) (0.005)

Two-sample t-test ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Notes: Panel A reports crude missed diagnosis rates, and Panel B reports them conditional on initial and
follow-up testing. Panel C reports missed diagnosis rates conditional on the composite decision variable
‘Test for Stroke’ or Tij that combines the two decisions as described in Section II.C.3. Standard errors are
in parenthesis. §Stroke type is as identified upon the patient’s revisit when stroke diagnosis is made.

We find that a sizable 93.5% of the observed disparity in the quality of diagnosis can in
fact be explained by differences in stroke testing. The remaining 6.5% can be attributed to
other factors such as, say, racial differences in composition of strokes of different types or
etiology that can be detected on easily on CT, or in the likelihood that stroke is suspected
or diagnosed even before the physician orders the test.
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Table 5 :
Decomposition of racial difference in missed stroke diagnosis

Missed Diagnosis Rate

Non-Black Black Difference Share
(1) (2) (1)-(2) of total

Crude Missed Diagnosis Rate 0.1602 0.2805 −0.1203∗∗∗ 100%
(0.005) (0.013)

Counterfactual Missed Diagnosis Rates
Crude missed diagnosis rate is the weighted average of test-status specific miss rates, weighted
by the corresponding testing rates. If these components were equalized for the two racial
groups, and only the

testing rates were unequal 0.1643 0.2769 -0.1126 93.5%

test-status specific miss rates were unequal 0.2167 0.2245 -0.0078 6.5%

Two-sample t-test ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Notes: This table reports the aggregate missed diagnosis rates by patient race, and their corresponding
counterfactual values based on the Kitagawa (1955) decomposition.

With more than ninety percent of disparity in missed diagnosis stemming from disparate
rates of testing, the relevant decision to examine for disparate treatment is that of testing—
which we turn to next.

IV.B. Disparate Treatment

Disparate treatment in testing occurs when the physician tests patients differently by race
despite the same statistical risk of stroke. Assessment of stroke risk, however, relies on the
quality of the information available to the physician, which in turn depends on the symp-
tomatic presentation, patients’ reporting behavior, and on how well the patients’ medical
history is recorded—all of which might vary by race. Therefore, we estimate disparate treat-
ment by comparing testing rates for patients with the same predicted objective risk of stroke,
where these risk predictions are made conditional on the information available to the physi-
cian at the time, whatever its quality. Equation (2) gives the specification we use to estimate
disparate treatment. Table 6 reports the coefficient δ, which represents the average disparate
treatment within any facility and given a decile of predicted stroke risk.

Relative to the 3.86 percent of non-Black patients who are tested for stroke, the testing rate
conditional on the same level of objective stroke risk is, on average, 0.88 percentage points
lower for Black patients (i.e. about 23 percent lower). Of the simple difference in stroke
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Table 6 :
Disparate treatment by race in physicians’ testing decisions

Linear Probability Model for
Test for Stroke (T = 1)

(1) (2) (3) (4)

Black −0.0088∗∗∗ −0.0090∗∗∗ −0.0107∗∗∗ −0.0123∗∗∗

(0.001) (0.001) (0.003) (0.003)

Sample All§ No contra- Predicted risk Predicted risk
indications ≥ 1% ≥ 1% and no

contraindications

Mean (T) for
non-Black patients 0.0386 0.0379 0.1219 0.1202
Observations 545,116 523,365 78,212 73,039
Facility FE X X X X
Risk Decile FE X X X X

∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Notes: This table reports estimates of disparate treatment, or δ from the specification given in Equation (2).
§The estimates are based on visits in the test data i.e. the 40% of the primary sample unused in training
the machine learning algorithm. The ICD-10-CM codes that are taken as contraindications to neuroimaging
are listed in Appendix E. Heteroskedasticity-consistent MacKinnon and White (1985) HC3 standard errors
are reported in parentheses.

testing rates by patient race, as recorded in Panel B of Table 3, disparate treatment accounts
for about sixty five percent of it. Even among patients with no contraindications for any
neuroimaging modality, stroke testing is 24% lower on average for Black patients within any
facility and risk decile. Across various risk deciles, racial disparity is testing is significant
only in the first decile of predicted stroke risk; see Appendix Figure A7.

There is, however, considerable variation across physicians in their disparate treatment by
patient race. We estimate physician-specific estimates of disparate treatment, δj, using the
specification described in Equation (3). Figure 2(a) plots the distribution of physician-
specific estimates of disparate treatment by patient race, as well as their posteriors after
empirical Bayes shrinkage. On average, physicians test Black patients 1.11 percentage points
less often when compared to non-Black patients, amounting to roughly a difference of thirty
two percent by race. The standard deviation across physicians is about 1.45 percentage
points. Specifically among patients with predicted risk greater than 1% and those with no
contraindications, the disparate treatment in testing is about 3.2 percentage points (∼ 20.55
percent lower) on average, with a standard deviation of 0.28.

Appendix Table B5 reexamines the racial disparity in misdiagnosis rates for different quintiles
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of δj estimated for each physician. In our distribution of physician-specific estimates of
disparate treatment, a physician with δj = 0 belongs to the fourth quintile. The racial
disparity in missed strokes is driven by physicians at the bottom 60% of the distribution.
Physicians in the top quintiles of the distribution who test Black more often do not make
significantly more false positive diagnoses for Black patients. That is, increased testing in
favor of Black patients does not translate to disparity in false positives.

While we do not observe physician characteristics in the data, we aggregate visit-specific
and patient-specific variables at the level of the physician to look for suggestive evidence
on what drives this variation in disparate treatment. Appendix Figure A8 separately plots
correlations between physician-specific estimates of disparate treatment and some aggregate
descriptives of their patient pool, such as: whether they come from rural counties, or share
of patients from high income ZIPs within the state, and the share of Black patients. We do
not find any statistically significant relations to explain the heterogeneity.

IV.B.1. Possible Mechanisms

Disparity in testing, conditional on objective stroke risk, stems from two sources. First,
physicians may be applying a different risk threshold when making testing decisions for each
group. The use of different thresholds by race when the costs of testing are the same must
be interpreted as racial prejudice. It is as though the physician is willing to accept a higher
risk of missing strokes among patients of a particular group only to avoid testing them.

Second, physicians may be basing testing decisions on subjective assessments that differ from
the objective risk Pi. Deviations in the physicians’ subjective risk assessments, denoted
by πij, from the objective value Pi indicate the reduced quality of these risk assessments.
Such deviations are reflective of both physicians’ skill and the quality of care at the facility
that this interaction takes place at. Since Pi accounts for all statistical differences in risk
and information quality by race, larger deviations of πij from Pi for say Black patients,
is indicative of risk being assessed differently for them in a way that is not justified by
underlying differences in their presentations. In other words, two patients may have the
same Pi and yet the physicians’ subjective assessment for one race may be further away from
Pi on average than the other. We refer to this differential accuracy in stroke risk assessment
as the unjustified skill gap. Common reasons why this might happen are if physicians have
implicit biases, hold incorrect stereotypes, disregard or minimize Black patients’ symptoms,
expend low effort in assessing Black patients, or use race-insensitive medical protocols.22,23

22Physician interactions with Black patients are typically shorter, with low information exchange, affected
by stereotype threat, summarized in clinician notes with more negative patient descriptions, and likely to
result in fewer positive outcomes (Tang et al., 2024; Sun et al., 2022; Beach et al., 2021; Alsan et al., 2019;
Cooper et al., 2012; Penner et al., 2012). Physicians have also been found to be less likely to recommend
treatments to Black patients due to implicit bias (Drwecki, Moore, Ward, & Prkachin, 2011; Green et al.,
2007), perceptions or stereotypes about their failure to comply with medical advice (Calabrese et al., 2014;
van Ryn et al., 2006), and false beliefs about biological differences by race (Hoffman et al., 2016; Todd et
al., 2000).

23Hull (2021) refers to the bias stemming from incorrect priors, beliefs or stereotypes as biased beliefs. The
non-malicious use of incorrect priors or stereotypes is referred to as “inaccurate” statistical discrimination
in Bohren et al. (2024).
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Figure 2 :
Physician-specific estimates of racial disparity in testing for stroke

(a)
Based on all§ visits

(b)
Based on visits with risk≥ 1% and no contraindications

Notes: This figure plots the distribution of δj from Equation (3) conditional on risk deciles, as well as their
posteriors after empirical Bayes shrinkage. §The estimates are based on visits in the test data i.e. the 40%
of the primary sample unused in training the machine learning algorithm. Of these, we exclude visits to
physicians who see fewer than 50 patients of either race and test fewer than 5 patients for stroke, since the
physician-specific estimates for them would be unreliable.
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The two mechanisms can be viewed as discriminatory because despite having the same stroke
risk, patients would end being differentially tested on the basis of their race solely because
of physician error. Any ‘accurate’ statistical discrimination, on the other hand, is subsumed
within the objective risk Pi and is not captured in our estimates of disparate treatment.

Section V formalizes these two mechanisms with a model of physicians’ testing decision.

V. STRUCTURAL ANALYSIS

In this section, we model physicians’ testing decisions to formalise the two mechanisms of
disparate treatment: the use of different testing thresholds for different racial groups i.e.
racial prejudice, and the varying quality of physicians’ subjective risk assessments by race,
i.e. the unjustified skill gap. We then take the model to data in order to quantify the effect
of these mechanisms.

V.A. Model Framework

Upon patient visit i to a facility, physician j is quasi-randomly assigned to the case of that
patient.24 The physician assesses the probability that the visit is a stroke episode, and then
determines whether or not to test the patient by comparing the stroke risk assessment against
the physician’s threshold for testing. The quality of the physician’s risk assessment and the
choice of threshold applied by the physician, however, vary by patient type z. Patient type
is determined by a vector of patient traits Zi including race Ri ∈ {b, w} and other non-race
characteristics such as sex, insurance status, income quartile, and age. Thus, z ≡ (r, c) where
r indicates the patient’s race, and c indicates other non-race characteristics.

Let πij ∈ (0, 1) denote the physicians’ subjective stroke risk assessment for visit i, and
τ zj ∈ (0, 1) be the physician’s threshold for testing patients of type z. The physician orders
a test for patient i, indicated by Tij ∈ {0, 1}, as long as the risk assessment exceeds the
threshold.

Tij = 1

{
πij ≥ τ

z(i)
j

}
, or, equivalently

= 1

{
log

πij

1− πij

≥ log
τ
z(i)
j

1− τ
z(i)
j

}
(5)

The threshold τ zj captures the physician’s relative cost of testing patients of type z.25 If the
physician’s threshold differs based on patient race when all other non-race characteristics are

24Section III.D verifies the validity of quasi-random physician assignment for our sample. Quasi-random
assignment allows us to attribute any variation in testing within a facility and conditional on a given level
of stroke risk, to variations in physician-specific characteristics of threshold or skill.

25Instead of assuming thresholds explicitly, Appendix D.1 describes how thresholds can also conceptualized
to be derived from physicians’ preference to match testing decisions to the underlying latent state, therefore
minimizing classification errors. The two types of classification errors in this context are: false negatives
(not testing a stroke case), and false positives (testing a non-stroke case). The higher the physician’s relative
cost of false negatives to false positives, the lower the threshold for testing.
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identical, then it constitutes racial prejudice (Becker, 1957). Consider for example, the case

of racial prejudice against Black patients, i.e. τ
z′=(b,c)
j > τ

z=(w,c)
j . Here, by applying a higher

threshold for Black patients, the physician is choosing to bear a higher risk of making false
negatives in order to avoid testing them.

The physician’s subjective stroke risk assessment πij, on the other hand, depends on the
details of the presenting case and the physician’s skill. As before, let Pi denote the objective
probability of stroke associated with patient visit i based on the information available with
the physician at the time the testing decision is made. We model the physician’s subjective
risk assessment to be such that the log odds of stroke as perceived by the physician, are
given by

log
πij

1− πij

= log
Pi

1− Pi

+ ζij (6)

where ζij captures the noise in the physician’s assessment. We assume ζij to be distributed
normally with mean zero,26 and standard deviation given by√

var(ζij) = σ
z(i)
j exp(γf(i)) (7)

where γf(i) captures the effect of the facility, i.e. its infrastructure, training of staff, and
equipment availability; and σz

j represents the physician’s skill. Physicians’ skill is also mod-
eled to vary with the patient type z to account for variations in the quality of the physician’s
interactions with the patient (such as symptom discounting, for example) and in the efforts
expended by the physician on the case. The larger the value of σz

j , the greater are the devia-
tions in the physician’s assessment relative to the true risk, and higher are the chances of the
physician making false negative or false positive testing decisions. Note that even though we
don’t explicitly model physician skill to vary with physician characteristics such as years of
experience or area of specialty, any such relationships are still allowed to drive our estimates
since we specify physician-specific parameters.

Since the objective risk Pi already accounts for any statistical differences in the risk that can
be inferred given the quality of information on visit i, large deviations from the objective
odds are indicative of risk being assessed differently for the patient type in a way that is not
justified by underlying differences in their presentations. The difference in the quality of risk
assessments by patient race, given all other non-race characteristics being identical, therefore

represents the unjustified skill gap. That is, if σ
z′=(b,c)
j > σ

z=(w,c)
j , then the physician is worse

at assessing risk for Black patients in a way that is not justified by underlying differences in
presentation by race subsumed under Pi.

V.A.1. Some Model Considerations

Role of the facility. By modeling testing thresholds to be physician-specific and invariant
across all facilities the physician works in, we implicitly assume that there are no facility-
specific factors such as non-availability of neuroimaging equipment or technicians, that could

26If the mean of ζij were to be some µ ̸= 0, then that would be observationally equivalent to the physician
shifting the threshold for log odds by −µ instead. This systematic shift in risk assessment cannot be identified
independently from the threshold.
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potentially constraint testing. To support this assumption, we look at the variance in testing
rates at the level of each physician, and at the level of each facility. Appendix Figure A9
plots the distributions of variance in testing rates of a physician across facilities, and the
distributions of variance in testing rates across physicians working at the same facility. The
variances in testing rates for each physician across the different facilities they work at, are
very low and close to zero on average. Most of the variation in testing rates, as the figure
suggests, actually comes from variation across physicians at a given facility.

Other objectives of the physician. We allow the threshold to also vary by the patient’s
non-race characteristics, thereby accommodating alternative objectives of the physician. For
example, our framework allows physicians to practice defensive medicine, wherein physicians
have a distaste for malpractice lawsuits and may therefore set lower thresholds for patient
types who are more likely to file one. Similarly, physicians may also be selectively cautious
and set lower thresholds for patient types with increased patient self-advocacy. No financial
incentives are modeled in testing decisions because physicians in the emergency department
are not given additional payments based on the volume of diagnostic imaging ordered.

Relation between risk threshold and skill. It is plausible that less experienced or low skilled
doctors generally set lower thresholds to avoid false negatives. While our specification does
not assume a relation between physician preference and skill, it also does not impose that
there isn’t any. By not assuming an explicit relationship between the physician’s choice of
threshold and their skill, we allow for the possibility that the physician may be unaware
of their skill in making risk assessments, and therefore might not necessarily adjust their
threshold in response.

V.B. Identification

Given any distribution of stroke risk for patients of type z, a choice of threshold τ zj produces
a rate of false negatives (FNRz

j) and false positives (FPRz
j); see Appendix Figure A10 for

an illustration. The physician’s choice of threshold originates from the physician’s disutility
of false negatives relative to false positives. The higher the threshold is set, the greater is
the associated rate of false negatives and smaller the associated rate of false positives. The
physician’s choice of threshold rests therefore on their preferred ratio of false negatives to
false positives.

With variation in physician skill, however, the distribution of risk as perceived by the physi-
cian differs from the distribution of objective risk assessments. A low skilled physician is less
able to separate stroke episodes from non-stroke visits, and hence more likely to make false
negative and false positive decisions. We modeled a less skilled physician as one who makes
noisier risk assessments, i.e. with higher σz

j . Between physicians using the same threshold τ ,
a physician with higher σz

j produces higher FPRz
j and FNRz

j ; see Appendix D.4 for a formal
demonstration.

For each physician j and patient type z, we observe the physician’s testing decisions given
different levels of objective risk assessment, and the physician’s overall rates of false negatives
and false positives. Threshold and skill are jointly identified by the size and ratio of FNRz

j to
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FPRz
j made by the physician. Conditional on same threshold, the size of the false negative

and false positive rates determines the skill of the physician. Similarly, the ratio of false
negatives to false positives, conditional on a level of skill, pins the threshold.

V.C. Parameterisation, and Estimation using Hierarchical Bayes

V.C.1. Physician Heterogeneity

We specify heterogeneity in physicians thresholds, by positing heterogeneity in their relative
disutility from false negatives to false positives. We model that disutility as − exp(bj+β′

jZi),
yielding a risk threshold given by

τ zj =
1

1 + exp(bj + β′
jz)

(8)

for patients with Zi = z. Appendix D.1 details how the threshold is derived. This specifi-
cation renders the associated threshold in the log odds space to be −bj − β′

jZi. We include
in Zi the indicators for patient race, sex, age, insurance status, and income quartile of the
patient’s zip-code in the state. The threshold τ 0j for the reference patient type with Zi = 0
is given by 1/(1 + exp(bj)).

Likewise, heterogeneity in physician skill and its relation to patient type is specified as

σz
j = exp(cj + ς ′jz) (9)

Rewriting Equation (7) with the parameterisation above, and normalizing physician skill for
the reference patient type (Zi = 0) at the reference facility (f = 1) to 1, we obtain√

var(ζij) = exp(ς ′jz +
F∑

f=2

γ̃fDif ) (10)

where Dif is an indicator for whether patient visit i was at facility f or not, and γ̃f ≡
γf − γ1, ∀f > 1. For estimation, we define facility f at the level of stroke certification of the
ED, an indicator for weekend visits, and an indicator visits during the night.27 EDs that
have the same level of stroke certification are expected to be identical in the infrastructure
and training required to treat stroke patients. We designate EDs with no stroke certification
visited during daylight hours on weekdays as the ‘reference’ facility.

V.C.2. Substitution of objective odds with machine learning predictions

When substituting for the objective log odds in Equation (6) with machine learning predic-
tions, it is important to account for prediction errors. We assume

log
P̂i

1− P̂i

=
1

ρ
log

Pi

1− Pi

+ υi

27Stroke care certificates verify that the respective facility’s stroke care programs, staffing, and infrastruc-
ture meet the national standards of stroke care delivery. We use each facility’s stroke certification status as of
January 1, 2016 to categorize it into one with no certification, primary stroke certification, or comprehensive
stroke certification.
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where υi ∼ N (0, σ2
υ). Substituting this relation in Equation (6), the deviations in risk

assessments from algorithmic log odds are given by ζij − ρυi. The noise in assessments is
therefore var(ζij−ρυi). Since the noise in algorithmic predictions is common to all physicians,
it does not affect the ordering of physicians based on their skill. Therefore, accounting for
such prediction errors, we interpret our estimates of physician skill as the dispersion in noise
of physicians’ risk assessment net of algorithmic prediction errors.

V.C.3. Parameters of Interest

In Zi, Z1i is an indicator for the patient race being Black. Racial prejudice is hence indicated
by βj1 ̸= 0. In particular, βj1 < 0 suggests prejudice against Black patients. Similarly,
unjustified skill gap by patient race is indicated by ςj1 ̸= 0, where ςj1 > 0 suggests unjustified
skill gap disfavoring Black patients.

V.C.4. Estimation using Hierarchical Bayes

When taking the model to the data, we first define our modeling sample for estimation. The
modeling sample is based on the 40 percent of the visits that were not used in the training
of the machine learning algorithm. To estimate physician-specific preference and skill pa-
rameters, it is important that we observe physician decisions for sufficiently many Black and
non-Black patients with varying stroke risks. Therefore, to construct our modeling sample,
we exclude visits to physicians who see fewer than 50 patients of either race and test fewer
than five patients for stroke. We also exclude visits by patients with any contraindications
to testing. Appendix D.2 reports the number of observations dropped at each of these steps.
The modeling sample thus obtained covers 73,006 visits to 239 physicians. Appendix Fig-
ure A11 illustrates the partition of the primary sample into a training sample for machine
learning prediction, and the subsequent filter on the remaining test sample to obtain the
modeling sample for estimation.

To improve power, we assume a common population distribution for the physician-specific
parameters that is governed by hyper-parameters. Specifically, we assume

[
bj βj

]′ ∼ N (µβ,Ωβ)

ςj
′ ∼ N (µς ,Ως)

(11)

This generates a hierarchy among the parameters—the physician-specific parameters drive
decisions and thereby the data generated in the process, while the hyper-parameters gov-
ern the physician-specific parameters. The advantage of assuming such a structure is that
physician-specific parameters are then disciplined by the hyper-parameters that in-turn learn
from the pooled data generated by all physicians. Therefore, by considering dependencies
in data across different levels, we can fit parameters more accurately even if physician-level
data were limited.

We estimate the parameters using Bayesian procedures. First, we define the likelihood of the
observed physicians’ decisions and outcomes. It then, combined with appropriate priors on
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the hyper-parameters and the priors on physician-specific parameters as specified in Equation
(11), produces a joint posterior distribution of all parameters.

Let Θ denote the vector of hyper-parameters, and Λ denote the vector of remaining param-
eters, partitioned into physician-specific parameters Λ1 and fixed parameters Λ2. From the
physician’s testing decision modeled in Equation (5) and our parameterizations, we have

P (Tij = 1|Λ) = P

(
log

Pi

1− Pi

+ ζij ≥ log
τ
z(i)
j

1− τ
z(i)
j

)

= 1−Φ


−ρ̃j log

P̂i

1− P̂i

− b̃j − β̃′
jZi

exp
(
ς̃ ′jZi +

∑
f>1 γ̃fDif

)
 (12)

where ρ̃j =
ρ

exp(cj + γ1)
, b̃j =

bj
exp(cj + γ1)

, β̃j =
βj

exp(cj + γ1)
, and γ̃f = γf − γ1. The

physician-specific parameters can therefore be identified only up to scale, as can only the
differences in effects of all facilities relative to the reference facility.

The likelihood of physician j’s decisions is then given by

L(Dj|Λ) =
∏
i∈Ij

P(Tij|Λ)wij (13)

where Ij is the set of patient visits assigned to the physician and wij is the class weight
proportional to the inverse of the share of j’s patients with the same testing decision as Tij.

With Λ1 drawn from population distributions with hyper-parameters in Θ, and a prior
k(Θ,Λ2), the joint-posterior of all parameters is given by

K(Θ,Λ|D) ∝
∏
j∈J

L(Dj|Λ) g(Λ1|Θ) k(Θ,Λ2) (14)

where g is the density of the common distribution specified in Equation (11).

To approximate the joint posterior we draw samples from it using Gibbs sampling, a Monte
Carlo Markov Chain (MCMC) algorithm that sequentially draws from conditional posteriors
of each parameter given values of all the other parameters. Physician-level parameters are
sampled from the conditional posteriors using Metropolis–Hastings algorithm. The hyper-
parameters, on the other hand, are drawn from tractable posteriors obtained using conjugate
priors. Appendix D.3 details our choice of priors and the Gibbs sampling procedure.

The stationary distribution of the Markov chain of the samples drawn using the Gibbs
procedure approximates the joint posterior distribution of all parameters. By Bernstein-
von Mises theorem, under certain conditions,28 the posterior distribution converges to the

28Specifically, it holds for fixed-dimensional problems under the assumption that the prior is continuous,
and (strictly) positive in a neighborhood of the population parameter.
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asymptotic sampling distribution of the classical maximum likelihood estimator, with the
mean of the posterior converging to the maximum likelihood estimator. Bayesian credible
sets obtained from the posterior distribution also have frequentist coverage properties.

V.D. Results

Table 7 reports our estimates for the mean of the physician-specific threshold and skill
parameters. Panel A reports the hyper-parameter µβ that denotes the mean of the preference
parameters βj determining the threshold. A negative coefficient in the vector µβ indicates
that the incremental logarithmic disutility of physicians from false negatives relative to false
positives among patients with the associated trait is lower on average. It translates to the
physician applying a higher threshold for them. Our estimates suggest that physicians use
higher thresholds when determining whether to test Black and female patients. On average,
physicians’ threshold for log odds risk is incrementally higher for Black patients by 0.280.
Higher thresholds are also used for younger patients (aged < 50 years), among whom stroke is
less common. There is only suggestive evidence of physicians lowering thresholds for patients
from richer zip codes.

Table 7 :
Select Estimates from Hierarchical Bayes

Parameter Description Notation Estimate Std. Error

Panel A: Preference parameters that determine threshold

Incremental log disutility from false negatives to false positives for
Black patients µβ1 −0.280∗∗∗ (0.041)
Female patients µβ2 −0.126∗∗∗ (0.004)
Patients from high income quartile ZIPs µβ3 0.378∗ (0.209)
Patients aged < 50 µβ4 −0.200∗∗∗ (0.060)
Uninsured patients µβ5 −0.027 (0.040)

Panel B: Skill parameters

Incremental noise in subjective assessments of log odds risk for
Black patients µς1 0.190∗∗∗ (0.004)
Female patients µς2 0.585∗∗∗ (0.003)
Patients from high income quartile ZIPs µς3 0.236 (0.206)
Patients aged < 50 µς4 0.485∗∗∗ (0.005)
Uninsured patients µς5 0.276 (0.206)

∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Notes: The table reports the estimates of select model parameters. The estimates are obtained from the
mean of the marginal posterior of the respective parameter, and the standard errors (in parentheses) are the
corresponding standard deviations. The Hierarchical Bayes method and the Gibbs sampling procedure are
described under Appendix D.3.

Panel B reports estimates of the hyper-parameter µς representing the mean of the physician-
specific skill parameters ςj. Recall that ςjk indicates the incremental increase in log standard
deviation of the subjective log odds assessments made by physician j for patients with trait
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k. Positive and significant coefficients indicate greater noise in assessing risk for patients with
said trait, indicating lower physician skill. Yet again, we find physicians’ risk assessments
to be noisier for Black, female and young patients. In particular, the standard deviation of
subjective log odds assessments is, on average, 19% higher for Black patients.

We also find variance in assessments to be lower in primary and comprehensive stroke-
certified facilities, however the gains are sometimes offset on weekdays and daytime hours
probably due to high patient volume (Appendix Table B6).

V.E. Counterfactuals and Policy Simulations

Lastly, we use our estimates to quantify the role played by racial prejudice and unjustified
skill gap in disparate testing. We also simulate the outcomes of a few policies aimed at
potentially reducing racial disparity. We evaluate these policy simulations on how they
affect the racial gap in false negatives i.e. in the share of stroke visits that are not tested.
In the modeling sample, the rate of false negatives is around 5.55 percentage points higher
for Black patients. Our estimates produce a baseline difference of 6.56 percentage points by
race, against which we compare the different scenarios and policy simulations.

First, we consider some simple counterfactuals where physicians separately equalize thresh-
olds and the quality of their risk assessments for the two racial groups. Our findings are
given in Panel A of Table 8. Under Counterfactual 1, we simulate testing decisions if test-
ing thresholds were equalized by race, i.e. if βj1 were zero for all physicians. Since our
estimates of βj1 are negative, this counterfactual effectively lowers the threshold of Black
patients. As a consequence, testing rate among Black patients increases partially offsetting
the racial difference in false negatives. All else the same, equalizing thresholds reduces the
racial difference in false negatives by half.

Likewise, under Counterfactual 2, we simulate testing decisions for when the quality of risk
assessments are equalized by race; i.e. ςj1 becomes zero for all j. Since our estimates of ςj1 are
positive, this counterfactual reduces the variance of physicians’ subjective odds assessments
around the objective odds. This improves precision in testing decisions for Black patients,
as indicated by the narrower difference in precision across racial groups. However, the racial
difference in false negatives is widened. The widening occurs because while Black patients
are less likely to be under-assessed in this counterfactual, they are also less likely to be over-
assessed. Overall, we find the testing rate for Black patients to fall, consequently increasing
the racial difference in false negatives.

Panel B in Table 8 examines the effect of different policy simulations. The first two explore
ways to complement physician decision making with machine learning recommendations.
Several studies have examined the usefulness of artificial intelligence (AI) as a complement
to physician diagnoses and found mixed results (Farzaneh et al., 2023; Gallo et al., 2024).
Although AI outperforms physicians on average for straightforward cases, AI accuracy is
lower than physicians for complex case presentations. Farzaneh et al. (2023) examine vari-
ous physician-AI collaboration strategies to see which of them improve diagnostic accuracy.
They find using AI as the primary diagnosis tool, with its diagnoses replaced with that
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Table 8 :
Counterfactuals and Policy Simulations

False Negative False Positive Precision

T=0|S=1 T=1|S=0 S=1|T=1
(rates, in percentages)

Data Baseline Non-Black 7.03 2.55 26.93
Black 12.58 1.96 22.53

Difference -5.55 0.59 4.40

Counterfactual Baseline Difference -6.56 -0.04 2.10

False Negative False Positive Precision

(differences by race)

Panel A: Simple Counterfactuals

1 No racial prejudice -3.25 -1.36 2.23
(βj1 = 0∀j)

2 No unjustified skill gap -7.22 3.08 1.13
by race (ςj1 = 0∀j)

Panel B: Policy Simulations

3 ML determines testing -3.28 1.52 -0.03

4 Combine physicians’ deci-
sion with ML recommenda-
tion

-6.26 0.73 1.90

5 Lower thresholds by 10% -6.61 0.49 1.76
by externally raising costs of
false negatives

6 Redirect patients to a
stroke-certified facility
within 10 miles from the
patient’s ZIP, if any

-9.10 0.18 2.20

Notes: The table reports baseline outcomes of false negative rate (share of stroke visits that aren’t tested),
false positive rate (share of non-stroke visits that are tested), and precision rate (share of stroke visits among
those tested) of stroke testing in the modeling sample. Panels A and B report what these outcomes would
change to under various counterfactual scenarios and policy simulations, respectively.
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of the physician only when the AI is uncertain, to statistically dominate other strategies.
Counterfactual 3 examines outcomes when the ML model exclusively determines whom to
test, based on a pre-specified threshold that is common for the two groups. Such a policy
remedies racial prejudice in thresholds as well as unjustified skill gap, and effectively reduces
the racial disparity in false negatives. A realistic adoption of such a policy, however, comes
with some practical challenges. For example, the input symptoms used by the ML model
would still need to be entered by physicians or health workers who may potentially be biased,
and it would require patients to necessarily identify their race. Further, reducing the auton-
omy of healthcare providers who are able to observe nuances of each individual patient may
also not be acceptable to physicians and patients. We explore another feasible alternative in
Counterfactual 4.

Under Counterfactual 4, both physician and the ML model assess the patient’s stroke risk,
and testing is determined based on the maximum of the two risk predictions. The choice
of threshold remains physician-specific.29 At first glace, this policy guards patients against
errors made by low-skilled physicians and therefore improves outcomes for both racial groups.
However, an untargeted application of such a policy reduces false negatives for both racial
groups and more so for non-Black patients who are subject to lower thresholds. The policy
therefore could end up widening racial differences depending on the difference in thresholds.
In our sample, the two effects offset and the racial difference in false negatives remains
comparable to the baseline.

Counterfactual 5 simulates another policy that externally imposes a cost on false negative
testing decisions lowering all thresholds by, say, 10 percent. An example of such an external
imposition of cost is through facilitation of easy filing of malpractice lawsuits. As before,
the policy mechanically raises testing rates for both groups, but since the skill gap is still
unaddressed, the racial difference persists. Policies that separately attend to either skill or
threshold are therefore insufficient to close the large racial disparity in false negatives.

Finally, Counterfactual 6 examines a scenario where patients are redirected to stroke certified
facilities within 10 miles of their ZIP, if there are any.30 Appendix Figure A12 illustrates the
distribution of stroke-certified EDs across ZIPs. At the new facility, a physician is assigned
at random. Once again, testing rates improve for both racial groups but the increase is larger
for non-Black patients. Consequently, the racial difference increases.

Relatedly, we also know that racial concordance matters for health outcomes (Alsan et al.,
2019). Policies that promote diversity in the healthcare workforce and improve cultural
competence may also be successful in closing the racial gap in physician care.

29Davenport (2023) cautions against a discretionary version of this policy where physicians could simply
choose to consult the AI predictions if they wanted. Davenport (2023) finds that prejudiced decision-makers
selectively use algorithmic recommendations to discreetly discriminate against minorities in order to not
appear discriminatory.

30This counterfactual is only for visits made by local patients i.e. those with a Florida-based zip code.
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VI. DISCUSSION AND VALIDITY

In regard to the broader applicability of the findings in this paper to racial disparities in
health in the United States, it is essential to consider several factors:

Relevance of Setting : Diagnosis of stroke is a time-sensitive decision, complicated by variabil-
ity in symptomatic presentation and relying on a subjective assessment of risk based on the
patient’s history, presentation, and symptom onset. There is significant room for physicians’
conscious or unconscious biases to influence their clinical decisions in this context, unlike
other medical conditions with clear and objective indications for diagnosis and treatment.
The extent to which differential treatment contributes to racial disparities in other settings
with limited scope for subjective judgments, or an involvement of a team of various special-
ist, or even multiple healthcare encounters, may, therefore, differ from the patterns observed
in our findings.

Geographic and Cultural Contexts : Compared to other states, Florida has a notably high
percentage of Black and Hispanic population, which affects the demographics of patients
that physicians in Florida attend to. According to the Florida Department of Health’s 2016
Physician Workforce Annual Report, 5.1% of physicians in Florida were Black which is only
marginally higher than 4.7% in the United States.

Comparison to Other Studies : The motivating facts of this paper echo previous findings of
higher odds of missed stroke among Black patients, especially those presenting with “atyp-
ical” symptoms (Newman-Toker et al., 2014; Tarnutzer et al., 2017; Rinaldo et al., 2019).
While the paper goes on to quantify the role of disparate treatment in driving this disparity,
evidence of the underlying mechanisms of disparate treatment in the forms of prejudice,
implicit bias, incorrect beliefs, and biased risk assessment is well documented across vari-
ous contexts and settings (Singh & Venkataramani, 2024; Hoffman et al., 2016; Institute of
Medicine, 2003).

VII. CONCLUSION

This paper estimates a large racial disparity in the quality of stroke diagnoses delivered in
emergency departments (EDs). We then also identify and quantify the role of disparate
treatment by physicians in driving this disparity. Our identification of disparate treatment
relies on obtaining predictions of stroke risk for each ED visit, that are racially objective
and subsume the quality of information available to the physician on patients from either
groups. We use machine learning to obtain these risk predictions. The usage of machine
learning predictions is justified because we observe a detailed representation of the patient’s
chart and are able to train the algorithm on the underlying latent stroke states of all visits
non-selectively. The inclusion of race as a feature in the algorithm assures that the machine
learning model learns from all race-correlated patterns in the data, whether via observed
or unobserved factors. The risk predictions made by the algorithm therefore subsume race-
specific and race-correlated differences in the quality of information available or levels of
stroke risk, thereby allowing cross-group comparisons.
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We find disparate treatment in testing to account for roughly 60% of the racial disparity
in missed diagnoses. The disparate treatment is realized via two mechanisms: unjustified
skill gap, wherein physicians make noisier risk assessments for Black patients relative to the
objective risk predictions, and racial prejudice in the canonical sense, where physicians apply
differential thresholds. Policies that separately attend to either the skill gap or threshold
differences are therefore insufficient to close the racial disparity in the quality of testing deci-
sions. To effectively reduce racial disparities in care, policies must address both mechanisms
simultaneously.

With considerable variation across physicians in disparate treatment by race, another impor-
tant question that follows is of what drives physician heterogeneity. Understanding whether
it is driven by individual physician biases or broader systemic factors is a crucial and policy-
relevant area for future research.
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APPENDIX

A. FIGURES

Figure A1 :
Distribution of algorithmic stroke risk predictions

(a)
By stroke label

(b)
By stroke label, and patient race
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Figure A2 :
Calibration Plots (by Race)

Notes: This figure compares the predicted probabilities generated by the machine learning model against
the actual observed frequencies of the latent stroke states, based on all visits in the test set (left panel) and
based on visits grouped by patient race (right panel). The algorithmic predictions of risk are well-calibrated
for both racial groups.
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Figure A3 :
Calibration Plots (by Stroke Diagnosis)

Notes: This figure compares the predicted probabilities generated by the machine learning model against
the actual observed frequencies of the latent stroke states, based on all visits in the test set (left panel), and
based on visits grouped by stroke diagnosis by physicians (right panel).

50



Figure A4 :
Concordance of algorithmic predictions with physicians’ decisions

Notes: This figure plots physicians’ decision rates of stroke diagnosis and neuroimaging for each decile of the
predicted stroke risk, separately for non-Black patients (left panel) and Black patients (right panel). The
decisions rates are increasing in the predicted risk confirming that physicians’ perceptions of stroke risk are
broadly consistent with the algorithmic risk predictions.
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Figure A5 :
Distribution of the predicted risk for the misdiagnosed
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Figure A6 :
Quasi-experimental assignment of physicians

Notes: Coefficients and 95% confidence intervals from regressing the assigned physicians leave-one-out mea-
sures of decision propensity and decision quality, on patient covariates conditional on facility fixed effects.
Patient covariates that are on the continuous scale are standardised. F-statistic and p-value from the joint
F-test of patient covariates are reported at the bottom of each panel after adjusting for the multiple hypoth-
esis testing using Bonferroni correction.

53



Figure A7 :
Disparate treatment in testing by predicted risk decile

Notes: Coefficients and 95% confidence intervals from a linear probability specification of being tested for
stroke on patient race. The error bars indicate the 95% confidence intervals.
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Figure A8 :
Heterogeneity in Disparate Treatment

Notes: This figure plots correlations between physician-specific estimates of disparate treatment (δj) from
Equation (3) with physician-level aggregates of visit and patient characteristics.
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Figure A9 :
Distribution of variances in testing rates

Notes: The left panel plots the distribution of variances in each physician’s testing rates across the facilities
they work at, and the right panel plots the distribution of variances in testing rates at each facility across the
physicians who work at the facility. Facility is a defined as a unique combination of the ED, weekend/weekday,
and admission during the day/night.
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Figure A10 :
Illustration of threshold, false negatives, and false positives

(a)
Risk distribution given a level of skill
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(b)
Skill variation distorts perceived distribution
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Notes: The figure plots the risk distribution of patients of any type z, based on their latent stroke state
S ∈ {0, 1} separately. Given any level of skill, the choice of a specific threshold τz produces a unique ratio
of false negatives and false positives; as illustrated in Panel (A). Physicians with lower level of skill perceive
the risk distribution to have larger variance. Given any choice of threshold, lower skill produces are a larger
volume of false negatives and false positives; as illustrated in Panel (B).
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Figure A11 :
Partition of the primary sample into the training and modeling samples.
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Figure A12 :
Distribution of stroke-certified EDs across ZIPs

Notes: This figure illustrates the distribution of stroke-certified emergency departments across ZIPs in
Florida. The color gradient represents the share of Black population in the ZIP.
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B. TABLES

Table B1 :
Racial disparity in the quality of stroke diagnosis, based on latent states as
inferred from patient revisits over different time intervals.

Linear Probability Model for
Stroke Diagnosis (D = 1)

30-day 20-day 14-day 10-day

(1) (2) (3) (4)

Latent Stroke State (S = 1) 0.7865∗∗∗ 0.8184∗∗∗ 0.8395∗∗∗ 0.8603∗∗∗

(0.005) (0.005) (0.005) (0.005)

Black × Latent Stroke State (S = 1) −0.1407∗∗∗ −0.1347∗∗∗ −0.1202∗∗∗ −0.1015∗∗∗

(0.014) (0.014) (0.014) (0.013)

Black −0.0000∗∗∗ −0.0000∗∗∗ −0.0000∗∗∗ −0.0000∗∗∗

(0.000) (0.000) (0.000) (0.000)

Constant 0.0003∗∗∗ 0.0003∗∗∗ 0.0003∗∗∗ 0.0003∗∗∗

(0.000) (0.000) (0.000) (0.000)

Observations 1,368,680 1,368,680 1,368,560 1,368,650
Adjusted R2 0.704 0.734 0.756 0.778

∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Notes: Estimates of racial disparity in the quality of stroke diagnosis based on Equation (4), using latent
stroke states Si inferred off of different time intervals. No. of observations differ across columns because the
exclusion criteria for visits to facilities that don’t see any stroke patients depends on Si labels and hence on
the choice of the interval. Heteroskedasticity-consistent MacKinnon and White (1985) HC3 standard errors
are reported in parentheses.
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Table B2 :
Racial disparity in the quality of stroke diagnosis based on insurance type

Linear Probability Model for
Stroke Diagnosis (D = 1)

Medicare Medicaid

(1) (2)

Latent Stroke State (S = 1) 0.8496∗∗∗ 0.7936∗∗∗

(0.006) (0.018)

Black × Latent Stroke State (S = 1) −0.1210∗∗∗ −0.1450∗∗∗

(0.020) (0.035)

Black 0.0005∗∗∗ 0.0000
(0.000) (0.000)

Observations 337,015 285,784
Facility FE X X
Controls X X
Adjusted/Within R2 0.773 0.698

∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Notes: Estimates of racial disparity in the quality of stroke diagnosis for patients covered by Medicare and
Medicaid. Controls include: patients’ age and sex, income quartile of patient’s zip in state, insurance status
with primary expected payer, and Charlson Comorbidity Index at the time of the visit. Facility fixed effects
are for combinations of emergency room facility, quarter, indicator for weekends, and the admission hour.
Heteroskedasticity-consistent MacKinnon and White (1985) HC3 standard errors in parenthesis.
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Table B3 :
Racial disparity in the quality of stroke diagnosis, based on samples with different
inclusion criteria on visits following which the patient doesn’t revisit the health
system again in the year and even in 2017

Linear Probability Model for
Stroke Diagnosis (D = 1)

includes visits with no excludes visits with no
subsequent revisits subsequent revisits
in 2016 or 2017 in 2016 or 2017

(1) (2)

Latent Stroke State (S = 1) 0.8395∗∗∗ 0.8216∗∗∗

(0.005) (0.006)

Black × Latent Stroke State (S = 1) −0.1202∗∗∗ −0.1244∗∗∗

(0.014) (0.015)

Black −0.0000∗∗ −0.0001
(0.000) (0.000)

Constant 0.0003∗∗∗ 0.0004∗∗∗

(0.000) (0.000)

Observations 1,368,560 1,111,499
Adjusted R2 0.756 0.731

∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Notes: In the case of visits following which the patient doesn’t revisit the health system again in the year
or even in the year 2017, there are two possibilities: either the patient doesn’t need any medical care during
this period, or the patient died relatedly or unrelatedly sometime after the ED visit. If we set Si = Dij for
these visits, we could possibly risk underestimating the rate of missed diagnoses for visits with Dij = 0 and
underestimating the rate of incorrect diagnoses or false positives for visits with Dij = 1. Dropping these
visits from the sample, on the other hand, overestimates the rate of incorrect and missed diagnoses. The
estimates from both these approaches are broadly similar, but we decidedly err on the side of underestimating
misdiagnosis in the rest of our analysis. Heteroskedasticity-consistent MacKinnon and White (1985) HC3
standard errors are reported in parentheses.
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Table B4 :
Racial disparity in the quality of stroke diagnosis, based on samples with different
inclusion criteria on visits per patient

Linear Probability Model for Stroke Diagnosis (D = 1)

Primary Sample all relevant ED visits first relevant ED visit
made by a patient made by a patient

(1) (2)

Latent Stroke State (S = 1) 0.8395∗∗∗ 0.8631∗∗∗

(0.005) (0.005)

Black × Latent Stroke State (S = 1) −0.1202∗∗∗ −0.1085∗∗∗

(0.014) (0.015)

Black −0.0000∗∗ −0.0001∗∗∗

(0.000) (0.000)

Constant 0.0003∗∗∗ 0.0004∗∗∗

(0.000) (0.000)

Observations 1,368,560 1,031,789
Adjusted R2 0.756 0.781

∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Notes: Estimates of racial difference derived from the primary sample are reported in specification (1).
Under specification (2), racial disparity is estimated based on a sub-sample of only the first stroke-associated
ED visit of each patient. Heteroskedasticity-consistent MacKinnon and White (1985) HC3 standard errors
are reported in parentheses.
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Table B5 :
Racial disparity in the quality of stroke diagnosis, based on quintile of physician-
specific estimate of disparate treatment

Linear Probability Model for
Stroke Diagnosis (D = 1)

Quintile of physician-specific 0-20 20-40 40-60 60-80 90-100
parameters of disparate treatment (1) (2) (3) (4) (5)

Latent Stroke State (S = 1) 0.8764∗∗∗ 0.8611∗∗∗ 0.8803∗∗∗ 0.8592∗∗∗ 0.8422∗∗∗

(0.039) (0.028) (0.025) (0.027) (0.029)

Black × Latent Stroke State (S = 1) −0.2244∗∗ −0.2036∗∗ −0.2335∗∗∗ −0.0407 −0.0097
(0.111) (0.084) (0.073) (0.051) (0.057)

Black −0.0001 −0.0002 −0.0002 0.0002 0.0003
(0.000) (0.000) (0.000) (0.000) (0.000)

Constant 0.0003∗∗ 0.0005∗∗∗ 0.0004∗∗∗ 0.0006∗∗∗ 0.0006∗∗∗

(0.000) (0.000) (0.000) (0.000) (0.000)

Observations 28,209 38,135 52,648 45,336 38,007
Adjusted R2 0.757 0.750 0.773 0.742 0.735

∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Notes: Estimates of racial disparity in the quality of stroke diagnosis for visits seen by physicians in different
quintiles of physician-specific estimates of disparate treatment, i.e. quintiles based on δj from Equation (3).
The estimates are based on all visits in the primary sample that were attended to by physicians in the test
data for whom physician-specific estimates were estimated. Heteroskedasticity-consistent MacKinnon and
White (1985) HC3 standard errors are reported in parentheses.
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Table B6 :
Facility-Specific Parameter Estimates from Hierarchical Bayes

Parameter Notation Estimate Standard Error

Incremental noise in subjective assessment of log odds risk due to the facility,
relative to the reference

Certification-Weekend-Night

None - 0 - 0 γ1 — reference —
None - 0 - 1 γ̃2 −0.215∗∗∗ (0.027)
None - 1 - 0 γ̃3 −0.116∗∗∗ (0.025)
None - 1 - 1 γ̃4 −0.262∗∗∗ (0.048)
Primary - 0 - 0 γ̃5 −0.053∗∗∗ (0.016)
Primary - 0 - 1 γ̃6 −0.213∗∗∗ (0.024)
Primary - 1 - 0 γ̃7 −0.046 (0.025)
Primary - 1 - 1 γ̃8 −0.221∗∗∗ (0.045)
Comprehensive - 0 - 0 γ̃9 −0.022∗∗∗ (0.010)
Comprehensive - 0 - 1 γ̃10 −0.212∗∗∗ (0.020)
Comprehensive - 1 - 0 γ̃11 −0.070∗∗∗ (0.019)
Comprehensive - 1 - 1 γ̃12 −0.237∗∗∗ (0.047)

∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Notes: The table reports the estimates of facility-specific parameters. For model estimation, we define a
facility at the level of the stroke certification of the ED, an indicator for weekend visits, and an indicator
visits during the night. The estimates are obtained from the mean of the marginal posterior of the respec-
tive parameter, and the standard errors (in parentheses) are the corresponding standard deviations. The
Hierarchical Bayes method and the Gibbs sampling procedure are described under Appendix D.3.
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C. SOME CONSIDERATIONS FOR THE ML APPLICATION

• Racial biases in the input data
The chart data from each patient’s record that we use as input is coded based on
physician documentation, which could arguably also be contaminated with racial bias.
The codes listed in the patient’s previous visits may also be selectively detailed or biased
for some patients, depending on the number of times they visit the health system or on
the quality of facilities they visit. Nevertheless, the machine learning algorithm takes
as input the same data as what is also available to the physician; taking as given any
discriminatory actions made in the past. The algorithm could potentially “de-bias”
the manifestations of past systemic biases when making risk predictions, but only as
long as they systematically and meaningfully correlate with both stroke state and the
patient’s race. It is therefore not unreasonable to also expect practicing physicians to
acknowledge and factor-in the existence of any such distinct systematic biases relating
race and stroke.

• The physicians’ “problem” vs the algorithm’s
The algorithm is effectively making a binary class predication of stroke vs not stroke.
The physician, on the other hand, might also have in mind other illnesses relevant
to the presentation.31 This distinction is important and matters a lot more in the
decision of determining the final diagnosis. At the level of testing however, which is
where we use the algorithmic predictions, it is reasonable to assume that physicians’
objectives are also to simply match testing decision to the underlying state i.e. to
minimize classification errors. Since neuroimaging (testing) is a critical step in the
stroke protocol, any patient fairly suspected of stroke will likely be tested. The decision
to test then really depends only on whether the physician suspects stroke or not.

• Advantages or disadvantages of the machine learning algorithm over the physician
The algorithm has the following advantages:

— Physicians, unlike the machine learning algorithm, have cognitive constraints on
the dimension of input vector that they can process.

— The algorithm trains on the latent stroke state S that we have the benefit of infer-
ring retrospectively. It is not obvious that physicians also learn of all diagnostic
errors that they or other physicians make.

On the other hand, the algorithm is also disadvantaged in some ways:

— The algorithm and the physician begin with observing the same set of observables,
but physicians have the advantage of being able to incorporate nuanced context in
the case of non-standard or complex presentations, gather additional information
in a tailored way, and also use unobservable cues. (Iakovlev & Liang, 2024).

— ML models are only as good as the data they are trained on. While our algorithm
trains only on visits made in 2016, physicians can learn from and update their
“prediction model” over several years.

31This relates to the issue of omitted-payoffs bias discussed in Kleinberg et al. (2018).
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D. DETAILS OF STRUCTURAL ANALYSIS

D.1. Model of Physicians’ Testing Decision and Extensions

Physicians’ testing thresholds can be conceptualized to come from the minimization of false
negative and false positive errors (Chan et al., 2022; Arnold et al., 2022). Suppose that the
utility cost is given by

Uij = −Tij(1− Si)− C
z(i)
j (1− Tij)Si

where the cost of a false positive (testing a non-stroke case) is normalized to -1, and −Cz
j

denotes the physician’s disutility from a false negative relative to a false positive. The utility-
maximizing physician would test if and only if the expected cost of testing a patient (from
making a false positive decision) was lower than expected cost of not testing (from making
false negative decision), where the expectations are defined over the stroke risk assessment.
The physician would therefore order a test only if they assess the patient’s stroke risk to be

greater than the threshold τ zj =
1

1 + Cz
j

D.2. Modeling Sample Selection

Table D1 :
Sample Selection for physician-level modeling

Step Description No. of Observations
0 Primary sample of patients visits to the ED

with at least one stroke symptom
1,368,560 visits
11,279 physicians

1 40 percent of the primary sample (randomly
sampled) not used in training the risk pre-
diction algorithm

547,424 visits
9,331 physicians

2 Exclude visits by patients with any con-
traindications to testing (neuroimaging)

525,788 visits
9,150 physicians

3 Exclude visits to physicians who see fewer
than 50 patients of each race in the remaining
sample

224,129 visits
839 physicians

4 Exclude visits to physicians who test fewer
than five patients

73,006 visits
239 physicians
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D.3. Estimation using Bayesian Procedures: Gibbs Sampling

The data D observed are physician-level testing decisions made by physician j ∈ J for patient
visits i ∈ Ij. Let Θ denote the vector of hyper-parameters in Equation 11; and Λ be the
vector of other parameters, partitioned into random coefficients Λ1 and fixed parameters
Λ2.

The likelihood of physician j’s testing decisions, conditional on Λ, is given by

L(Dj|Λ) =
∏
i∈Ij

P(Tij|Λ)wij

where Ij is the set of patient visits assigned to the physician and wij the class weight pro-
portional to the inverse of the share of j’s patients with the same testing decision as Tij.

With Λ1 drawn from population distributions with hyper-parameters in Θ, the mixed model
likelihood of decisions made by all physicians j ∈ J is

L(D|Θ,Λ2) =
∏
j∈J

L(Dj|Θ,Λ2)

=
∏
j∈J

∫
L(Dj|Λ1,Λ2) g(Λ1|Θ) dΛ1 (15)

where g is the density of the population distribution specified in Equation (11).

The joint posterior for Θ,Λ2 is

K(Θ,Λ2|D) ∝ L(D|Θ,Λ2) k(Θ,Λ2) (16)

where k(Θ,Λ2) is the prior. Drawing from this posterior is computationally challenging
because of the integral in the likelihood does not have a closed form. Alternatively, we draw
from the joint posterior of Θ,Λ2 and Λ1, given by

K(Θ,Λ|D) ∝
∏
j∈J

L(Dj|Λ) g(Λ1|Θ) k(Θ,Λ2) (17)

To draw from this posterior, we use the Gibbs sampling procedure that sequentially draws
one parameter at a time, conditional on the values of all the other parameters. One iteration
of the Gibbs sampler sequentially draws from the respective conditional posterior of all
parameters. The resulting draws, over several iterations, converge to draws from the joint
posterior.

We use conjugate priors to obtain the conditional posterior of the hyper-parameters.

[
bj βj

]′ ∼ N
(
µβ,Ωβ

)
ςj ∼ N (µς ,Ως)

(18)
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With β̃j =
[
bj βj

]′ ∼ N
(
µβ,Ωβ

)
, we assume a diffuse multivariate normal prior on µβ,

and a diffuse inverted Wishart prior on Ωβ with K degrees of freedom and IK scale matrix,

where K is the dimension of β̃j. The posterior for µβ conditional on Ωβ and {β̃j}j∈J is

then N
(∑

j β̃j/J, Ωβ/J
)
; and the posterior for Ωβ conditional on µβ and {β̃j}j∈J is IW(

K + J,
KIK + JS

K + J

)
where S =

∑
j(β̃j − µβ)(β̃j − µβ)

′/J .

Likewise, we assume a diffuse multivariate normal prior on µς , and diffuse inverted Wishart
prior on Ως with (K-1) degrees of freedom and I(K−1) scale matrix to obtain the respective
conditional posteriors, where K − 1 is the dimension of ςj.

The conditional posterior of the parameters in Λ1, given Θ, are obtained using the hyper-
priors g(Λ1|Θ), and the parameters are drawn using Metropolis-Hastings algorithm. For the
fixed parameters Λ2, we assume an uninformative prior and again use Metropolis-Hastings
algorithm to make draws from the conditional posterior.

A total of 1000 sample draws are obtained from 20,000 iterations by burning-in 10,000 draws
and retaining every tenth draw from the remaining iterations.

D.4. Identification of Skill Parameters

Lemma 1 For any choice of threshold τ ∈ (0, 1), the rate of false positives (FPRz
j) and the

rate of false negatives (FNRz
j) are increasing in σz

j .

Proof : Consider two physicians, j and j′. Without loss of generality, suppose σz
j > σz

j′ . This
implies that the distribution of log odds of stroke risk for patients without stroke (Si = 0),
as faced by physician j, is a mean-preserving spread of the distribution faced by physician
j′.

LetG0z
j andG0z

j′ denote the corresponding cumulative distributions of log odds as faced by the
physicians j and j′ respectively; and F 0z

j , F 0z
j′ denote the respective cumulative distributions

of stroke risk. Since the transformation from probability risk to log odds is strictly monotonic,

∀x ∈ (0, 1) and y = log
x

1− x
, we have G0z

j (y) = F 0z
j (x) and G0z

j′ (y) = F 0z
j′ (x).

Given some risk threshold τ ,
FPRz

j = 1− F 0z
j (τ)

FPRz
j′ = 1− F 0z

j′ (τ)

Since the risk distribution faced by j is a mean preserving spread of the distribution faced
by physician j′, the cumulative distributions F 0z

j and F 0z
j′ must intersect only once. Let

k0 denote this point of intersection. We know then that ∀ τ ≥ k0, F
0z
j (τ) ≤ F z

j′(τ) =⇒
FPRz

j ≥ FPRz
j′ .

Likewise, let F 1z
j and F 1z

j′ denote the corresponding cumulative distributions of stroke risk
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for patients with stroke (Si = 1). Given some threshold τ ,

FNRz
j = F 1z

j (τ)

FNRz
j′ = F 1z

j′ (τ)

As before, if σz
j > σz

j′ , the distribution faced by physician j is a mean-preserving spread of
the distribution faced by j′. Then, F 1z

j and F 1z
j′ intersect only once, say at point k1. We

know then that ∀ τ ≤ k1, F
1z
j (τ) ≥ G1z

j′ (τ) =⇒ FNRz
j ≥ FNRz

j′ .

We rely here on the thresholds τ being greater than k0, and lower than k1. This is a reason-
able assumption since in the data we observe the FPRr

js and FNRr
js to be well below 0.5.
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E. RELEVANT CODES FROM MEDICAL CLASSIFICATION SYSTEM

E.1. ICD-10-CM codes/hierarchies that indicate stroke diagnosis

• I60 Nontraumatic subarachnoid hemorrhage

• I61 Nontraumatic intracerebral hemorrhage

• I62 Other and unspecified nontraumatic intracranial hemorrhage

• I63 Cerebral infarction

• I64 Stroke, not specified as haemorrhage or infarction

• G46.3 Brain stem stroke syndrome

• G46.4 Cerebellar stroke syndrome

• I6782 Cerebral ischemia

• I6789 Other cerebrovascular disease

• I679 Cerebrovascular disease, unspecified

Note: Excludes transient cerebral ischemic attacks (TIA) and sequelae of cerebrovascular
disease (I69)

E.2. ICD-10-CM codes/hierarchies for stroke-related symptoms

1. General Symptoms

• R0602 Shortness of breath

• R51 Headache

• R52 Pain, unspecified

• R53.1 Weakness

• R53.8 Other malaise and fatigue

• R55 Syncope and collapse

• R11.0 Nausea

• R11.10 Vomiting, unspecified

• R11.2 Nausea with vomiting, unspecified

2. Muscular/Neurological Symptoms

• R27 Other lack of coordination

• R29.5 Transient paralysis

• R29.818 Other symptoms and signs involving the nervous system

• R29.898 Other symptoms and signs involving the musculoskeletal system

• R29.9 Unspecified symptoms and signs involving the nervous and musculoskeletal
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systems

• M62.81 Muscle weakness (generalized)

• R569 Unspecified convulsions

3. Facial (Muscle weakness, Numbness, Drooping) Symptoms

• R29.810 Facial weakness

4. Symptoms related to Consciousness/Alertness

• R40.4 Transient alteration of awareness

• R41.0 Disorientation, unspecified

• R41.82 Altered mental status, unspecified

• R41.9 Unspecified symptoms/signs involving cognitive function and awareness

• R42 Dizziness and giddiness

• R45.1 Restlessness and agitation

5. Sensory (Pins/Needles, Low sensation of touch, Numbness) Symptoms

• R20 Disturbances of skin sensation

6. Symptoms related to Speech (Difficulty speaking, slurred speech, or speech loss)

• R47 Speech disturbances, not elsewhere classified

7. Symptoms related to Vision (Blurred vision, double vision, sudden visual loss, or tem-
porary loss of vision in one eye)

• H53.12 Transient visual loss

• H53.13 Sudden visual loss

• H53.14 Visual discomfort

• H53.2 Diplopia

• H53.8 Other visual disturbances

• H53.9 Unspecified visual disturbance

• H54.7 Unspecified visual loss

E.3. ICD-10-CM codes/hierarchies for Stroke Mimics

1. G40: Epilepsy and recurrent seizures

2. G43: Migraine

3. G93: Other disorders of brain

4. Tumor in the Brain
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• C71: Malignant neoplasm of brain

• D43: Neoplasm of uncertain behavior of brain and central nervous system

5. G58: Other mononeuropathies

6. Toxic or metabolic disorders

• E87.0: Hyperosmolality and hypernatremia

• E87.1: Hypo-osmolality and hyponatremia

7. E15: Non-diabetic hypoglycemic coma

8. E16: Other disorders of pancreatic internal secretion (Hypoglycemia)

9. H81: Disorders of vestibular function

10. I65-I68: Other cerebrovascular diseases

E.4. CPT/HCPCS/ICD-10-PCS codes for testing/ neuroimaging

• Computed Tomography (CT) head with/without contrast: 70450, 70460, 70470

• CT Perfusion: 0042T

• CT Angiogram (Head): 70496

• Magnetic Resonance Imaging (MRI) of head: 70551, 70552, 70553

• Magnetic Resonance Angiography: 70544, 70545, 70546, 70447, 70548, 70549

• Carotid Ultrasound (93880, 93882), Transcranial Doppler (93886), 12 Lead Echocar-
diogram (93000, 93005, 93010)

E.5. ICD-10-CM codes of contraindications to neuroimaging:

Since CT involves exposure to radiation, it is generally contraindicated for patients in the
first trimester of their pregnancy. Contrast CT, in particular, is contraindicated for patients
who are allergic to the contrast dye, have lower kidney functionality, or have active hyper-
thyroidism. On the other hand, magnetic resonance modalities use powerful magnetic fields
and are contraindicated for patients with electronic or magnetic implants (such as pacemak-
ers) or other metallic foreign bodies (such as bullet fragments, aneurysm clips, piercings,
prosthetic limbs) that aren’t marked MR safe by the manufacturers. Severely obese patients
who exceed the weight capacity of the machines or the circumference of the scanner are also
contraindicated.

• Pregnant state, incidental/gestational carrier (Z33.1, Z33.3)

• Radiographic dye allergy (Z91.041)

• Procedure and treatment not carried out because of other contraindication (Z53.09)

• Disorder of kidney and ureter, unspecified (N28.9)

• Presence of implants or devices (Z95-Z97), Retained foreign body fragments (Z18)
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• BMI greater than 40 (Z68.4)

• Thyrotoxicosis or hyperthyroidism (E05)

E.6. ICD-10-CM codes of external causes of co-morbidity excluded from the
primary sample

• V90 - V97: Water, air, or space transport accidents

• W3 - W9: Contact with machinery, animal attacks or other contact with animate
mechanical forces, explosion, exposure to electric current or radiation, or accidental
drowning

• X0 - X3: Exposure to smoke, heat, or forces of nature

• X7 - X9: Intentional self-harm

• Y35 - Y38: Legal intervention, operations of war, military operations, and terrorism
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