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1 Introduction

The rising levels of CO2 in the atmosphere are causing significant increases in global temper-

atures and altering weather patterns, leading to climate change (IPCC, 2021). The aggregate

economic costs associated with climate change and the formulation of effective policies to

address it have attracted the interest of academics and policymakers, triggering broad public

debate. The economic costs, as well as the potential policies to confront them, are largely

contingent upon the relationship between temperature and aggregate productivity damages

(Nordhaus, 1977; Cruz and Rossi-Hansberg, 2021; Barrage and Nordhaus, 2023; Desmet and

Rossi-Hansberg, 2024). These aggregate productivity damages are likely influenced by the dis-

ruptions faced by firms operating in areas most affected by extreme temperatures. Therefore,

in order to evaluate them correctly, it is crucial to analyze the heterogeneous effects of climate

shocks across firms, the potential reallocation effects, and their aggregate implications.

This paper makes two significant contributions to the literature. First, we quantify the

relative importance of three different channels determining the impact of climate change on

firm outcomes: (i) the demand channel, (ii) the productivity channel, and (iii) the reallocation

channel. Second, we develop a structural framework that allows us to estimate aggregate

productivity losses from these firm-level effects.

Anecdotal evidence suggests that higher temperatures can shift consumer spending pat-

terns across firms in different sectors. Similarly, there is ample empirical evidence that ex-

treme temperatures decrease productivity.1 We refer to these as the direct effects of tempera-

ture on firms. However, if inputs can reallocate fromfirms experiencing extreme temperatures

to those in less affected locations, the damage from direct effects would be mitigated. Con-

versely, if the reallocation process is slow or hindered by frictions, the direct effects may be

amplified. We refer to these reallocation of inputs as the indirect effects. Empirical evidence

on the reallocation of inputs across firms is somehow limited.2

However, while the literature has made progress in identifying separate sources of firm-

level damages, their interaction and aggregation remain unclear. To address this, we propose

a novel methodology to measure aggregate productivity damages due to temperature rise

1See Somanathan et al., 2021 for labor productivity in India; Zhang et al. (2018) for TFP in China; Seppanen et al.
(2006) for office productivity; and Lobell and Field (2007) for agricultural yields

2Reduced-form evidence on county-level labor mobility are provided in Leduc andWilson (2023), while on labor
mobility across agricultural and non-agricultural sectors in emerging markets are provided by Colmer (2021)
and Albert et al. (2021)
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grounded on causally estimated firm-level outcomes. Our methodology allows for the inter-

play of direct and indirect effects and their causal identification using commonly available

firm-level datasets. Additionally, this framework allows for a closed-form characterization of

aggregate productivity damages in general equilibrium.

In our structural framework, we model monopolistically competitive firms similarly to a

closed-economy version of Melitz (2003). These firms’ demand and productivity may depend

on the temperature at their location and other factors. This allows temperature to directly

affect the scale at which firms operate. Additionally, to capture the indirect effects of slow

input reallocation or frictions in reduced-form, we incorporate input-specific wedges follow-

ing Restuccia and Rogerson (2008) and Hsieh and Klenow (2009), and allow them to poten-

tially depend on temperature and other factors. These wedges represent the gap between the

revenue-based marginal product of each input and its user cost, influencing the relative hold-

ing of each input. Thus, if the reallocation of a particular input is slow or frictional after a

firm experiences extreme temperatures, the firm will be stuck with more of that input relative

to others, resulting in an relative decline in the given wedge.

Our framework leads to the following identification structure. By deriving the first-order

conditions of the firm’s problem, we show that the relationship between sales and local tem-

perature depends on demand, productivity, and input-specific wedges. However, the revenue-

based marginal productivity of each input is affected solely through its wedge, allowing us

to separately identify these factors. By netting out the effect of the wedges, the remaining

temperature-dependent variation in sales is driven only by demand and productivity. To fur-

ther separate these two effects, we assume (and test) that the temperature-dependent demand

factor does not affect firms operating in tradable sectors, as the demand for their products is

geographically dispersed and not influenced by local temperature. Thus, by comparing the

effect of temperature on the revenues of tradable and non-tradable firms, we disentangle the

effect of demand and productivity.3

One notable advantage of our framework is that it allows for the closed-form characteri-

zation of the link between aggregate productivity damages and temperature via the firm-level

3This identification strategy is derived directly from findings in empirical trade literature. For example, the lower
demand sensitivity of sales for firms selling tradable goods has been documented by Almunia et al. (2021) for the
Great Recession episode. Furthermore, considering this dimension in our data appears to be a natural choice,
especially considering that a significant portion of Italian firms self-select into exporting, as documented in
Caggese and Cuñat (2013).
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channels described above. Moreover, it also allows to separate the contribution of the direct

channel, i.e., demand and productivity, to aggregate productivity damages from the indirect

channel, i.e., slow inputs reallocation and frictions, similarly to Hsieh and Klenow (2009),

Gopinath et al. (2017), and Baqaee and Farhi (2020). Importantly, our methodology does not

rely on knowing equilibrium input prices, thus remaining robust to general equilibrium con-

siderations and circumventing the missing intercept problem.

We demonstrate how to implement our model using the case of Italy, which provides an

ideal setting for our purpose. Because of its latitude, it often suffers episodes of very high

temperatures, especially in recent years.4 Moreover, its geography exhibits considerable di-

versity across regions both in terms of climate as well as regional development. Furthermore,

by comparing locations differently exposed to extreme temperature fluctuations, we are able

to estimate adaptation effects and quantify their aggregate impact.

We exploit Orbis, provided by Bureau van Dijk, between the years 1999-2013, a firm-level

quasi-census dataset covering around 75 percent of Italy’s aggregate gross output (Kalemli-

Özcan et al., 2024). We pair the firm-level data with gridded climate data obtained from the

Copernicus Climate Change Services. The climate data provides daily temperature in degree

Celsius (C) and rainfall measurements at an approximately 11x11 km resolution. Copernicus

data highlight substantial variation in within-grid-cell average yearly temperature, ranging

from approximately 0 to 23 degrees Celsius. The pairing is done by assigning to each firm in

Orbis the temperature and rainfall corresponding to the nearest grid cell in which the postcode

of the firm headquarters is situated.5

Empirically, we follow the methodology in Somanathan et al. (2021), aggregating the daily

temperatures at each grid point to the annual level by counting the number of days falling

within different temperature ranges. We find strong evidence of an inverted U-shaped effect,

indicating that extreme temperatures, whether high or low, lower firm-level output, labor,

and material inputs, but not capital. The negative impact of high temperatures is particularly

pronounced and nonlinear. Relative to the reference temperature interval (0◦C, 30◦C], an ex-

4European temperatures increased at more than twice the global average over the past 30 years, the highest
increase among all continents (source: Report on the State of the Climate in Europe, 2021, by the World Mete-
orological Association.)

5The majority of our sample consists of small and medium-sized firms that are single establishments. However,
we perform extensive robustness exercises showing that large firms, firms reporting consolidated accounts, or
foreign firms—i.e., those more likely to have multiple plants, which could lead to misclassification based on the
headquarters zip code—do not drive our results.
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tra day with temperatures between 35◦C and 40◦C reduces sales by 0.05 percent, while an

extra day above 40◦C reduces sales by 0.81 percent. We estimate a significant temperature-

dependent input wedge that reduces the marginal productivity of capital at extreme tempera-

tures, while no significant effects are found for other input wedges. This suggests that extreme

temperatures depress firms’ output and inputs, with firms able to adjust labor andmaterial use

but not capital due to the presence of frictions that prevent its reallocation. Lastly, our anal-

ysis indicates that the non-tradable sector does not experience significant additional effects,

suggesting that productivity plays a more influential role than demand.

We then proceed to quantify the aggregate productivity losses resulting from different

warming scenarios using the firm-level causally estimated effects for each channel. We con-

sider several alternative scenarios of temperature increase between now and the year 2100,

including a 1-degree Celsius increase, a 2-degree Celsius increase (regarded as the baseline in

line with the Paris Agreement objectives), and a 4-degree Celsius increase.6 To simulate these

warming scenarios, we assign the corresponding temperature increases to each day and grid

cell in our climate data. Under a 1-degree Celsius increase, aggregate productivity drops by

0.77 percent. Under the 2-degree Celsius baseline warming scenario, aggregate productivity

lowers by 1.68 percent. Doubling the temperature increase to 4-degree Celsius, the drop be-

comes nearly four times larger, reaching 6.82 percent. Additionally, using predictions from

the RCP 4.5 and RCP 8.5 climate models gives us an aggregate productivity loss of 1.64 and

5.35 percent, respectively. We find that the role of direct productivity effects and indirect

missing capital reallocation effects contribute equally to the aggregate productivity losses.

How do our predicted aggregate productivity losses relate with the damage functions

assumed in recent Integrated Assessment Models (IAM), such as for example Barrage and

Nordhaus (2023)? Even though they both quantify the effects of temperature fluctuations

on productivity, they are not directly comparable, because our exercise focuses on firm-level

channels only and one specific country, while the latter attempts to summarise the world-level

impact of several channels, quantified from different studies and methodologies. Nonethe-

less, we can make two observations: First, we describe a theory-based methodology that

aggregates micro-level climate-change channels into aggregate general equilibrium effects,

and which could be applied to other countries and contexts and become a building block of

damage functions in future versions of IAM models. Second, the channels we explore are
6The DICE (Dynamic Integrated Climate-Economy) models use 2100 as the time horizon of reference.
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only partially included in the drivers of climate change usually summarised in those damage

functions, and find effects quantitatively large relative to them. Therefore, incorporating such

channels in IAMmodels is likely to significantly revise upwards the economic costs of climate

change, and the social cost of carbon.

Our quantitative findings have potential caveats. We primarily estimate short- tomedium-

term effects of local temperature. In the long run, future advancements or increased invest-

ment in climate-mitigating technologies could enhance firms’ ability to handle extreme tem-

peratures. Although quantifying the former is challenging, concerning the latter, we demon-

strate through an additional empirical exercise that including this margin of adaptation re-

duces our damages by around 20-30 percent.7 Additionally, improvements in allocative effi-

ciency in the long run may mitigate damages as capital reallocation frictions may ease with

time. Though estimating these dynamics is challenging with our short panel, our framework

provides an upper bound, gauged by changes in allocative efficiency. Finally, in our frame-

work, we chose to omit considerations on firm entry and exit due to the limited information

on these in our data. Neglecting this margin may bias our results, as discussed in detail in

the main text. However, our findings on the relative importance of different channels provide

valuable inputs for future models of firm dynamics aiming to incorporate extensive margin

effects of climate change.

Finally, we investigate the regional impact of climate change on productivity across Ital-

ian provinces, uncovering heterogeneous effects that can lead to both mildly positive and

severely negative outcomes. Our analysis indicates that as poorer regions in the south are an-

ticipated to experience shifts towards more extreme temperature ranges, climate change may

exacerbate existing regional inequality in Italy. This is highlighted by our findings, which

demonstrate a negative relationship between expected productivity losses and current GDP

per capita.

Literature Review. The paper is related to the literature pioneered by Nordhaus (1977) that

studies the macroeconomic impact of climate change and recently extended in Krusell and

Smith (2022) and Barrage and Nordhaus (2023), among others.8 Further, it contributes to the

7To measure adaptation through the use of climate-mitigating technologies, we compare firm-level losses be-
tween grid-cells accustomed to extreme temperatures, which we assume are already adapted through this chan-
nel, and those not.

8Another strand of the literature studies the aggregate consequences of climate change empirically, e.g., Dell
et al. (2012, 2014); Burke et al. (2015); Hsiang et al. (2017); Burke and Tanutama (2019); Kalkuhl and Wenz
(2020); Kahn et al. (2021); Newell et al. (2021); Bastien-Olvera et al. (2022); Casey et al. (2023); Nath et al. (2023);
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emerging body of research that combines detailed granular data with quantitative macroe-

conomic models to analyze the economic aspects of climate change (e.g., Desmet and Rossi-

Hansberg, 2015; Balboni, 2019; Barrage, 2020; Cruz and Rossi-Hansberg, 2021; Conte, 2022;

Conte et al., 2022; Fried, 2022; Nath, 2022, Bilal and Rossi-Hansberg, 2023). Our contribu-

tion emphasizes firm heterogeneity. Our model establishes a direct link between firm-level

temperature-semielasticities and aggregate productivity losses within a general equilibrium

framework. This reveals a novel channel related to firm-level allocative efficiency adjustments

in response to temperature changes. This channel can be assessed using micro-data and has

significant aggregate effects.

We build our empirical strategy on Zhang et al. (2018) and Somanathan et al. (2021).9 We

complement these papers by proposing a model that allows for a structural interpretation

of temperature-semielasticities. This, together with the novel estimate of the temperature-

semielasticity of the marginal product of inputs at the firm level, permits the aggregation of

the micro estimates to perform aggregate counterfactuals in general equilibrium.

This paper also relates to the literature on resource misallocation, pioneered by Hopen-

hayn and Rogerson (1993), Restuccia and Rogerson (2008), and Hsieh and Klenow (2009).

Our structural framework builds upon insights from Osotimehin (2019); Baqaee and Farhi

(2020); Bau and Matray (2020); and Sraer and Thesmar (2023); enabling a connection between

aggregate productivity in general equilibrium and the reduced-form firm-level temperature-

semielasticities of productivity, demand, and marginal products. Our analysis shows that

input-related wedges, often interpreted as frictions in this literature, constitute a substantial

channel through which extreme temperatures operate. Thus, revealing that the insights from

this literature are important for understanding the adverse effects associated with climate

change.

Outline. The rest of the article is organized as follows. Section 2 describes a theoretical

model that guides measurement and interpretation of results. Section 3 describes data and

measurement. Section 4 lays the empirical strategy. Section 5 presents the main results on

temperature’s impact on firm outcomes. Section 6 quantifies the aggregate effects. Section 7

and Leduc and Wilson (2023).
9Other papers studying empirically the micro-level impact of climate change are Deschênes and Greenstone
(2011); Kala et al. (2012); Graff Zivin and Neidell (2014); Cohn and Deryugina (2018); Diffenbaugh and Burke
(2019); Addoum et al. (2020); Colmer (2021); Albert et al. (2021); Pankratz and Schiller (2021); Custodio et al.
(2022); Cascarano et al. (2022); Acharya et al. (2023); and Ponticelli et al. (2024).
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concludes.

2 Structural Framework

In this section, we present a framework to study the effect of temperature on firms’ outcomes

and on aggregate productivity.

2.1 Firm-Level Variables

We build our framework on the work of Hsieh and Klenow (2009).10 We consider an economy

at time t populated by a large number N of monopolistically competitive firms i, producing

differentiated varieties, operating in a grid-cell g.11 In this economy, aggregate output Y is a

CES aggregate of N firms:

Yt =

(
Nt∑
i=1

(
edit(Tg(i)t)Yit

)σ−1
σ

) σ
σ−1

, (1)

where Yit is the output of firm i, edit(Tg(i)t) is a temperature-dependent demand shifter with Tg(i)t

being the temperature in a grid-cell g, and σ denotes the elasticity of substitution between

varieties. The notation g(i)means that the grid-cell g varies for different firms i. The presence

of a temperature-dependent demand shifter edit(Tg(i)t) implies that temperature changes in a

given grid-cell may affect the demand faced by the firms in that grid-cell. Nonetheless, the

functional form assumed for dit(Tg(i)t), and for the other temperature-dependent frictions in

the model, allows for the possibility that they are influenced by factors other than grid-cell-

level temperature. Section 4 explains in detail the functional forms assumed in the empirical

analysis.

We denote by Pit the price of firm i and by Pt the price of aggregate output Yt. The

10As in Hsieh and Klenow (2009), also this model is static, and firm decisions in time t do not depend on past
choices, nor they affect future outcomes. Nonetheless, for convenience, we introduce from the beginning the
time subscript, which is useful because, in the empirical application, we will use panel data.

11The grid-cell is the finest geographical unit for which we have data on temperatures. It coincides with an area
of 0.1deg2, which corresponds approximately to 121km2. This is approximately the size of Turin (130km2)
and 1/10th the size of Rome (1, 285km2). Section 3 describes the data in more detail.

7



demand faced by each firm i is given by

Yit =
(
edit(Tg(i)t)

)σ−1
(
Pit

Pt

)−σ

Yt. (2)

The production function of each firm is Cobb-Douglas in productivity, capital, labor, and

materials:

Yit = ezit(Tg(i)t)
∏
X∈X

XαX

it , with
∑
X∈X

αX = 1, (3)

where ezit(Tg(i)t) is the temperature-dependent productivity for firm i in grid-cell g and X ≡

{K,L,M} with K being capital, L being labor, and M being materials. This term, ezit(Tg(i)t),

implies that temperature changes in a given grid cell may affect the productivity at which the

firms in that grid cell operate.

The problem of a firm is given by

Πi = max
{Pit,Yit}

PitYit − C(Yit),

s.t. Yit =
(
edit(Tg(i)t)

)σ−1
(
Pit

Pt

)−σ

Yt;

(4)

where

C(Yit) = min
X

{∑
X∈X

eτ
X
it (Tg(i)t)PX

t Xit

∣∣∣∣ Yit − ezit(Tg(i)t)
∏
X∈X

XαX

it

}
, (5)

where eτXit (Tg(i)t) are temperature-dependent input-specific wedges for firm i in grid-cell g and

PX
t is the price of input X . These wedges represent frictions that affect the marginal prod-

ucts or costs of specific inputs, including factors like adjustment costs, spatial and financial

frictions, among others. Temperature changes in the grid-cells where firms operate can influ-

ence these wedges. Our main objective is to estimate how these wedges react to temperature

changes and quantify their impact on aggregate productivity.

Profit maximization yields the standard condition that the firm’s output price is a fixed

markup over its marginal cost:

Pit = M · C ′(Yit), (6)
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where M ≡ σ/(σ − 1). The solution of the minimization problem is given by

C(Yit) =
∏
X∈X

(
eτ

X
it (Tg(i)t)PX

t

αX

)αX

Yit

ezit(Tg(i)t)
. (7)

Combining equations (2), (6), and (7), firm i sales can hence be expressed just as a function

of the primitives of the model as

PitYit =
(
ez̃it(Tg(i)t)

)σ−1

M
∏
X∈X

(
eτ

X
it (Tg(i)t)P x

t

αX

)αX
−(σ−1)

P σ
t Yt, (8)

with

ez̃it(Tg(i)t) ≡ edit(Tg(i)t)ezit(Tg(i)t), (9)

where ez̃it(Tg(i)t) is defined through the rest of the paper as the firm level temperature-dependent

demand-adjusted productivity, and combines the firm productivity and the demand shifter

responses to temperature. Taking logarithms in equation (8) we recover the following log-

linear relation:

pityit = (σ − 1)

(
z̃it(Tg(i)t)−

∑
X∈X

αXτXit (Tg(i)t)

)

− (σ − 1)

(
µ+

∑
X∈X

αX
(
pXt − logαX

))
+ σpt + yt,

(10)

with lowercase letters indicating logarithms. pityit is the logarithm of sales for firm i in period

t. In Section 4 we explain how we estimate an empirical counterpart of equation (10). Impor-

tantly, our theoretical framework has the advantage to identify the different channels trough

which temperature shocks affect firm-level revenues. More specifically, sales may respond

to temperature because this can affect (i) the firm demand-adjusted productivity through

z̃it(Tg(i)t) or (ii) the input-specific wedges through τXit (Tg(i)t). Formally, the temperature-

semielasticity of sales is given by

∂pityit
∂Tg(i)t

= (σ − 1)

(
∂z̃it(Tg(i)t)

∂Tg(i)t

−
∑
X∈X

αX ∂τXit (Tg(i)t)

∂Tg(i)t

)
(11)
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Equation (11) shows that conditional on ameasure of the elasticity of substitution between

varieties σ and the production function elasticities αX if one can measure the temperature-

semielasticity of the input-specificwedges, ∂τXit (Tg(i)t)/∂Tg(i)t, one can recover the temperature-

semielasticity of the demand-adjusted productivity, ∂z̃it(Tg(i)t)/∂Tg(i)t and vice versa. We can

leverage this intuition since the optimality conditions of ourmodel imply that individual input

demand is given by:

eτ
X
it (Tg(i)t)PX

t Xit = αXC(Yit), ∀X ∈ X , (12)

which can be rearranged, using equation (6), as

MRPXit ≡ αX PitYit

Xit

= Meτ
X
it (Tg(i)t)PX

t . (13)

Taking logarithms in equation (13) we recover the following log-linear relation:

logMRPXit = τXit (Tg(i)t) + µ+ pXt . (14)

Equations (13) and (14) have two important insights. First, as shown by Hsieh and Klenow

(2009), conditional on the production function elasticityαX , the revenue-basedmarginal prod-

uct of input X (MRPX) of firm i can be measured just by observing firm-level sales PitYit

and firm-level input quantitiesXit ∈ {Kit, Lit,Mit}. Second, in equilibrium the effect of tem-

perature on logMRPXit only depends on its input-specific wedge τXit (Tg(i)t), and not on the

other input-specific frictions.12

Hence, having the necessary data to empirically measure firm-level sales and MRPX ,

we can use equations (10) and (14) to estimate the temperature-semielasticity of sales and of

input-specific wedges, and then use equation (11) to recover the temperature-semielasticity

of the demand-adjusted productivity. We provide a detailed procedure for this in Section 4.

12It also relies on the logarithm of the markup µ, and of the input price pXt . Regarding the latter, to the ex-
tent that its variations are similar across all firms in a given industry, they are absorbed by sector-year ef-
fects in our empirical specification. Regarding the former, assuming a CES aggregator in our model rules out
any direct effect of temperature on markups. However, while this channel might be accommodated by the
temperate-dependent input-specific wedges, in the empirical analysis in Section 5 we find no prima facie effect
of temperature on the revenue-based marginal product of materials and labor (which are common measures of
firm-level markups used by the literature; see Loecker and Warzynski, 2012), validating the CES assumption.
Furthermore, the empirical specification of equation (14) will further generalize this formula to account for
other potential factors.
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2.2 Aggregate Variables

To quantify the effects of temperatures on aggregate productivity and make predictions about

when rising temperatures will reduce an economy’s aggregate productivity, we use changes

in the Solow residual as a proxy for changes in aggregate productivity. Appendix A reports

the details of all the calculations.

Before introducing the Solow residual in our framework, we demonstrate that aggregate

gross output TFP can be expressed as

TFPt =
Yt∏

X∈X XαX

t

, (15)

=

(
Nt∑
i=1

(
ez̃it(Tg(i)t)

)σ−1 ∏
X∈X

(
eτ

X
it (Tg(i)t)

)−(σ−1)αX
) σ

σ−1

×
∏
X∈X

(
Nt∑
i=1

(
ez̃it(Tg(i)t)

)σ−1

eτ
X
it (Tg(i)t)

∏
X∈X

(
eτ

X
it (Tg(i)t)

)−(σ−1)αX
)−αX

; (16)

with Xt =
∑Nt

i=1 Xit standing for real aggregate capital, labor, and materials. Equation (16)

shows that conditional on the elasticity of substitution between varieties σ and the production

function elasticities αX , aggregate gross output TFP is just a function of two measurable

objects: ez̃it(Tg(i)t) and eτ
X
it (Tg(i)t). The firm-level demand-adjusted productivity ez̃it(Tg(i)t) can

be expressed, employing the structural assumptions on demand and production used to arrive

at equation (16), as

ez̃it(Tg(i)t) =

(
(PtYt)

− 1
σ−1

Pt

)(
(PitYit)

σ
σ−1∏

X∈X XαX

it

)
. (17)

As noted in Hsieh and Klenow (2009), conditional on a measure of the elasticity of substi-

tution between varieties σ and the production function elasticities αX , Equation (17) can be

measured just with data on nominal aggregate output PtYt, the aggregate price deflator Pt,

firm-level sales PitYit, and firm-level inputs Xit. Moreover, firm-level input-specific wedges

eτ
X
it (Tg(i)t) can be measured using equation (13), as explained above. Hence, using standard

firm-level data and leveraging the structure of our framework, we can measure empirically

each element in equation (16).

11



Taking logs and differentiating equation (16), we can derive the following expression re-
lating changes in aggregate gross output TFP to changes in grid-cell-level temperatures:

∆ logTFPt ≡ ∆ logTFPt

(
ez̃it(Tg(i)t), eτ

X
it (Tg(i)t),∆Tg(i)t

)

≈
Nt∑
i=1

λit

(
ez̃it(Tg(i)t), eτ

X
it (Tg(i)t)

) ∑
X∈X

αX

eτ
X
it (Tg(i)t)

ΩX
t

(
ez̃it(Tg(i)t), eτ

X
it (Tg(i)t)

)

×

σ
eτ

X
it (Tg(i)t)

ΩX
t

(
ez̃it(Tg(i)t), eτ

X
it (Tg(i)t)

) − (σ − 1)

(∂z̃it(Tg(i)t)

∂Tg(i)t
−
∑
X∈X

αX ∂τXit (Tg(i)t)

∂Tg(i)t

)
+

∂τXit (Tg(i)t)

∂Tg(i)t



×∆Tg(i)t, (18)

where λit(·, ·) is a firm-level weight and ΩX
t (·, ·) is an aggregate object. Both are described

in Appendix A.1. Equation (18) allows calculating counterfactual changes in aggregate TFP

due to changes in grid-cell-level temperatures ∆Tg(i)t. In particular, to calculate this coun-

terfactual, we need information about three types of objects: (i) ez̃it(Tg(i)t) and eτ
X
it (Tg(i)t),

which can be measured using firm-level data as explained above; (ii) ∂z̃it(Tg(i)t)/∂Tg(i)t and

∂τXit (Tg(i)t)/∂Tg(i)t, which are temperature-semielasticities of the demand-adjusted produc-

tivity and of input-specificwedges; and (iii) grid-cell-level temperature changes∆Tg(i)t, which

are the objects of interest to vary in the counterfactual.

We highlight that as in Hsieh and Klenow (2009) and Gopinath et al. (2017), we can use

equation (16) to also recover the upper bound of aggregate gross output TFP in this economy.

This is obtained by equalizing all input-specific wedges eτXit (Tg(i)t) across firms. The resulting

expression is given by

TFP ∗
t =

(
Nt∑
i=1

(
ez̃it(Tg(i)t)

)σ−1

) 1
σ−1

. (19)

This represents the upper bound of aggregate TFP in a counterfactual frictionless scenario.

In the rest of the paper, we are going to compare the actual changes in TFP to the changes in

this ideal TFP that we call, with a slight abuse of terminology, efficient.13 As above, taking logs

and differentiating equation (19), we can derive the following expression relating changes in

13We label this counterfactual TFP as efficient but avoid using it for normative considerations. The reason is
that this level of TFP does not have to always lay within the set of achievable allocations. For instance, if part
of the frictions we measure in the data result from technological constraints like adjustment costs, then this
counterfactual TFP cannot be attained.
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efficient aggregate gross output TFP to changes in grid-cell-level temperatures:

∆ logTFP ∗
t ≡ ∆ logTFP ∗

t

(
ez̃it(Tg(i)t),∆Tg(i)t

)
≈

Nt∑
i=1

λ∗
it

(
ez̃it(Tg(i)t)

) ∂z̃it(Tg(i)t)

∂Tg(i)t

∆Tg(i)t, (20)

where λ∗
it(·) is a firm-level weight described in Appendix A.1.

Equation (20) allows calculating counterfactual changes in the efficient gross output TFP

due to changes in grid-cell-level temperatures ∆Tg(i)t. In particular, to calculate this coun-

terfactual change, we again just need information on three objects: (i) ez̃it(Tg(i)t), which can

be measured using firm-level data as explained above; (ii) ∂z̃it(Tg(i)t)/∂Tg(i)t, which is firm-

level temperature-semielasticity of the demand-adjusted productivity; and (iii) grid-cell-level

temperature changes∆Tg(i)t, which are the objects of interest to vary in the counterfactual.14

Now we have all the elements to decompose the change in aggregate gross output TFP

into the change in an efficient component and the change in a component associated with

input-related frictions. The final expression for changes in aggregate gross output TFP is the

following:

∆ logTFPt = ∆ logTFP ∗
t︸ ︷︷ ︸

∆ Technology

− (∆ logTFP ∗
t −∆ logTFPt)︸ ︷︷ ︸

∆ Allocative Efficicency

. (21)

The first term captures changes in efficient TFP, as described above. The second term

captures changes in the allocation relative to the efficient allocation, which goes back to

Debreu (1951) and Farrell (1957), and recently Baqaee and Farhi (2020); therefore, we label

it as allocative efficiency. Intuitively, ∆ logTFP ∗
t measures the changes in aggregate TFP

caused by the impact of temperature on demand-adjusted productivity for an economy that

is not affected by any allocative problem (that is, aggregate output cannot be increased just

by reallocating inputs across productive units). By contrast, the second term in equation (21)

measures the additional negative effect on aggregate TFP caused by the fact that temperature

shocks can worsen allocative efficiency. Interestingly, this latter term is potentially affected

both by changes in firm-level demand-adjusted productivity and in input-specific wedges, be-
14One useful property of our theoretical framework is that equations (18) and (20) do not depend on any aggre-
gate prices, which are market clearing objects in general equilibrium. Thus, our analysis is robust to general
equilibrium considerations and to the missing intercept problem. In other words, to perform the aggregate
counterfactuals of interest, only ∂z̃it(Tg(i)t)/∂Tg(i)t and ∂τXit (Tg(i)t)/∂Tg(i)t are needed. Understanding how
to estimate them in the data is the objective of the empirical strategy outlined in Section 4.
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cause these terms interact at the firm level and their covariance matters, as similarly noted in

Gopinath et al. (2017).

As an example, consider two geographical locations A and B, where firms are equally

productive in both locations, but those in A are subject to larger input-specific wedges. In

this case, an increase in demand-adjusted productivity in location A would reduce allocative

efficiency, by increasing the covariance between productivity and wedges, even if the latter

do not change.

Finally, since we are interested in the effect of climate change on the Solow residual,

which is defined on value-added, and not on aggregate gross output TFP per se, we adjust (21)

following the insights in Jones (2011), as explained in Appendix A.2. This gives the following

measure for changes in the Solow residual:

∆ logSolowt ≈
Yt

GDPt

(∆ logTFP ∗
t − (∆ logTFP ∗

t −∆ logTFPt)) , (22)

where Yt is gross output and GDPt is value-added, i.e., gross output net of materials.

Therefore, to compute the counterfactual impact of climate change on aggregate produc-

tivity and to separate its effect into an efficient component and a component associated with

resource reallocation, we can simultaneously employ equations (18), (20), and (22).

3 Data

This section presents the two main data sources used for the empirical analysis and the merg-

ing procedure used to combine them.

3.1 Firm-Level Data

The Italian firm-level data is obtained from Orbis, provided by Bureau van Dijk between the

years 1999-2013. Orbis offers harmonized cross-country financial information for both private

and public firms collected fromvarious national data sources, primarily business registers. The

dataset covers, on average, 75 percent of the official Italian gross output reported in Eurostat.

One major advantage of Orbis over other datasets is that it includes many small private firms.

In fact, Gopinath et al. (2017) show that Orbis closely mimics the official size distribution

reported in Eurostat Structural and Business Statistics (SBS). The cleaning process follows
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Kalemli-Özcan et al. (2024) and is explained in Appendix B.

The final dataset includes information on approximately 4.3 million observations corre-

sponding to 1 million firms. We measure sales (PY ) by operating revenue, materials (M ) by

expenditure on materials, labor (L) by the cost of employment, and capital (K) by the book

value of tangible fixed assets. All monetary values are deflated using Eurostat two-digit indus-

try price deflators, and capital is deflated using the country-specific price of investment from

the World Development Indicators. The dataset also provides the main sector of economic

activity at the four-digit industry level and crucially includes firm-level zip codes that allow

for geolocation, which we use to link to the climate data discussed in the next subsection.

We use the financial information reported in the database to compute the marginal rev-

enue product of input X ∈ {L,M,K} following equation (13). We measure αX , the elas-

ticity of output with respect to the input X , following the cost shares approach as in Foster

et al. (2008) and take the median firm-level cost share within each four-digit industry, as in

De Loecker et al. (2020), to account for measurement error and for short-run adjustment fric-

tions.15 The production function elasticities are given by αM = med
{

PM
t Mit

rtKit+WtLit+PM
t Mit

}
,

αL = med
{

WtLit

rtKit+WtLit+PM
t Mit

}
, αK = 1− αL − αM , where rtKit is the rental cost of tangi-

ble capital, WtLit is the wage bill, and PM
t Mit is the expenditure on materials.16 We recover

median production function elasticities {αX}X∈{M,L,K} equal to {0.53, 0.36, 0.11}, well within

the range found by the literature.17 For instance, Gandhi et al. (2020) reports values for mate-

rials, labor, and capital ranging from 0.50-0.67, 0.22-0.52, and 0.04-0.16, respectively.

3.2 Climate Data

The meteorological data are obtained from Copernicus, the European Union’s Earth Observa-

tion Programme, using E-OBS, a daily gridded land-only observational dataset over Europe.18

For more details on the dataset, refer to Cornes et al. (2018) and Appendix B.1. This dataset is
15Notice that we use the production function elasticities both to calculate our aggregate counterfactual based
on equation (18), and to compute the revenue-based marginal products in equation (13). Regarding the latter,
given that our regression framework is saturated with firm and sector-time fixed effects, as explained below,
these elasticities are absorbed by the error term in the log-linear equations, and therefore are irrelevant to
identify the temperature-semielasticity of each revenue-based marginal product.

16We measure the user cost of capital as rt = it−Etπt+1+ δ+RP . We use the real interest, it−Etπt+1, from
Gopinath et al. (2017), a depreciation rate, δ, of 10% as usually done in the literature, and a risk premium, RP ,
of 5% as calculated in Caballero et al. (2017).

17The inclusion of aggregate median elasticities in the text serves the sole purpose of facilitating a meaningful
comparison with the existing literature. However, in the calculations, only the sector-level elasticities are used.

18See https://doi.org/10.24381/cds.151d3ec6
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based on observations from meteorological stations across Europe provided by the National

Meteorological and Hydrological Services (NMHSs) and other data-holding institutes. The

station data are provided by 84 participating institutions, and the ECA&D dataset contains

over 23,000 meteorological stations. More information is available in Appendix B.2.1.

Figure 1: Average Yearly Temperature
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Note. Figure 1a shows the evolution of the average yearly temperature in Italy between 1950-2020. The grey
areas show the time frame (1999-2013) for which Orbis data is available. Figure 1b shows the average yearly
temperature across all the grid-cells in Italy in 1999. It also plots regional boundaries at the NUTS 3 level.

Weobtain daily temperatures and rainfall with a horizontal grid resolution of 0.1◦ (0.1deg2),

corresponding to grid cells of around 11km×11km (121km2), spanning the period 1950-2020.

Daily temperatures are recorded in degrees Celsius (◦C), and rainfall is measured in millime-

ters (mm). Consistent with Somanathan et al. (2021), we characterize daily temperature using

the maximum temperature, which typically occurs during working hours and serves as a

proxy for heat exposure during peak daily economic activities. Rainfall is measured as the

total daily precipitation, including rain, snow, and hail, expressed as the equivalent height of

liquid water in a square meter. Our primary variable of interest is temperature, while rainfall

serves as a control variable in our empirical analysis, as detailed in Section 4.

Figure 1a shows the evolution of the average yearly maximum temperature over the en-

tire sample period. The average yearly maximum temperature is volatile and rising over time.

Table 1 presents summary statistics of our climate data for the period 1999-2013, which corre-

sponds to the subperiod for which we have firm-level data and thus constitutes the data used

in our analysis. Table B.2 in Appendix B.2.3 provides summary statistics for the entire sample

period. Additionally, Figure 1b displays the average yearly temperature in 1999 for each grid

cell alongside the boundaries of NUTS 3 regions of Italy. The average yearly temperature
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ranges from 0.14◦C to 23.82◦C, showcasing considerable temperature variation across both

grid cells and regions within Italy. The significant temperature variation observed in Italy

makes it an exceptional laboratory for studying the economic impact of climate change. The

co-existence of broad temperature gradients with diverse geographical economic activity lo-

cations (ranging from production sites in cold environments like the Alps to warm areas such

as the coast) offers a distinctive opportunity to examine how firm respond to various climatic

conditions.

Table 1: Summary Statistics of Climate Data (1999-2013)

Overall Within Grid-Cell

Temperatures (◦C) Rainfalls (mm) Temperatures (◦C) Rainfalls (mm)
Mean 17.74 2.28 17.74 2.28
Median 17.65 0.00 17.51 1.01
Min -24.94 0.00 0.35 0.00
Max 43.71 258.40 33.62 26.99

Note. Table 1 shows summary statistics of temperature in degrees Celsius (◦C) and rainfalls in millimeters
(mm) for the period 1999-2013. The first two columns report statistics for the overall sample. The last two
columns report statistics on the variation within the average grid-cell, that is, they show the average temperature
distribution among the different grid-cells.

Our main empirical specification follows Somanathan et al. (2021) and aggregate daily

temperatures, measured in degrees Celsius, up to the annual level using counts of the num-

ber of days in the year falling within different temperature bins. We use temperature bins

{(−∞, 0◦C], (0◦C, 30◦C], (30◦C, 35◦C], (35◦C, 40◦C], (40◦C,+∞)}. To summarize the tem-

perature distribution over the year, we construct a vector T = {T 1, T 2, T 3, T 4, T 5}, which

counts the number of days in each of these bins. This is calculated for every grid-cell and each

year. Taken together, these bins are nonoverlapping and span the observed range of temper-

atures in the data, so that any given day is assigned to exactly one bin. For robustness, as

explained in Section 5, we adopt an alternative specification of daily maximum temperatures,

based on a degree-day measure.

Figure 2 shows the distribution of days within each temperature bin of the vector T av-

eraged across grid-cells and years. Most of the days clearly belong to the [0◦C, 30◦C) range,

which we will use as the reference bin in the regression framework described in Section 4.

Importantly, all temperature bins have a non-zero average number of days. Table B.3 in Ap-

pendix B.3 reports summary statics for the distribution of days within each temperature bin

across grid-cells.
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Figure 2: Average Distribution of Days Within Temperature Bins
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Note. Figure 2 shows the number of days per year within each temperature bin of the vector T . We construct
this figure averaging across all grid-cells and years.

3.3 Main Combined Data

To construct our final dataset, we merge the Orbis firm-level data with the Copernicus tem-

perature data. This requires assigning each firm in the Orbis dataset to a specific grid-cell

within the Copernicus dataset. While the Copernicus data provides latitude and longitude

information for its grid-cells, geolocating the firms presents a set of challenges.

To determine the geographical coordinates corresponding to each firm, we rely on the

headquarters postcode information available in the business registry. The postcode serves as

a unique identifier for a specific location, allowing us to narrow down the firm’s position.

We convert these postcodes into actual geographical coordinates using the Python package

”pgeocode.”19 Once we have the geographical coordinates for the firms and the latitude and

longitude information for the Copernicus grid-cells, we proceed with the matching process.

Our objective is to assign each firm to the grid-cell that is closest to its geographical location.

To do this, we calculate the minimum distance between each firm’s postcode location and the

grid-cell locations and select the grid-cell with the shortest distance.

One limitation of our data is that we only have information about the address of the firm’s

headquarters and lack details on their production plants. For instance, if a firm’s headquar-

ters is located in a different grid cell than its production plant, we might incorrectly assign the

temperature data. Such scenarios are more likely for large multi-plant firms. In our sample

of Orbis-Italian firms, only 1 percent are publicly listed, while 3-4 percent are foreign-owned,

19The pgeocode package (https://pypi.org/project/pgeocode/) provides geographical infor-
mation associated with postcodes from an open-source project known as GeoNames (https://www.
geonames.org), which offers comprehensive data on postal codes and their corresponding locations.
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and 2 percent have some form of consolidated financial statements. Although these statistics

indicate that such potentially problematic firms constitute a small minority in our dataset,

through a series of robustness, we consistently show that they do not determine our results.

Additionally, if a firm’s production location is inaccurately assigned to a grid cell, the firm’s re-

sponse to the erroneously assigned temperature should be weaker or zero, biasing our results

downward. This suggests a more benign view of this potential source of mismeasurement, as

it would go against the effect we are after.

4 Empirical Strategy

This section outlines the empirical strategy and explains our approach for identifying the

firm-level effects that temperature may have on demand-adjusted productivity and on input-

specific wedges.

So far we left the various temperature-dependent factors in Section 2 unspecified func-

tions. Here, we make explicit the functional forms that we adopt in the empirical analysis

for the demand-adjusted productivity and for the input-specific wedges. In particular, we

assume that firm-level outcomes and input-specific wedges have a temperature-dependent

component, F (Tg(i)t), and a temperature-independent component, Wit, such that:

ez̃it(Tg(i)t) ≡ eF
z̃(Tg(i)t)+Gz̃(Wit), (23)

eτ
X
it (Tg(i)t) ≡ eF

τX (Tg(i)t)+GτX (Wit), with ∀X ∈ X ; (24)

where F (·) is a non-linear function of temperature in the grid-cell to which firm i belongs

and G(Wit) is a linear function of alternative explanatory variables.

Thus, to measure the effect of changes in temperature on firm-level outcomes, we estimate

the following equation:

Outcomeit =
∑
ℓ

βℓT
ℓ
g(i)t + δRaing(i)t + λ′Xr(i)t + γs(i)t + αi + εit, (25)

where i denotes a firm, t stands for year and g(i) denotes the grid-cell to which firm i be-

longs. Outcomeit denotes log firm-level outcomes or log revenue-based marginal product of

a given input X , logMRPXit. We approximate the non-linear temperature function F (·)
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by the variable T ℓ
g(i)t, denoting the number of days in temperature bin ℓ, that each grid cell

g(i) experienced during a given year (see Section 3.2 for a description). We set the interval

[0◦C, 30◦C) as the reference temperature bin since it covers the average range of temperature

faced by most grid-cells in our data.

G(Wit) includes potential confounding factors at the firm, grid-cell, region, and sector

level. In particular, outcome variables may respond to other climate factors related to tem-

perature, to control for this possibility we useRaing(i)t to indicate the average yearly rainfalls

in each grid-cell. We also include firm fixed effects αi to control for firm time-invariant unob-

served characteristics (αi). To account for regional shockswe include regional trends captured

by Xr(i)t, consisting of time trends at the regional level (r(i) denotes the NUTS 2 region to

which firm i belongs) and regional-level Great Recession (GR: 2008-2009) and Sovereign Debt

Crisis (SDC: 2012-2013) dummies to account for the fact that the mid-2000s crises in Italy had

an uneven effect across regions. Similarly, to guard against differences in output being driven

by different sectoral productivity trends we include sector-time fixed effects γs(i)t that control

for sectoral and aggregate fluctuations (s(i) denotes the NACE 4 sector to which firm i be-

longs). Standard errors are clustered at the grid-cell level to account for any serial correlation

that might bias our standard errors downwards.20

The regression specification given by equation (25) is the empirical counterpart of equa-

tions (10) and (14). Equations (10) and (14) indicate the effect of a change in temperature on

firm-level sales and on the firm-level revenue-based marginal product of input X . Equation

(25) precisely measures this in the data. The coefficient of interest is βℓ, which captures the

effect of an extra day into the temperature bin ℓ relative to the reference temperature bin.

Thus, βℓ < 0 implies that the given firm-level outcome declines βℓ percent for each extra day

into the temperature bin ℓ relative to the reference temperature bin.

Our coefficient of interest, βℓ, is identified by comparing two firms with similar time-

invariant characteristics, facing the same level of grid-cell rainfalls, the same regional devel-

opment patterns, the same regional exposition to the GR and the SDC as well as, similar sector

developments but exposed to different grid-cell level changes in temperature over time. The

main identification assumption is that, after controlling for a series of regional and sectoral

fixed effects, temperature fluctuations are exogenous to any other time-varying factors that

20To address concerns on the spatial correlation of shocks, weather shocks might be regionally correlated, we
verified results are robust to including regional trends and clustering standard errors at the NUTS 3 level.
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affect demand, productivity, or inputs.

There are at least three potential challenges to validity. However, as we discuss next, they

do not all align well with our findings and they would tend to bias our results downwards.

First, there exists the possibility of an alternative contemporaneous shock that impacts both

temperatures and productivity simultaneously. For instance, in regions experiencing a surge

in economic activity, factors such as congestion or pollution may escalate, resulting in a si-

multaneous decline in productivity and a rise in temperatures. This scenario does not entirely

align with our findings, as we observe a decrease in output linked to elevated temperatures.

A second identification challenge arises from shocks that influence both productivity and its

responsiveness to temperature. For instance, higher firm unionization might lead to tougher

bargaining discussions, including grievances about working under extreme temperatures. In

this scenario, there is a potential for overestimating the impact of temperatures, as it may also

encompass the effects of unionization itself. However, by controlling for sector-year fixed

effects and considering that these phenomena are widespread across all firms in a sector, con-

cerns should be mitigated. Third, if firms could precisely anticipate temperature increases

across grid-cells and consequently decide their location accordingly, it would have implica-

tions for regional selection. The inclusion of regional trends addresses this concern as we

are estimating deviations from the trend, capturing the effects of unanticipated shocks, and

suggesting our estimates should be best interpreted as short- or medium-run elasticities.

5 Results

In this section, we present the firm-level effects of temperature on several objects of interest

and we discuss potential channels and heterogenous effects.

5.1 Sales, Inputs, and Marginal Revenue Products

We estimate the effect of temperature on firm-level outcomes using the regression specifica-

tion from equation (25). While our primary focus is on observing the effect of temperature

on sales, we also examine its impact on firms’ inputs, such as materials, labor, and capital, to

inform the response of marginal revenue input products that will be analyzed later. Table 2

reports the results.
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Table 2: Average Effect of Temperature on Sales and Inputs

Dependent Variable Sales Materials Labor Capital
(1) (2) (3) (4)

Temperature Bins
(−∞, 0◦C] -0.094*** -0.068** -0.070*** -0.036*

(0.019) (0.029) (0.019) (0.021)
(30◦C, 35◦C] -0.017* -0.022 0.002 0.003

(0.009) (0.014) (0.007) (0.010)
(35◦C, 40◦C] -0.046*** -0.060** -0.003 0.004

(0.017) (0.025) (0.016) (0.019)
(40◦C,+∞] -0.807*** -0.557** -0.369** 0.033

(0.194) (0.242) (0.187) (0.217)
Fixed Effects

Firm ✓ ✓ ✓ ✓
Sector × Year ✓ ✓ ✓ ✓
GR and SDC × Region ✓ ✓ ✓ ✓

Controls
Rainfalls ✓ ✓ ✓ ✓
Region Trends ✓ ✓ ✓ ✓

Observations 4,687,524 4,687,524 3,767,578 4,328,710

Note. All dependent variables are in logs. Temperature bins are constructed as explained in Section 3.2. Rows
1-4 present the effect on the log of the dependent variable of adding an extra day in the given temperature range
respectively. Standard errors are clustered at the grid-cell level and reported in parentheses. *, **, and *** denote
10, 5, and 1% statistical significance respectively.

The estimates indicate that temperature has an inverted U-shaped effect on sales, ma-

terials, and labor, implying that extreme temperatures, either high or low, tend to depress

those firm-level outcomes. For example, our estimates suggest that one extra day above 40

degrees Celsius reduces sales by 0.807 percent, while one extra day below 5 degrees Celsius

reduces sales by 0.094 percent.21 All these losses are relative to the reference temperature bin

[0◦C, 30◦C). The response of capital is less strong, especially for higher temperatures. This is

particularly relevant to our analysis because it suggests that while materials and, to a lesser

extent, labor respond significantly and meaningfully to additional days of extreme temper-

ature, capital does so less, which is consistent with the widely held view that this input is

subject to greater adjustment frictions than materials and labor.22

21Assuming that production is evenly distributed over all effective working days of the year (which in Italy are
approximately 220, i.e., 250 working days net of 30 days of holidays), these patterns imply that one extra day
above 40 degrees Celsius produces almost a two-day loss in sales (100 × 2/220 ≈0.807), while one extra day
below 5 degrees Celsius produces a one-third-day loss in sales (100× 0.3/220 ≈0.094).

22We highlight that, for our interpretation to be correct, it is sufficient that factors of production are relatively
flexible. This seems unlikely for capital, which consists largely of structures, and hence its rigidity in the data.
However, it seems plausible that, even in a relatively rigid labor market like that of Italy, labor input can be
flexibly adjusted by firms. On the one hand, firms have extensive margins of labor adjustment (changes in
numbers of hours worked) which are reflected in the wage bill, which is the variable we use to measure labor
input. On the other hand, it is worth noting that a large literature has shown that, since the mid-90s, labor
reform in Italy has made it easier to hire workers with fixed-term contracts, which have been used to increase
employment flexibility in reaction to shocks (Caggese and Cuñat, 2008).
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Next, we estimate the effect of temperature on the firm-level revenue-based marginal

product of each input using the regression specification from equation (25). Table 3 reports

the results. The estimates indicate that temperature has an inverted U-shaped effect, although

statistically significant and substantial only forMRPK , implying that extreme temperatures,

either high or low, tend to depress the revenue-based marginal product of inputs. Looking at

the revenue-based marginal product of capital, our estimates suggest that one extra day above

40 degrees Celsius reduces it by 0.578 percent, while one extra day below 5 degrees Celsius

reduces it by 0.030 percent.

Table 3: Average Effect of Temperature on Revenue-Based Marginal Product of In-
puts

Dependent Variable MRPM MRPL MRPK
(1) (2) (3)

Temperature Bins
(−∞, 0◦C] -0.018 0.008 -0.030

(0.019) (0.013) (0.022)
(30◦C, 35◦C] 0.006 -0.012** -0.014

(0.008) (0.006) (0.010)
(35◦C, 40◦C] 0.011 -0.021 -0.045**

(0.014) (0.013) (0.021)
(40◦C,+∞) -0.209 -0.019 -0.578**

(0.156) (0.145) (0.231)
Fixed Effects

Firm ✓ ✓ ✓
Sector × Year ✓ ✓ ✓
GR and SDC × Region ✓ ✓ ✓

Controls
Rainfalls ✓ ✓ ✓
Region Trends ✓ ✓ ✓

Observations 4,687,524 3,767,578 4,328,710

Note. All dependent variables are in logs. Temperature bins are constructed as explained in Section 3.2. Rows
1-4 present the effect on the log of the dependent variable of adding an extra day in the given temperature range
respectively. Standard errors are clustered at the grid-cell level and reported in parentheses. *, **, and *** denote
10, 5, and 1% statistical significance respectively.

While the main pattern is qualitatively evident for all revenue-based marginal products,

only the capital product exhibits a statistically significant and substantial pattern. This out-

come is not unexpected, as the behavior of each revenue-based marginal product in Table 3

aligns with the behavior of each input in Table 2. Specifically, we observe that MRPM and

MRPL do not respond to changes in temperature because both inputs respond to it, simi-

lar to sales. One plausible interpretation of this finding is that these inputs are more flexible

and can be adjusted until the revenue-based marginal product equalizes the marginal cost of

the input. However, this process does not occur for capital, which is subject to larger adjust-

ment costs, implying that its revenue-based marginal product does not equal its marginal cost,
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thus becoming sensitive to temperature changes, as we see in the data. Overall, these results

suggest that following a temperature change in a given grid-cell, labor and materials are op-

timally adjusted by the affected firms, while capital is not, potentially lowering the allocative

efficiency of the economy.23 In Section 6, we use our theoretical framework to quantify the

aggregate allocative effects of temperature shocks.

Tables C.4 and C.5 in Appendix C.1 show that the results hold for different robustness

tests. First, we verify that our result are robust to controlling for the age of the firm that has

been empirically established as one of the most significant predictors of firm heterogeneity

(Fort et al., 2013). Second, we explore the robustness of the results to alternative temperature

specifications. In particular, we describe a model that is piece-wise linear in degree days, as in

Somanathan et al. (2021). Third, we use a specification that controls for rainfalls nonlinearly,

instead of linearly. Finally, we study how sensitive results are to temperature bins being

defined at the grid-cell level by alternatively defining temperature bins at the region (NUTS

3) level. We find that the results of these additional robustness exercises are very similar to

the benchmark case reported in this section.

Moreover, Tables C.6 and C.7 in Appendix C.2 present additional specifications to assess

the sensitivity of our estimates to the presence of firms that could potentially be assigned

to incorrect temperatures, as discussed in Section 3.3. These specifications exclude certain

types of firms, including foreign firms, listed firms, firms reporting consolidated accounts, and

large firms. The details of the exclusion criteria are provided in Appendix C.2. Importantly,

our analysis reveals that none of our estimates are affected by the inclusion or exclusion of

these types of firms. This finding suggests that the concerns raised in Section 3.3 regarding

potentially misclassified firms do not significantly impact our overall results.

5.2 Demand-Adjusted Productivity

Having estimated both the effect of temperature on sales and on the revenue-based marginal

product of inputs, we can rely on the structural framework and use equation (11) to recover

the effect of temperature on firm-level demand-adjusted productivity.

23It is worth noting that the model assumes no unemployed inputs. Therefore, when firms are hit by a temper-
ature shock and reduce their labor and material inputs, these inputs are assumed to be reallocated within the
year to where they are most productive. In reality, some of these inputs might remain unemployed for a while.
However, while this would be relevant for aggregate output, it is less so for aggregate productivity, which is
what we focus on.
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To compute this, we require estimates of the elasticity of substitution σ across varieties

and of the production function elasticities αX . We use the production function elasticities

described in Section 2 and assume an elasticity of substitution between varieties equal to σ

= 4. This implies an average cost-weighted markup of 33%, in line with the estimates from

De Loecker et al. (2020), and is themean value fromBroda andWeinstein (2006).24 This number

is also in line withmany firm-level estimates andmacroeconomic studies. Bernard et al. (2003)

find a value of σ = 3.79 in a model of firm-level export. Among macroeconomic studies Chris-

tiano et al. (2015) estimate a New-Keynesian model with financial frictions and find an elastic-

ity of σ = 3.78. Additionally, we obtain the temperature-semielasticities of sales and revenue-

based marginal products from Tables 2 and 3, and we set the temperature-semielasticity of

MRPM and MRPL to zero as they are statistically insignificant and small in size.25

Table 4 summarizes the effect of temperature on demand-adjusted productivity, under

the parameters specified above. Notice that the temperature-semielasticities of the demand-

adjusted productivity vary across sectors as production function elasticities are sector-specific.

Thus, we report both an unweighted average and a sales-weighted average across sectors.26

Table 4: Average Effect of Temperature on Demand-Adjusted Productivity

Temperature Bins

(−∞, 0◦C] (30◦C, 35◦C] (35◦C, 40◦C] (40◦C,∞)

Variable
βz
ℓ , unweighted -0.031 -0.005 -0.021 -0.337

βz
ℓ , weighted -0.031 -0.005 -0.019 -0.321

Note. Table 4 reports the temperature-semielasticity for demand-adjusted wedges for each temperate bin. Tem-
perature bins are constructed as explained in Section 3.2. Row 1 reports the unweighted average across sectors.
Row 2 reports the sales-weighted average across sectors.

We observe that the temperature-semielasticity of demand-adjusted productivity follows

the inverted U-shaped pattern identified previously. This finding is not entirely surprising, as

equation (11) indicates that this semielasticity is merely a linear combination of the preceding

ones, up to a rescaling. On the quantitative side, our finding suggests that one extra day

above 40 degrees Celsius reduces the demand-adjusted productivity by 0.337 percent, while

one extra day below 0 degrees Celsius reduces it by 0.031 percent. Hence, we conclude that

extreme temperatures, either high or low, have a substantial effect on the demand-adjusted
24Three-digit goods (SITC-3), over the period 1990-2001.
25We do the same for the calculation implemented in Section 6.
26Table C.8 in the appendix C.3 shows how the effect of temperature on demand-adjusted productivity varies
across sectors. High capital intensive sectors experience larger losses.
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productivity in the data.

5.3 Different Channels and Adaptation Effects

This section investigates potential differences between tradable and non-tradable sectors,

shedding light on the roles of demand versus efficiency. Additionally, it explores the pos-

sibility of firm adaptation to climate change.

5.3.1 Demand versus Productivity

Although the model does not ask for the separation of demand from productivity to perform

the aggregate counterfactual from equation (21), we are nonetheless interested in understand-

ing which of these two margins is more influenced by temperature. Therefore, in here, we

extend our empirical strategy to disentangle the effects of temperature on firms’ demand and

productivity. While firms producing in a given area are likely to face similar productivity

effects of extreme temperatures, we notice that firms selling tradable goods are likely to be

less subject to local temperature-related demand shocks, because most of their demand comes

from elsewhere, potentially abroad.27 Therefore, if the temperature changes in the grid-cell

where their production is located, their productivity will be affected but their demand will

either remain unaffected or be less affected because these firms do not rely heavily on sales

in that grid-cell.

Thus, we set to identify the effect of temperature on demand and productivity separately

using the following regression specification:

Outcomeit =
∑
ℓ

β1,ℓT
ℓ
g(i)t + δ1Raing(i)t + λ′

1Xr(i)t

+

(∑
ℓ

β2,ℓT
ℓ
g(i)t + δ2Raing(i)t + λ′

2Xr(i)t

)
× INT

s(i) + γs(i)t + αi + εit,

(26)

where INT
s(i) is an indicator function that takes the value of one if firm i belongs to sectors s

selling non-tradable goods, as described below, and the other variables are described in the

27For example, the lower demand-sensitivity of sales of firms selling tradable goods has been documented em-
pirically by Almunia et al. (2021) for the Great Recession episode. Moreover, looking at this dimension in our
data seems a natural choice given that a sizeable fraction of Italian firms select into the production of tradable
goods and exporting, as documented in Caggese and Cuñat (2013).
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main specification in Section 4.

In this specification, the estimated coefficients β1,ℓ capture the temperature-semielasticity

of sales, which is common to firms both in the tradable and non-tradable sectors and that

therefore captures common productivity effects. Instead, the coefficients β2,ℓ capture the dif-

ferential effect of temperature for firms in the non-tradable sector and we interpret it as the

semielasticity of the demand effect.

We employ three distinctmeasures to classify firms into tradable and non-tradable sectors.

We start by using the World Input-Output Database (WIOD), identifying the tradable sectors

as those with a proportion of exports in the total value-added for each NACE 2-digit sector

in Italy exceeding the median. Subsequently, recognizing that international trade is just one

facet of tradability in our context, our focus shifts to pinpointing firms whose goods and

services are predominantly demanded locally, indicating low tradability within the country.

Toward this end, we employ two alternative metrics. First, we use the classification provided

by Gervais and Jensen (2019) which utilizes a unique dataset on the distribution of output and

demand across regions of the United States to construct measures of trade costs for nearly a

thousand service and manufacturing industries.28 Secondly, we adapt the tradability measure

proposed by Mian and Sufi (2014), which examines regional employment concentration in

the US and argues that sectors with high economic activity concentration are more tradable.

We adopt a similar methodology, measuring the geographical (NUTS 2) concentration of each

sector (NACE 2) in Italy and defining a sector as tradable if above the median geographical

concentration.

Table 5 reports the results. Column 1 in Table 5 reports the estimates of the average effect

of temperature on sales as reported in Table 2. Columns 2 to 4 report (i) the coefficient captur-

ing the common effect of temperature on sales for both tradable and non-tradable sectors and

(ii) the coefficients capturing the additional effect of temperature on the sales of non-tradable

sectors only, which captures the effect of demand. Column 2 defines tradable sectors as those

with a proportion of exports from WIOD in the total value-added for each NACE 2-digit sec-

tor above the median. Column 3 uses the tradability measure from Gervais and Jensen (2019).

Column 4 uses the tradability measure in Mian and Sufi (2014) adapted to the Italian context

using wage bill data.

We observe that the interaction coefficient is largely insignificant and modest in size
28We thank Antoine Gervais for sharing his data with us.
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Table 5: Effect of Temperature on Sales of Tradable versus Non-Tradable Sectors

Dependent Variable Sales Sales Sales Sales
(1) (2) (3) (4)

Temperature Bins
(−∞, 0◦C] -0.094*** -0.090*** -0.096*** -0.113***

(0.019) (0.024) (0.024) (0.026)
(30◦C, 35◦C] -0.017* -0.006 -0.006 -0.025**

(0.009) (0.009) (0.011) (0.010)
(35◦C, 40◦C] -0.046*** -0.017 -0.013 -0.024

(0.017) (0.019) (0.020) (0.021)
(40◦C,+∞) -0.807*** -0.758*** -0.835*** -1.046***

(0.194) (0.260) (0.297) (0.310)

Temperature Bins×INT
s(i)

(−∞, 5◦C] -0.006 0.005 0.032
(0.030) (0.026) (0.029)

(30◦C, 35◦C] -0.019 -0.016 0.014
(0.015) (0.012) (0.012)

(35◦C, 40◦C] -0.049* -0.046* -0.036
(0.027) (0.023) (0.023)

(40◦C,+∞) -0.087 0.022 0.385
(0.352) (0.357) (0.383)

Fixed Effects
Firm ✓ ✓ ✓ ✓
Sector × Year ✓ ✓ ✓ ✓
GR and SDC × Region ✓ ✓ ✓ ✓

Controls
Rainfalls ✓ ✓ ✓ ✓
Region Trends ✓ ✓ ✓ ✓

Observations 4,687,524 4,684,661 4,593,020 4,687,524

Note. All dependent variables are in logs. Temperature bins are constructed as explained in Section 3.2. The
variable INT

s(i) is an indicator function that takes the value of one if firm i belongs to a sector s selling non-tradable
goods, as described in Section 3. Particularly, column 2 uses the WIOD to define tradable sectors as those with
a proportion of exports in the total value-added for each NACE 2-digit sector above the median. Column 3 uses
the tradability measure from Gervais and Jensen (2019). Column 4 uses the tradability measure in Mian and
Sufi (2014) adapted to the Italian context using wage bill data. Rows 1-4 present the effect on the log of sales
of adding an extra day in the given temperature range respectively. Rows 5-8 present the extra effect for non-
tradable goods on the log of sales of adding an extra day in the given temperature range respectively. Standard
errors are clustered at the grid-cell level and reported in parentheses. *, **, and *** denote 10, 5, and 1% statistical
significance respectively.

across intervals, except for the (35◦C, 40◦C] interval, where it is significant and negative in

two out of three specifications. Conversely, the common coefficient is highly significant for

extreme temperatures, substantial in size, and close to the average effect. Thus, our findings

suggest that non-tradable firms are only marginally more affected by temperature, indicating

a minor, albeit nonzero, role of temperature in demand and a more significant role in produc-

tivity. Consequently, our results imply that the majority of the effect of temperature on the

demand-adjusted productivity wedge arises from its impact on productivity, consistent with

existing studies from other contexts that highlight temperature’s predominant effect on firm

productivity (Seppanen et al., 2006 and Somanathan et al., 2021).
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5.3.2 Adaptation

In the next section, we use the estimates presented in Section 5.1 to predict the aggregate

productivity effects of temperature increases resulting from climate change. For this purpose,

it is important to consider adaptation. If firms adopt climate-mitigating measures in response

to climate change, we may overestimate its effect.29 Therefore, we introduce an additional

analysis exploring the potential differential impact of operating in grid-cells with varying ex-

posure to extreme temperatures. The rationale is that firms located in different Italian regions

face markedly different climates, not only in terms of average temperature but also in terms of

temperature variability throughout the year. Consequently, firms confronting more frequent

extreme temperatures may exhibit greater adaptation to them, resulting in distinct tempera-

ture semielasticities. In this context, we believe it is crucial to model regional adaptation as

a function of temperature dispersion rather than average temperature, for at least two rea-

sons. First, in a geographically diverse country like Italy, higher average temperature over the

year might be a poor proxy of adaptation to extreme heat. Many coastal areas have relatively

high yearly average temperatures but experience overall milder climates due to their proxim-

ity to the sea, thereby encountering fewer extreme temperatures compared to inland regions

that are on average cooler. Second, climate scientists have provided strong evidence that cli-

mate change will lead to increases in both average temperatures and temperature variability

(Seneviratne et al., 2021).

In order to test this possibility we estimate the following regression:

Outcomeit =
∑
ℓ

β1,ℓT
ℓ
g(i)t + δ1Raing(i)t + λ′

1Xr(i)t

+

(∑
ℓ

β2,ℓT
ℓ
g(i)t + δ2Raing(i)t + λ′

2Xr(i)t

)
× IHg(i) + γs(i)t + αi + εit,

(27)

where IHg(i) is an indicator function that takes the value of one if firm i belongs to adapted

grid-cells g, defined as those that experience more extreme temperatures during the year,

29Note that our model and empirical strategy already incorporate two aspects of adaptation discussed in the
literature. First, the model permits input reallocation, as revealed by empirical analysis, showing that mate-
rials and labor reallocate in response to temperature changes, while capital does not. Second, given that our
firm-level measures are annual while our temperature measures are daily, any measures firms take to boost
production to cope with temperature increases, such as extending working hours during cooler periods, are
already reflected in our semielasticities
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and the other variables are described in equation (25).30 In particular, columns 2 and 5 of

Table 6 use an indicator variable that equals one if the number of extreme temperature days

in that grid-cell exceeds the national mean, while columns 3 and 6 present results using the

national median as the threshold. In this specification, the estimated coefficients β1,ℓ capture

the temperature-semielasticity of sales, which is common to firms in regions exposed to high

and low extreme temperatures. Instead, the coefficients β2,ℓ capture the differential effect of

temperature for firms in more adapted grid-cells. Results in Table 6, columns 2 and 3, show

that this differential effect is positive for the number of days above 40 degrees. In other words,

firms inmore adapted regions experience a less negative effect of extremely high temperatures

on output compared to firms in less adapted regions. They also experience a lower fall in their

marginal return to capital, although this coefficient is imprecisely estimated. Conversely, we

find smaller and insignificant effects of adaptation regarding the exposure to high but less

extreme temperatures. Overall, we take these results are suggestive evidence of relatively

small adaptation effects, broadly in line with those found in the literature (Nath, 2022).

6 Aggregate Effects

This section documents the aggregate productivity losses resulting from various warming

scenarios and highlights their heterogeneous regional impact.

6.1 Aggregate Productivity Loss

While our reduced-form estimates suggest that climate change reduces firm-level productivity
and loweres the revenue-based marginal product of capital, they do not tell us whether this
had economically meaningful effects on aggregate productivity. To measure this, we estimate
the effect of climate change on the Solow residual, a proxy for aggregate productivity, using

30More specifically, we consider as extreme the days with maximum temperatures above 30 degrees or below
0 degrees. Then for each location and year we compute the ratio between number of days with extreme
temperatures and the number of days with moderate temperatures (daily maximum between 0 and 30 degrees).
Adapted locations are those that over the whole of our sample period have an average yearly ratio above the
mean (or median) ratio at the national level.
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Table 6: Effect of Temperature on Sales and MRPK Conditional on Adaptation

Dependent Variable Sales Sales Sales MRPK MRPK MRPK
(1) (2) (3) (4) (5) (6)

Temperature Bins
(−∞, 0◦C] -0.094*** -0.080*** -0.079*** -0.030 -0.004 -0.001

(0.019) (0.021) (0.021) (0.022) (0.027) (0.028)
(30◦C, 35◦C] -0.017* -0.029*** -0.023** -0.014 -0.019 -0.018

(0.009) (0.010) (0.009) (0.010) (0.012) (0.013)
(35◦C, 40◦C] -0.046*** -0.035 -0.024 -0.045** -0.049 -0.061

(0.017) (0.033) (0.037) (0.021) (0.036) (0.042)
(40◦C,+∞) -0.807*** -1.864*** -2.039*** -0.578** -1.225** -1.393***

(0.194) (0.505) (0.524) (0.231) (0.536) (0.551)

Temperature Bins×IHg(i)
(−∞, 0◦C] -0.019 -0.019 -0.039 -0.041

(0.028) (0.027) (0.031) (0.031)
(30◦C, 35◦C] 0.018 0.009 0.017 0.019

(0.011) (0.011) (0.014) (0.013)
(35◦C, 40◦C] -0.003 -0.012 0.025 0.042

(0.032) (0.036) (0.038) (0.043)
(40◦C,+∞) 1.146** 1.344** 0.653 0.826

(0.540) (0.559) (0.581) (0.595)
Fixed Effects

Firm ✓ ✓ ✓ ✓ ✓ ✓
Sector × Year ✓ ✓ ✓ ✓ ✓ ✓
GR and SDC × Region ✓ ✓ ✓ ✓ ✓ ✓

Controls
Rainfalls ✓ ✓ ✓ ✓ ✓ ✓
Region Trends ✓ ✓ ✓ ✓ ✓ ✓

Observations 4,687,524 4,687,503 4,687,503 4,328,710 4,328,689 4,328,689

Note. All dependent variables are in logs. Temperature bins are constructed as explained in Section 3.2. In
columns 2 and 5 the variable IHg(i) is an indicator function that takes the value of one if firm i belongs to a
grid-cell g with the number of extreme days above the national mean. In columns 3 and 6 the variable IHg(i) is
an indicator function that takes the value of one if firm i belongs to a grid-cell g with the number of extreme
days above the national median. Rows 1-4 present the effect on the log of sales of adding an extra day in the
given temperature range respectively. Rows 5-12 present the extra effect coming from being exposed to extreme
temperatures. Standard errors are clustered at the grid-cell level and reported in parentheses. *, **, and *** denote
10, 5, and 1% statistical significance respectively.

equations (18), (20), and (22). We re-state compactly these equations as

∆ logSolowt ≈
Yt

GDPt

(
∆ logTFP ∗

t

(
ez̃it(Tg(i)t),∆Tg(i)t

)
︸ ︷︷ ︸

∆Technology

−
(
∆ logTFP ∗

t

(
ez̃it(Tg(i)t),∆Tg(i)t

)
−∆ logTFPt

(
ez̃it(Tg(i)t), eτ

X
it (Tg(i)t),∆Tg(i)t

))
︸ ︷︷ ︸

∆Allocative Efficicency

)
.

(28)

Equation (28) indicates that to quantify the counterfactual effect of climate change on

aggregate productivity, we require: (i) the demand-adjusted productivity ez̃it(Tg(i)t) and their

temperature-semielasticity; (ii) input-specificwedges eτXit (Tg(i)t) and their temperature-semielasticity;
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and (iii) counterfactual changes in grid-cell-level temperatures ∆Tg(i)t. For the elasticity of

substitution between the varieties σ and the production function elasticities αX we use the

same values as in Section 5.2. We next turn to explain how we use the empirical results from

Section 5 to measure each of these elements.

6.1.1 Measurement and Identification

Demand-adjusted productivity. We compute demand-adjusted productivity in the data using

equation (17). For the temperature-semielasticity of the demand-adjusted productivity, we

follow the calculations in Section 5.2 as reported in Table 4.

Input-specific wedges. We compute input-specific wedges with our firm-level data using

equation (13) as explained in Section 3. To calculate the temperature-semielasticity of the

input-specific wedges we use the findings from Section 5.1 and proceed as follows: (i) we set

to zero the temperature-semielasticity of labor and materials inputs since we did not observe

significant effects of temperature (see Table 3), and (ii) we set the temperature-semielasticity

of capital input equal to estimates from Table 3.

Counterfactual changes in grid-cell-level temperatures. The final component required to

calculate productivity losses due to climate change across various warming scenarios is the

counterfactual changes in temperatures at the grid-cell level. We derive the counterfactual

change in the grid-cell-level temperature distribution for different climate scenarios, including

mean temperature increases of 1-, 2- (baseline), and 4-degrees Celsius. We choose amean tem-

perature increase of 2-degrees Celsius as the benchmark scenario, aligning with the objectives

of the Paris Agreement, while considering other temperature increases as robustness checks.31

Additionally, we incorporate as additional robustness the RCP4.5 and RCP8.5 scenarios from

the Copernicus project climate models, representing approximate average increases of 2- and

4-degrees Celsius, respectively.32 These scenarios offer the advantage of capturing non-linear

and heterogeneous temperature increases across different regions (NUTS3), aligning closely

with realistic climate change models.

To calculate the counterfactuals for these different warming scenarios, we add the spec-

ified degree Celsius increase to the temperature of each grid-cell for each day of the year.

31https://unfccc.int/process-and-meetings/the-paris-agreement.
32https://climate.copernicus.eu/sites/default/files/2021-01/infosheet3.
pdf.
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Figure 3: Counterfactual Average Distribution of Days Within Temperature Bins
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Note. Figure 3 shows the average number of days per year within each temperature bin of the vector T . The
number of days within each bin is an average across grid-cells. The first column (grey) reports the data for the
period 1999-2013. The second column (pink) reports the warming scenario where the daily temperature increases
by 1-degree Celsius. The third column (green) reports the warming scenario where the daily temperature in-
creases by 2-degrees Celsius. The fourth column (orange) reports the warming scenario from the RCP4.5 where
temperature increases by approximately 2-degrees Celsius. The fifth column (blue) reports the warming sce-
nario where the daily temperature increases by 4-degrees Celsius. The sixth column (red) reports the warming
scenario from the RCP8.5 where temperature increases by approximately 4-degrees Celsius.

This yields a new distribution of the number of days with the counterfactual temperature for

each grid-cell under each of the different scenarios. We then partition this distribution into

different temperature bins, as described in Section 3.2, represented by the vector Tc = {T ℓ
c }ℓ.

Figure 3 illustrates the counterfactual average distributions of the number of days within each

temperature bin across grid-cells. Table D.9 in Appendix D.1 provides the complete counter-

factual distribution of days within each temperature bin for all grid-cells under each warming

scenario. Then, using this partition, we compute the counterfactual changes in the number

of days per temperature bin across grid-cells, relative to those measured in Section 3.2, which

we use to perform our counterfactuals. Table D.10 in Appendix D.1 presents the full counter-

factual distribution of changes in the number of days within each temperature bin across all

grid-cells under each warming scenario.

6.1.2 Results

In this section, we quantify the aggregate productivity losses resulting from climate change

across various climate scenarios, distinguishing between the effects of pure technology and

changes in allocative efficiency.

Baseline. Under the baseline warming scenario of a 2-degrees Celsius increase in average

temperature, we find that the aggregate productivity loss is 1.68 percent (Table 7, row 1).33

33To minimize the influence of high short-run temperature volatility (as shown in Figure 1a for the years 1999-
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This loss can be attributed to two main factors: 48 percent arises from firm-level productivity

reductions, while the remaining 52 percent is due to a decrease in allocative efficiency. Trans-

lating this into economic terms, it corresponds to a GDP loss of approximately 35.37 billion

US dollars in 2021, based on the Italian GDP of approximately 2.108 trillion US dollars in the

same year.34

Alternative scenarios and robustness. To understand better the relation between the mag-

nitude of temperature shocks and the associated economic damages, as well as to assess the

robustness of our findings, we explore five alternative scenarios outlined in Table 7. These

scenarios include a 1-degree and a 4-degree Celsius increase in average temperature, along

with the RCP4.5 and RCP8.5 scenarios of the Copernicus project climate model. Addition-

ally, we consider the baseline scenario of a 2-degree Celsius increase while controlling for

adaptation forces.

Table 7: Effect of Climate Change on Aggregate Productivity

Aggregate Productivity Loss

∆Total ∆Technology ∆Allocative Efficiency

Baseline 2◦C 1.68% 0.81% 0.87%

Robustness

1◦C 0.77% 0.31% 0.46%
2◦C, Adaptation 1.21% 0.53% 0.68%
4◦C 6.82% 3.33% 3.49%
RCP4.5 1.64% 0.85% 0.79%
RCP8.5 5.35% 2.75% 2.60%

Note. This table reports the productivity losses due to climate change. Column 1 reports the total losses, column
2 reports the losses due to due to reductions in firm-level productivity, and column 3 reports the losses due
to allocative efficiency. Row 1 reports the losses under the baseline scenario of a 2-degree Celsius increase in
average temperature. Rows 2 to 6 report the robustness exercises. Row 2 reports the losses under the scenario
of 1 degrees Celsius increase in average temperature. Row 3 reports the losses under the scenario of a 2-degrees
Celsius increase in average temperature conditional on adaptation as explained in the main text. Row 4 reports
the losses under the scenario of a 4-degrees Celsius increase in average temperature. Row 5 reports the losses
under the scenario of an approximately 2-degrees Celsius increase from the RCP4.5 climate model. Row 6 reports
the losses under the scenario of an approximately 4-degrees Celsius from the RCP8.5 climate model.

On the one hand, in the 1-degree Celsius scenario (row 2), aggregate productivity losses

amount to 0.77 percent, with 40 percent attributed to firm-level productivity reductions and 60

percent to decreased allocative efficiency. On the other hand, in the 4 degrees Celsius scenario

(row 4), the productivity losses increase to 6.82 percent, with 49 percent originating from

2013), we calculate the counterfactual aggregate productivity loss for each year within the sample and subse-
quently compute the average weighted by the number of observations.

34To calculate the GDP loss, we multiply the 2021 Italian GDP in US dollars (2.108 trillion US dollars) by the
percentage loss (1.56 percent): 0.0168×2.108 trillion US dollars = 35.37 billion US dollars.
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firm-level productivity reductions and 51 percent from decreased allocative efficiency. The

two scenarios imply a GDP loss in US dollars of 16.27 billion and 143.88 billion, respectively.

These alternative scenarios highlight the nonlinear and convex nature of the impact of

climate change on productivity losses. In part, this is due to the inverted U-shaped relation

between temperature and firm-level economic outcomes identified in Section 5, which im-

plies that a linear increase in hot days causes a convex increase in productivity losses. But

in addition to that, climate change itself implies that the number of regions exposed to ex-

treme temperatures increases exponentially as average temperature increases. This is shown

in Table D.9 in the appendix. The average number of days of the year with +40 tempera-

tures increases from 0.04 to 0.41 in the 2-degree Celsius scenario, while its increase is much

more dramatic, from 0.04 to 2.55, in the 4-degree Celsius scenario. In Section 6.2 below, we

compare our findings with the losses derived from damage functions employed in Integrated

Assessment Models.

In the RCP4.5 scenario (row 5) and RCP8.5 scenario (row 6), corresponding to an average

increase of 2 and 4 degrees Celsius, aggregate productivity losses amount to 1.64 percent

to 5.35 percent, with 48 percent and 49 percent attributed to decreased allocative efficiency,

respectively, and the rest to firm-level productivity losses. The two scenarios imply a GDP

loss in US dollars of 34.58 billion and 112.72 billion, respectively. Thus, using counterfactual

temperature changes from realistic climate models produces similar aggregate productivity

losses compared to our simpler counterfactual scenarios.

Finally, we evaluate how firm-level adaptation influences our aggregate findings. Using

the estimates provided in Table 6 in Section 5.3.2, for our baseline 2-degree Celsius tempera-

ture increase (row 3), we observe that aggregate productivity losses amount to 1.21 percent,

which is 28 percent lower than in our baseline scenario. Of this reduction, 57 percent is at-

tributed to declining allocative efficiency, with the remainder stemming from firm-level pro-

ductivity losses. This scenario implies a GDP loss in US dollars of 25.44 billion. The effects of

adaptation in the other scenarios are reported in Appendix D.2.35

35We find adaptation to mitigate relatively less the damage in the scenarios with higher increase in tempera-
ture (4-degree celsius and RCP8.5) than in the benchmark scenario. This is because we find that 81 percent
of the firms that were not already adapted, i.e., those in grid-cells with a below-median number of days with
extreme temperatures, will already adapt in our baseline 2-degree Celsius scenario. Therefore, additional pro-
jected increases in temperature imply modest increases in adaptation. We also estimated alternative adaptation
models in which the predicted change in the number of extreme days is based on the historical relationship
between average temperatures and their dispersion, obtaining very similar results. These additional estimates
are available upon request.
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6.2 Discussion

In this section, we discuss how our results compare with the existing literature, and what are

the main caveats of our framework.

6.2.1 Comparison WithThe Literature

Figure 4a and Figure 4b compare our aggregate productivity losses, with and without adapta-

tion, to the damage functions summarizing productivity losses in themost up-to-date iteration

of the DICE model, i.e., Barrage and Nordhaus (2023).36 Their damage function for the world

is given by 0.003467×∆T 2. However, to compare their damages with ours, which are based

on a European country, we adjust their calibration downward by premultiplying their world

damage function by 0.677.37 This adjustment is based on the recurrent finding in aggregate

studies using different approaches (e.g., Nordhaus and Yang, 1996; Dell et al., 2012) that lower

aggregate productivity damages are typical for Europe. The detailed computations for our

productivity losses are elaborated in Section 6.1.1.

Figure 4: Differences Across Productivity Loss Functions
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(b) Difference in Productivity Loss Across
Models

Note. Figure 4a compares the productivity losses in percent due to a temperature increase between our model
without adaptation (red line with squares), our model with adaptation (dashed green line with circles), the
European-adjusted losses from the DICE model (dash-dotted blue line with triangles), and the world losses from
the DICE model (dotted gray line with diamonds). Figure 4b shows the percentage point difference between the
productivity losses from our model with adaptation and those from our model without adaptation (red line with
squares) and the losses from the DICE model adjusted for Europe (dash-dotted blue line with triangles) and for
the world (dotted gray line with diamonds). The DICE model used as a reference is from Barrage and Nordhaus
(2023).

36We consider our losses with and without adaptation to perform a fair comparison with the DICE model’s
calibrations, which tend to incorporate adjustments for adaptation.

37This number is based on the regional damages reported in Nordhaus and Yang (1996). Specifically, we take the
ratio of their European damages to their world damages, obtained as the GDP-weighted average of all regional
damages from the numbers reported in their Table 2 on page 746.
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The left figure illustrates the productivity losses across different models, while the right

figure displays the differences between our losses with adaptation and our losses without

adaptation, as well as those for Europe and the world from the DICE model. We find that all

models exhibit a convex non-linear relationship that becomes steeperwith higher temperature

increases. When recast into the functional form of an aggregate damage function, our model

implies the following loss: 0.00444×∆T 2. Thus, productivity losses are estimated to be larger

in our framework, particularly for more extreme climate change scenarios.

It is important to interpret the evidence presented here accurately. We are not suggest-

ing that our estimated losses are a better proxy for the loss function modeled in the above-

mentioned papers. The objective of those works is to assess the relationship between tem-

perature increases and overall economic damage stemming from various channels, such as

changes in mortality, crop yields, coastal erosion, and labor supply, among others. Instead,

our findings, revealing substantial losses caused by one specific channel largely independent

of those considered in the literature, underscore the significance of focusing on detailed evi-

dence from micro-data to reassess the overall magnitude of these economic costs. Neverthe-

less, we acknowledge that a comprehensive assessment that integrates all these effects into

a unified framework and distinguishes the relative importance of each component is beyond

the scope of our study.

6.2.2 Interpretation of The Results

Our quantitative findings are subject to potential caveats. Following the literature that esti-

mates the effect of local temperature fluctuations using micro-data, we focus on the short-run

effects. However, the short-run effects may differ from the long-run effects due to tech-

nological adaptation. In the future, firms may be better equipped to handle extreme tem-

peratures due to technological advancement or increased investment in existing climate-

mitigating technologies. Although quantifying the former is challenging, concerning the

latter, we demonstrate in Sections 5.3.2 and 6.1.2 that including this margin of adaptation

reduces our estimated productivity costs of climate change by around 20-30 percent.

Furthermore, the long-run effects might be reduced due to improvements in allocative

efficiency as short-term capital reallocation frictions subside. Although estimating these dy-

namics is challenging within our short panel, our framework offers an upper bound on this
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potential bias in aggregate productivity losses. Specifically, if we assume that firm-level pro-

ductivity losses are long-lasting but all capital reallocation frictions are resolved in the long

run, then the frictionless term in equation (20) provides an estimate of theminimum aggregate

productivity loss attainable in a scenario where all capital is fully mobile.

Additionally, our framework is static. Although we have detailed the advantages of this

choice, a limitation is that it does not capture the extensive margin, such as the entry and exit

of firms. We chose not to incorporate this margin due to limited information on firm entry

and exit in our data. Neglecting this margin likely biases our results through two channels.

First, in affected regions, unproductive firms may exit, thus improving the selection of firms.

Second, firms in affected areas might choose to close and relocate all their capital to cooler re-

gions, enhancing capital allocative efficiency in the long run (we find limited evidence for this

channel in our sample). We emphasize that our findings on the relative importance of differ-

ent channels and wedges provide valuable inputs for future models addressing the extensive

margin effects of climate change.38

6.3 Regional Heterogeneity

This section examines the impact of climate change on productivity losses at the province

level (NUTS 3) in Italy. Using the methodology described in Section 2, we apply equation (22)

to each province to estimate the magnitude and spatial distribution of these losses under the

baseline warming scenario of 2 degrees Celsius.

The results presented in Figure 5a highlight significant variations in productivity losses

among Italian provinces under the 2 degrees Celsius warming scenario. Although climate

change has an overall negative effect on productivity across Italy, the impact is not uniform.

Some regions experience positive effects, with a modest productivity increase of 0.27 percent,

while others face substantial reductions, with the maximum loss reaching 2.32 percent.

Our analysis reveals regional disparities between the southern and northern regions of

Italy in climate change-induced productivity losses. Southern regions experience pronounced

negative impacts due to increased extreme heat days. In contrast, northern alpine areas benefit

from fewer days below 0 degrees Celsius, resulting in moderate productivity losses or even

38 This is because it is well known in the misallocation literature that different input wedges and productivity
factors, of the types quantified in this paper, affect firms’ value, and therefore both entry and exit decisions, in
different ways (Restuccia and Rogerson, 2017).
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Figure 5: Regional Productivity Losses for 2◦CWarming Scenario
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Note. Figure 5a shows the productivity losses across NUTS 3 regions due to a 2 degrees Celsius increase
in temperature, calculated using equation (18), adjusted with the ratio of gross output to value added.
Productivity losses are in percent, and darker colors represent larger losses. Figure 5b plots the same
regional losses against average GDP per capita in our sample, showing a negative correlation of 0.232.

modest increases. In Appendix D.3, Figures D.2a-D.2b display regional productivity losses

under the four alternative warming scenarios. Overall, we find that the most severe impact

of climate change in southern regions carries on across different scenarios. Moreover, the

RCP4.5 and RCP8.5 scenarios, that include more accurate predictions of local temperature

changes, and imply a larger increase in temperature in the south relative to the north, predict

wider disparities in productivity losses between northern and southern regions.

These findings underscore how firm-level losses, characterized by an inverted U-shape

pattern, translate into substantial regional differences depending on historical temperatures.

To show more clearly the relation between predicted productivity losses and inequality, in

Figure 5b we relate productivity losses to GDP per capita and find a significantly positive

relation, confirming that climate change is expected to increase inequality across regions in

Italy. Importantly, this positive relation is much stronger for the more accurate RCP4.5 and

RCP8.5 scenarios (Figures D.3d and D.3e in the Appendix D.3).

7 Conclusion

This paper examines the impact of temperature fluctuations on firm-level outcomes in Italy

and presents a general equilibrium framework to analyze their aggregate implications. The

framework establishes the link between firm-level losses due to rising temperatures and ag-

gregate productivity losses in general equilibrium. Our model identifies three key channels
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through which climate change impacts aggregate productivity: (i) the firm-level demand

channel, (ii) the firm-level productivity channel, and (iii) the reallocation channel. We de-

velop an empirical strategy for measuring these channels and demonstrate how the estimates

can be utilized to quantify the aggregate implications.

By leveraging a combination of Italian firm-level data and detailed climate data, we esti-

mate the temperature-semielasticities that are essential inputs for our model. Our empirical

findings reveal an inverted U-shaped pattern for temperature-associated losses, with more

significant effects observed at extreme temperature levels. Specifically, we observe contrac-

tions in sales, materials, and labor costs during extreme temperatures, but not in capital. This

pattern is reflected in the behavior of revenue-based marginal products, which contract at ex-

treme temperatures only for capital, but not for materials and labor. These empirical results

suggest that climate change negatively affects firm-level sales, leading to the reallocation of

materials and labor, but not of capital, to less affected areas, potentially lowering the allocative

efficiency of the economy.

Finally, using the estimated firm-level temperature semielasticities, we employ the model

to compute aggregate productivity losses under different climate change scenarios. Our anal-

ysis indicates that under a two-degree Celsius warming scenario, productivity is estimated

to decline by 1.68%, which can be moderated to 0.77% with a one-degree Celsius temperature

increase. However, in the event of a doubled temperature increase to four degrees Celsius, the

drop in productivity becomes four times larger, reaching around 6.77%. This non-linear and

convex relationship between temperature and aggregate productivity highlights the signifi-

cantly larger productivity losses associated with higher warming scenarios. Notably, roughly

half of the aggregate productivity losses are attributed to reductions in firm-level produc-

tivity, while the remaining half is ascribed to a decline in allocative efficiency. We broadly

confirm the magnitude of these finding using temperature change predictions from the RCP

4.5 and RCP 8.5 climate models. Furthermore, in a robustness exercise we measure adapta-

tion by comparing firm-level losses in grid cells with different different extreme temperature

exposure. Including this adaptation margin reduces projected aggregate damages by 20-30

percent. Our analysis also reveals that climate change impacts productivity differently across

Italian provinces, contributing to regional inequality, as we find a negative relationship be-

tween expected productivity losses and current GDP per capita.
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A Structural Framework

In this section, we show the derivations of the equations in Section 2.2.

A.1 Aggregate Gross Output TFP

To derive the equations (18) and (20), we start from the definition of aggregate gross output

TFP, given by

TFPt =

(∏
X∈X XαX

t

Yt

)−1

, (29)

=
∏
X∈X

(
Xt

Yt

)−αX

; (30)

where aggregate real inputs are defined as

Xt =
Nt∑
i=1

Xit. (31)

To characterize aggregate real inputs Xt, we now need to derive the demand for each

input Xit. We start recalling that the minimized cost function is given by

C(Yit) =
Yit

ezit(Tg(i)t)

∏
X∈X

(
eτ

X
it (Tg(i)t)PX

αX

)αX

, (32)

=
∏
X∈X

(
PX
t

αX

)αX

Yit

ezit(Tg(i)t)

∏
X∈X

(
eτ

X
it (Tg(i)t)

)αX

, (33)

= Ct
Yit

ezit(Tg(i)t)

∏
X∈X

(
eτ

X
it (Tg(i)t)

)αX

; (34)

where

Ct =
∏
X∈X

(
PX
t

αX

)αX

. (35)
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Given that the first-order conditions for each input are given by

eτ
X
it (Tg(i)t)PX

t Xit = αXC(Yit), (36)

= αXCt
Yit

ezit(Tg(i)t)

∏
X∈X

(
eτ

X
it (Tg(i)t)

)αX

; (37)

we obtain the following input demand function:

Xit = αX Ct

PX
t

Yit

eτ
X
it (Tg(i)t)ezit(Tg(i)t)

∏
X∈X

(
eτ

X
it (Tg(i)t)

)αX

′ (38)

This implies the following aggregate level for each input Xt:

Xt = αX Ct

PX
t

Nt∑
i=1

Yit

eτ
X
it (Tg(i)t)ezit(Tg(i)t)

∏
X∈X

(
eτ

X
it (Tg(i)t)

)αX

. (39)

Substituting equation (39) back into equation (30) we obtain the following:

TFPt =
∏
X∈X

(
αX Ct

PX
t

Nt∑
i=1

1

eτ
X
it (Tg(i)t)ezit(Tg(i)t)

Yit

Yt

∏
X∈X

(
eτ

X
it (Tg(i)t)

)αX
)−αX

, (40)

=
∏
X∈X

(
αX Ct

PX
t

)αX
(

Nt∑
i=1

1

eτ
X
it (Tg(i)t)ezit(Tg(i)t)

Yit

Yt

∏
X∈X

(
eτ

X
it (Tg(i)t)

)αX
)−αX

, (41)

=
∏
X∈X

(
Nt∑
i=1

1

eτ
X
it (Tg(i)t)ezit(Tg(i)t)

Yit

Yt

∏
X∈X

(
eτ

X
it (Tg(i)t)

)αX
)−αX

; (42)

where the last equality holds because of the definition of Ct in equation (35). Notice that now

aggregate gross output TFP in equation (42) depends only on wedges and on each firm relative

size Yit/Yt. Hence, to obtain an expression for aggregate gross output TFP that depends only

on wedges, we need to express the relative size of each firm as a function of wedges only. We

start by defining a firm’s relative size using the demand function:

Yit

Yt

=
(
edit(Tg(i)t)

)σ−1
(
Pit

Pt

)−σ

. (43)
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Now, recall that the firms’ prices are given by

Pit = MC ′(Yit), (44)

= MCt
1

ezit(Tg(i)t)

∏
X∈X

(
eτ

X
it (Tg(i)t)

)αX

; (45)

Moreover, we can substitute firm-level prices from equation (45) into the aggregate price

index and obtain

Pt =

(
Nt∑
i=1

(
Pit

edit(Tg(i)t)

)1−σ
) 1

1−σ

, (46)

=

 Nt∑
i=1

(
MCt

1

edit(Tg(i)t)ezit(Tg(i)t)

∏
X∈X

(
eτ

X
it (Tg(i)t)

)αX
)1−σ

 1
1−σ

, (47)

= MCt

 Nt∑
i=1

(
1

ez̃it(Tg(i)t)

∏
X∈X

(
eτ

X
it (Tg(i)t)

)αX
)1−σ

 1
1−σ

; (48)

Finally, substituting equations (45) and (48) into equation (43), we obtain an expression

for firms’ relative size as a function of wedges only, given by

Yit

Yt

=
(
edit(Tg(i)t)

)σ−1


1

e
zit(Tg(i)t)

∏
X∈X

(
eτ

X
it (Tg(i)t)

)αX

(∑Nt

i=1

(
1

e
z̃it(Tg(i)t)

∏
X∈X

(
eτ

X
it (Tg(i)t)

)αX
)1−σ

) 1
1−σ


−σ

(49)
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Now, we can substitute equation (49) into equation (42) to obtain the following:

TFPt =
∏

X∈X


Nt∑
i=1

(
edit(Tg(i)t)

)σ−1

eτ
X
it (Tg(i)t)ezit(Tg(i)t)


1

e
zit(Tg(i)t)

∏
X∈X

(
eτ

X
it (Tg(i)t)

)αX

(∑Nt
i=1

(
1

e
z̃it(Tg(i)t)

∏
X∈X

(
eτ

X
it (Tg(i)t)

)αX
)1−σ

) 1
1−σ


−σ

∏
X∈X

(
eτ

X
it (Tg(i)t)

)αX



−αX

,

(50)

=

Nt∑
i=1

(
ez̃it(Tg(i)t)

)σ−1 ∏
X∈X

(
eτ

X
it (Tg(i)t)

)−(σ−1)αX

 σ
σ−1

×
∏

X∈X

Nt∑
i=1

(
ez̃it(Tg(i)t)

)σ−1

eτ
X
it (Tg(i)t)

∏
X∈X

(
eτ

X
it (Tg(i)t)

)−(σ−1)αX


−αX

. (51)

Hence, taking logs in equation (51) we obtain the following:

logTFPt =
σ

σ − 1
log
(

Nt∑
i=1

(
ez̃it(Tg(i)t)

)σ−1 ∏
X∈X

(
eτ

X
it (Tg(i)t)

)−(σ−1)αX
)

−
∑
X∈X

αX log
(

Nt∑
i=1

(
ez̃it(Tg(i)t)

)σ−1

eτ
X
it (Tg(i)t)

∏
X∈X

(
eτ

X
it (Tg(i)t)

)−(σ−1)αX
)
. (52)

Equation 52 shows that aggregate gross output TFP in this framework can be expressed

as just a function of (i) firm-level wedges, ez̃it(Tg(i)t) and eτ
X
it (Tg(i)t); (ii) the elasticity of sub-

stitution across goods σ; and (iii) the production function elasticities αX .

Notice that if the revenue-basedmarginal products equalize across firms, i.e., if eτXit (Tg(i)t) =

1, then equation (52) reduces to the efficient aggregate gross output TFP, given by

logTFP ∗
t =

1

σ − 1
log
(

Nt∑
i=1

(
ez̃it(Tg(i)t)

)σ−1

)
. (53)

This concludes the derivations to get equations (16) and (19), which define respectively
the inefficient and the efficient aggregate gross output TFP. Using these two equations, we can
now derive equations (18) and (20). We start by differentiating equation (52) to obtain a rela-
tion linking changes in aggregate gross output TFP to changes in grid-cell-level temperatures,
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given by

d logTFPt = σ

Nt∑
i=1


(
ez̃it(Tg(i)t)

)σ−1∏
X∈X

(
eτ

X
it (Tg(i)t)

)−(σ−1)αX

∑Nt
i=1

(
ez̃it(Tg(i)t)

)σ−1∏
X∈X

(
eτ

X
it (Tg(i)t)

)−(σ−1)αX


︸ ︷︷ ︸

≡λit

(
e
z̃it(Tg(i)t),e

τX
it

(Tg(i)t)
)

×

∂z̃it(Tg(i)t)

∂Tg(i)t

−
∑
X∈X

αX
∂τXit (Tg(i)t)

∂Tg(i)t

 dTg(i)t

−
∑
X∈X

αX
Nt∑
i=1



(
e
z̃it(Tg(i)t)

)σ−1

e
τX
it

(Tg(i)t)

∏
X∈X

(
eτ

X
it (Tg(i)t)

)−(σ−1)αX

∑Nt
i=1

(
e
z̃it(Tg(i)t)

)σ−1

e
τX
it

(Tg(i)t)

∏
X∈X

(
eτ

X
it (Tg(i)t)

)−(σ−1)αX



×

(σ − 1)
∂z̃it(Tg(i)t)

∂Tg(i)t

−
∂τXit (Tg(i)t)

∂Tg(i)t

−
∑
X∈X

(σ − 1)αX
∂τXit (Tg(i)t)

∂Tg(i)t

 dTg(i)t, (54)

= σ

Nt∑
i=1

λit

(
ez̃it(Tg(i)t), eτ

X
it (Tg(i)t)

)

×

∂z̃it(Tg(i)t)

∂Tg(i)t

−
∑
X∈X

αX
∂τXit (Tg(i)t)

∂Tg(i)t

 dTg(i)t

−
∑
X∈X

αX
Nt∑
i=1


∑Nt

i=1

(
ez̃it(Tg(i)t)

)σ−1∏
X∈X

(
eτ

X
it (Tg(i)t)

)−(σ−1)αX

∑Nt
i=1

(
e
z̃it(Tg(i)t)

)σ−1

e
τX
it

(Tg(i)t)

∏
X∈X

(
eτ

X
it (Tg(i)t)

)−(σ−1)αX


︸ ︷︷ ︸

≡ΩX
t

(
e
z̃it(Tg(i)t),e

τX
it

(Tg(i)t)
)

λit

(
ez̃it(Tg(i)t), eτ

X
it (Tg(i)t)

)

×
1

eτ
X
it (Tg(i)t)

(σ − 1)
∂z̃it(Tg(i)t)

∂Tg(i)t

−
∂τXit (Tg(i)t)

∂Tg(i)t

−
∑
X∈X

(σ − 1)αX
∂τXit (Tg(i)t)

∂Tg(i)t

 dTg(i)t, (55)

=

Nt∑
i=1

λit

(
ez̃it(Tg(i)t), eτ

X
it (Tg(i)t)

)[
σ

∂z̃it(Tg(i)t)

∂Tg(i)t

−
∑
X∈X

αX
∂τXit (Tg(i)t)

∂Tg(i)t

 dTg(i)t

−
∑
X∈X

αX

eτ
X
it (Tg(i)t)

ΩX
t

(
ez̃it(Tg(i)t), eτ

X
it (Tg(i)t)

)

×

(σ − 1)
∂z̃it(Tg(i)t)

∂Tg(i)t

−
∂τXit (Tg(i)t)

∂Tg(i)t

−
∑
X∈X

(σ − 1)αX
∂τXit (Tg(i)t)

∂Tg(i)t

 dTg(i)t

]
, (56)

=

Nt∑
i=1

λit

(
ez̃it(Tg(i)t), eτ

X
it (Tg(i)t)

) ∑
X∈X

αX

eτ
X
it (Tg(i)t)

ΩX
t

(
ez̃it(Tg(i)t), eτ

X
it (Tg(i)t)

)

×

σ
eτ

X
it (Tg(i)t)

ΩX
t

(
ez̃it(Tg(i)t), eτ

X
it (Tg(i)t)

) − (σ − 1)

∂z̃it(Tg(i)t)

∂Tg(i)t

−
∑
X∈X

αX
∂τXit (Tg(i)t)

∂Tg(i)t

+
∂τXit (Tg(i)t)

∂Tg(i)t



× dTg(i)t; (57)
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which is exactly the expression in equation (18) in Section (2). We can now follow the strat-

egy as above and differentiate equation (53) to obtain a relation linking changes in efficient

aggregate gross output TFP to changes in grid-cell-level temperatures, given by

d logTFP ∗
t =

Nt∑
i=1

( (
ez̃it(Tg(i)t)

)σ−1∑Nt

i=1

(
ez̃it(Tg(i)t)

)σ−1

)
︸ ︷︷ ︸

≡λ∗
it

(
e
z̃it(Tg(i)t)

)
∂z̃it(Tg(i)t)

∂Tg(i)t

dTg(i)t, (58)

=
Nt∑
i=1

λ∗
it

(
ez̃it(Tg(i)t)

) ∂z̃it(Tg(i)t)

∂Tg(i)t

dTg(i)t; (59)

which is exactly the expression in equation (20) in Section (2).

A.2 Solow Residual

The model presented in Section 2 has three productive inputs: capital, labor, and materials.

This implies that its notion of output is a gross measure, hence, its implied TFP is defined

on gross output. However, when normally thinking about productivity as defined by Solow

(1957), we think of a concept related to net output, i.e., to GDP. Here, we show how to adjust

our measurement to be able to study the effect of climate change on aggregate net output TFP,

i.e., on the Solow residual. Our strategy is reminiscent of the insights from Jones (2011).

We start by the definition of GDP, given by

GDPt = Yt −
PM
t

Pt

Mt, (60)

= TFPtK
αK

LαL

MαM − PM
t

Pt

Mt; (61)

i.e., GDP is defined as gross output net of the aggregate real value of materials. Given equation

(61), we can defined the Solow residual as

Solowt =
TFPtK

αK
LαL

MαM − PM
t

Pt
Mt

K α̂KLα̂L , (62)

where α̂K and α̂L are the aggregate capital and labor elasticities of value added. Taking logs
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gives

logSolowt = log
(
TFPtK

αK

LαL

MαM − PM
t

Pt

Mt

)
− log

(
K α̂K

Lα̂L
)
. (63)

Since we are interested in a counterfactual that assesses the implications of a medium- or

long-run phenomenon such as climate change, we abstract from the fluctuations in aggregate

capital and labor due to it and assume that these two aggregate quantities are fixed in the

medium- or long-run, i.e., Kt = K and Lt = L. Notice that this assumption is coherent with

themodel being in general equilibrium, it just implies that aggregate capital and labor supplies

are supplied inelastically. Under these two assumptions, we can differentiate equation (63) and

obtain the following:

d logSolowt =
1

GDPt

TFPtK
αKLαLMαM dTFPt

TFPt

+
αM

GDPt

TFPtK
αKLαLMαM dMt

Mt

−
PM
t

Pt
Mt

GDPt

dMt

Mt

,

(64)

=
Yt

GDPt

d logTFPt + αM Yt

GDPt

d logMt −
PM
t

Pt
Mt

Yt

Yt

GDPt

d logMt, (65)

=
Yt

GDPt

(
d logTFPt +

(
αM −

PM
t

Pt
Mt

Yt

)
d logMt

)
. (66)

The equation (66) says that a percentage change in the Solow residual is proportional to

the linear combination of the percentage changes in aggregate gross output TFP and aggregate

materials. We further approximate equation (66) by assuming that αM −PMMt/PtYt is close

to zero. This assumption is convenient since it allows us to solve the model in closed form.39

We emphasize two things about this additional assumption: (i) In the likely scenario where

the general equilibrium temperature-semielasticity of the aggregate materials is negative, this

assumption should be considered conservative because it goes against the effect of tempera-

ture on the Solow residual; and (ii) when we test this hypothesis empirically by measuring the

difference between αM and PMMt/PtYt, we find that it is less than 0.1 in our data.40 Hence,

39Notice that, while aggregate gross output TFP does not depend on aggregate prices, aggregate materials do
depend on them. Therefore, to know their response to changes in temperature we would have to infer the
general equilibrium effect of temperature, i.e., their effect on the user cost of capital and wages, which is
beyond the scope of our analysis and difficult because of the constraints imposed by the short time frame of
our data.

40This implies that, even if the temperature-semielasticity of aggregate materials is x, which we consider an
unlikely upper bound, given that this is our estimate of partial equilibrium temperature-semielasticity found
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with this additional assumption at hand, we can derive the following adjustment to our gross

output TFP measure:

d logSolowt =
Yt

GDPt

d logTFPt, (67)

which is exactly equation (22) in Section (2).

B Data

B.1 Firm-Level Data

To ensure data quality, we employ firm-level balance sheet information from Orbis, following

the data construction and cleaning methodologies outlined by Kalemli-Özcan et al. (2024)

and Gopinath et al. (2017). The following steps are implemented: (1) Removal of Missing

Information: We drop firm-year observations that have missing data on total assets, operating

revenue, sales, and employment. (2) Exclusion of Negative Values: Firms reporting negative

values for assets, tangible fixed assets, employment, or sales are excluded from the analysis. (3)

Limiting Extreme Values: To enhance the robustness of our findings, we compute three ratios:

sales to total assets, employment to total assets, and employment to sales. We then remove

observations that fall below the 0.1 percentile or above the 99.9 percentile of the distribution

of these ratios. By doing so, we mitigate the potential influence of extreme values on our

analysis.

For this specific project, we apply additional filters and exclusions. (1) Removal of Missing

Zipcode Information: Firms with missing zipcode information are dropped from the dataset.

This ensures that we can accurately associate firms with specific geographic regions. (2) Ex-

clusion of Finance, Insurance, and Utility Sectors: To maintain focus on the sectors relevant

to our analysis, we exclude firms operating in the finance and insurance sectors, as well as the

utility sector. (3) Exclusion of Firms with Negative Age or Exceeding 100: Firms with negative

age or those exceeding 100 years are excluded from the analysis. (4) Time Period Selection:

We keep observations from 1999 to 2013.

The final sample used for our analysis consists of approximately 4.3 million observations,

representing 1 million unique firms. To account for changes in prices and maintain compa-

in Table 2 and that normally general equilibrium effects dampen partial equilibrium estimates, we would lose
at most 0.1*x percentage points relative to our main results.
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rability over time, we deflate operating revenue, material expenditure, and wage bill using

gross output price indices at the two-digit industry level, with the base year of 2005 (sourced

from the Eurostat database). Additionally, the capital stock is deflated using the economy-

wide price of investment goods obtained from the World Development Indicators database.

Table B.1 provides an overview of the main variables in our analysis, based on the final Orbis

dataset.

Table B.1: Summary Statistics (1999-2013)

Sales Materials Wage Bill Employees Capital MRPM MRPL MRPK

Mean 13.33 11.61 11.66 1.88 11.14 1.72 2.03 2.30
Median 13.34 12.02 11.82 1.79 11.05 1.01 1.77 2.39
Min 5.92 3.55 4.35 0 5.51 -0.04 -0.05 -4.26
Max 17.78 17.32 16.08 5.76 16.68 8.09 7.52 7.27
No. Obs. 4,823,392 4,823,392 3,875,031 2,545,857 4,444,668 4,823,392 3,875,031 4,444,668

Note. Summary statistics of cleaned Orbis dataset between 1999 and 2013. All variables are in logs. All monetary
values are deflated using Eurostat two-digit industry price deflators, and capital is deflated using the country-
specific price of investment from the World Development Indicators.

B.2 Climate Data

B.2.1 Description of E-OBS data

E-OBS is a land-only gridded daily observational dataset that provides information on precip-

itation, temperature, sea level pressure, global radiation, wind speed, and relative humidity in

Europe.41 The dataset is derived from meteorological observations collected by the National

Meteorological and Hydrological Services (NMHSs) and other data-holding institutes across

Europe.

E-OBS is presented on regular latitude-longitude grids with spatial resolutions of 0.1◦. It

covers a significant portion of the European continent, spanning from northern Scandinavia

to southern Spain and extending from Iceland to 40◦E in the Russian Federation. Over time,

the coverage of E-OBS has progressively expanded since its inception in the 1950s, encom-

passing a larger area of the European continent due to an increasing number of contributing

meteorological stations. The dataset undergoes comprehensive updates twice a year, with

provisional monthly updates accessible through the E-OBS website.42

41Official E-OBS website: https://cds.climate.copernicus.eu.
42E-OBS monthly updates: http://surfobs.climate.copernicus.eu/dataaccess/
access_eobs_months.php.
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Originally developed in 2008 as a validation tool for Europe-wide climate model simula-

tions within the European Union ENSEMBLES project, E-OBS has evolved into a resource for

monitoring climate conditions across Europe (Klein Tank et al., 2002). The position of E-OBS

in Europe is unique due to its relatively high spatial resolution, daily temporal resolution,

multiple variables, and the extensive length of the dataset. The station-level data on which

E-OBS is based can be accessed through the webpages of the European Climate Assessment

& Dataset (ECA&D), subject to data permissions.43

The dataset is daily, meaning the observations cover a 24-hour period per time step. The

specific 24-hour period may vary across regions and data providers. The reason for this is

that some data providers measure between midnight to midnight while others might measure

from morning to morning. Since E-OBS is an observational dataset, no attempts have been

made to adjust the time series for this 24-hour offset. However, it ensures that the largest part

of the measured 24-hour period corresponds to the day attached to the time step in E-OBS

and ECA&D

B.2.2 Distribution of Meteorological Stations

The station data used in the E-OBS dataset are sourced from 84 participating institutions and

encompass over 23,000 meteorological stations. For a considerable number of countries, the

number of stations used in the E-OBS dataset represents their complete national network,

resulting in a much higher density compared to the station network routinely shared among

NMHSs, which forms the basis of other gridded datasets.

Figure B.1 presents the distribution of meteorological stations used by E-OBS. This map

showcases the station coverage in ECA&D, which serves as the basis for the E-OBS precip-

itation dataset v20.0e., regardless of their start or stop dates. The figure illustrates the high

density of stations in many parts of Europe.

B.2.3 Climate Data Summary Statistics

Table B.2 displays the distribution of temperatures and rainfall across Italy and within the

average grid-cell of Italy. It reveals significant variation in temperature throughout Italy,

ranging from a minimum of -25 degrees Celsius to a maximum of 45 degrees Celsius, with an

43ECA&D website: www.ecad.eu.
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Figure B.1: Distribution of Meteorological Station Used by E-OBS

Note. Figure B.1 shows the map with the station coverage in ECA&D which is the basis for the E-OBS precipi-
tation dataset v20.0e.

average temperature of 17 degrees Celsius.

Table B.2: Summary Statistics of Climate Data (1950-2020)

Overall Within Grid-Cell

Temperatures (◦C) Rainfalls (mm) Temperatures (◦C) Rainfalls (mm)
Mean 16.88 2.28 16.88 2.28
Median 16.73 0.00 16.50 1.09
Min -25.43 0.00 -2.60 0.00
Max 45.82 308.20 35.02 31.71

Note. Table 1 shows summary statistics of temperature in degrees Celsius (◦C) and rainfalls in millimeters (mm)
for the period 1999-2013. The first two columns report statistics for the overall sample. The last two columns
report statistics on the variation within the average grid-cell, i.e., they show the average temperature distribution
among the different grid-cells.

Examining the variation within grid-cells, which is the crucial one to identify our effects,

we find slightly lower but still significant temperature variation. Specifically, the average

minimum temperature within grid-cells is -3 degrees Celsius, and the average maximum is 35

degrees Celsius, with an average temperature within grid-cells of 17 degrees Celsius.

B.3 Temperature bins

Table B.3 reports summary statistics on the distribution of the number of days across grid-

cells within each temperature bin for the period 1999-2013. Several points can be highlighted

from these statistics.

First, despite the considerable variation in the data, all temperature bins have a positive

number of days on average, with the exception of the bin capturing temperatures above 40

11



Table B.3: Summary Statistics of Days Within Temperature Bins (1999-2013)

Temperature Bins

(−∞, 0◦C] (0◦C, 30◦C] (30◦C, 35◦C] (35◦C, 40◦C] (40◦C,∞)

Mean 1.90 316.10 41.87 5.19 0.04
Median 0 317 43 3 0
Min 0 201 0 0 0
Max 164 365 95 56 10

Note. Table B.3 shows the summary statistics on the number of days across grid-cells within each temperature
bin for the period 1999-2013.

degrees Celsius. This shows that there is some representation for each bin across the grid-

cells. Second, there is significant variation within each temperature bin across different grid

cells. Even in the reference temperature bin (0◦C, 30◦C], the number of days ranges from a

minimumof 201 to amaximumof 365. This observation underscores the substantial variability

present across grid-cells, which is important for our regression analysis. Third, it is worth

noting that certain grid-cells exhibit a particularly high number of dayswith temperatures that

are typically considered extreme. For instance, the maximum number of days below 0 degrees

Celsius can reach as high as 164. This is not surprising considering Italy’s diverse geography,

which includes areas in the Alps (in the northern part of Italy) that frequently experience

subzero temperatures. Additionally, some grid-cells experience a significant number of days

with temperatures above 40 degrees Celsius, with some areas recording up to 10 such days.

C Empirical Results

C.1 Additional Controls and Alternative Independent Variables

In this section of the appendix, we present additional regression models to further validate

the extent of the robustness of our results obtained from equation (25).

First, we augment the regression framework in equation (25) with a quadratic control for

age. Age it has been shown empirically to be an important predictor of firm-level differences

related to demand, productivity, and differences in financial frictions (see Fort et al., 2013;

Cloyne et al., 2018; and Colciago et al., 2019). Columns 1, 5, 9, and 13 of Table C.4 and columns

1, 5, and 9 of Table C.5 present the estimates of this specification.

Moreover, we also use alternative functions of daily maximum temperatures over the

year, such as the piece-wise linear degree days measure used in Somanathan et al. (2021). The

12



calculation of degree days is best explained with an example. A day with a temperature of 35

degrees Celsius contributes 30 degrees Celsius to the first bin (0◦C,30◦C], 5 degrees Celsius to

the third bin (30◦C, 35◦C], and 0 degree Celsius to the fourth bin (35◦C, 40◦C]. Thus, when

a single day moves from 35 degrees Celsius to 40 degrees Celsius there is an increase of 5

degrees Celsius in the fourth-degree-day bin and no change in other bins.

More formally, denote the endpoints of our five temperature bins by [T 1ℓ, T 2ℓ), ℓ = 1,2,. . . ,

5. A daily temperature T contributes positive degree days to all those bins for which T > T 1ℓ

and zero to all others. If T ≥ T 2ℓ, the day contributes T 2ℓ − T 1ℓ to bin ℓ. If T 1ℓ < T ≤ T 2ℓ, it

contributes T −T 1ℓ to bin ℓ. We now sum the degree days in each bin over the year to obtain

Dℓ
it for each unit i and estimate the following model:

Outomeit =
∑
ℓ

βℓD
ℓ
it + δRaing(i)t + λ′Xr(i)t + γs(i)t + αi + εit. (68)

Columns 2, 6, 10, and 14 of Table C.4 and columns 2, 6, and 10 of Table C.5 present the

estimates of this specification.

Additionally, we also estimate equation (25) allowing for a semiparametric specification

of rainfalls instead of the linear baseline one. This allows us to capture the non-linear effects

of rainfalls. We use ten different bins, capturing P10, P20, …, P100. Columns 3, 7, 11, and 15

of Table C.4 and Columns 3, 7, and 11 of Table C.5 present the estimates of this specification.

Finally, we also estimate equation (25) using the same benchmark definition for temper-

ature bins, but we define them at a coarser geographical level, i.e., NUTS 3 level. Columns 4,

8, 12, and 16 of Table C.4 and Columns 4, 8, and 12 of Table C.5 present the estimates of this

specification.

Tables C.4 and C.5 consistently confirm ourmain findings through the outlined robustness

exercises. Specifically, we observe that extreme temperatures harm sales, materials, and la-

bor, while they do not affect capital substantially. Consequently, the revenue-based marginal

products of materials and labor exhibit much sensitivity to extreme temperatures, whereas

that of capital does.

We also conducted an additional robustness check where we split our benchmark (0,30]

temperature bin into two additional bins: (0,15] and (15,30]. We found results consistent

with those of the benchmark analysis. Although we do not report them here due to space

constraints, they are available upon request.
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Table C.4: Average Effect of Temperature on Sales and Inputs—Robustness

Dependent Variable Sales Materials Labor Capital

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16)
Temperature Bins
(−∞, 0◦C] -0.088*** 0.011** -0.084*** -0.058*** -0.063** 0.010 -0.061** -0.051** -0.065*** 0.006 -0.065*** -0.027 -0.034 -0.001 -0.035 -0.028

(0.019) (0.005) (0.018) (0.021) (0.028) (0.007) (0.028) (0.024) (0.019) (0.004) (0.019) (0.017) (0.021) (0.005) (0.022) (0.022)
(30◦C, 35◦C] -0.019** -0.011*** -0.013 -0.028*** -0.024* -0.012*** -0.018 -0.045*** -0.000 0.001 0.005 -0.003 0.002 -0.000 0.004 -0.044**

(0.009) (0.003) (0.008) (0.008) (0.014) (0.004) (0.013) (0.013) (0.008) (0.003) (0.008) (0.008) (0.010) (0.004) (0.010) (0.001)
(35◦C, 40◦C] -0.043** -0.019* -0.042** -0.099*** -0.058** -0.027* -0.055** -0.120*** 0.002 -0.006 0.002 -0.053** 0.005 -0.008 0.007 -0.062**

(0.017) (0.010) (0.017) (0.024) (0.025) (0.014) (0.025) (0.036) (0.016) (0.009) (0.017) (0.023) (0.019) (0.011) (0.020) (0.026)
(40◦C,+∞) -0.722*** -0.969*** -0.720*** -1.634*** -0.473** -0.519* -0.467* -1.000 -0.257 -0.438** -0.374* -0.883* 0.063 0.128 -0.020 0.086

(0.190) (0.250) (0.196) (0.498) (0.236) (0.297) (0.246) (0.778) (0.197) (0.206) (0.197) (0.479) (0.221) (0.198) (0.227) (0.430)
Fixed Effects

Firm ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Sector × Year ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
GR and SDC × Region ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Controls
Rainfalls ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Region Trends ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Age2 ✓ ✓ ✓ ✓

Observations 4,687,503 4,687,503 4,687,503 4,687,503 4,687,503 4,687,503 4,687,503 4,687,503 3,767,558 3,767,558 3,767,558 3,767,558 4,328,689 4,328,689 4,328,689 4,328,689

Note. All dependent variables are in logs. Columns 1, 5, 9, and 13 provide estimates from the baseline specification in equation (25), with temperature bins constructed
as explained in Section 3.2, augmented with a quadratic age control. Columns 2, 6, 10, and 14 present estimates from the degree-day model in equation (68). Columns 3,
7, 11, and 15 provide estimates from the baseline specification in equation (25), with temperature bins constructed as explained in Section 3.2, where rainfall controls are
defined semiparametrically by ten bins instead of the linear specification in the benchmark case. Columns 4, 8, 12, and 16 provide estimates from the baseline specification
in equation (25), with temperature bins constructed as explained in Section 3.2 but at the NUTS 3 level instead of the grid-cell level. Rows 1-4 present the effect on the
log of the dependent variable of adding an extra day in the given temperature range respectively. Standard errors are clustered at the grid-cell level and reported in
parentheses. *, **, and *** denote 10, 5, and 1% statistical significance respectively.
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Table C.5: Average Effect of Temperature on Revenue-Based Marginal Products of Inputs—Robustness

Dependent Variable MRPM MRPL MRPK

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)
Temperature Bins
(−∞, 0◦C] -0.018 -0.000 -0.016 -0.006 0.007 0.000 0.007 -0.003 -0.026 0.005 -0.023 -0.009

(0.019) (0.005) (0.019) (0.015) (0.013) (0.003) (0.013) (0.010) (0.022) (0.004) (0.022) (0.020)
(30◦C, 35◦C] 0.006 0.001 0.006 -0.018** -0.011* -0.006*** -0.012** -0.010 -0.015 -0.008** -0.012 0.022**

(0.008) (0.003) (0.007) (0.007) (0.006) (0.002) (0.006) (0.006) (0.011) (0.004) (0.010) (0.010)
(35◦C, 40◦C] 0.011 0.005 0.010 0.017 -0.022* -0.002 -0.025* 0.005 -0.044** -0.009 -0.046** -0.016

(0.014) (0.008) (0.015) (0.023) (0.013) (0.007) (0.013) (0.018) (0.022) (0.013) (0.022) (0.026)
(40◦C,+∞) -0.209 -0.412** -0.212 -0.518 -0.049 -0.034 0.060 -0.392 -0.523** -0.803*** -0.443** -1.628***

(0.156) (0.179) (0.157) (0.511) (0.148) (0.169) (0.138) (0.370) (0.225) (0.246) (0.227) (0.523)
Fixed Effects

Firm ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Sector × Year ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
GR and SDC × Region ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Controls
Rainfalls ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Region Trends ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Age2 ✓ ✓ ✓

Observations 4,687,503 4,687,503 4,687,503 4,687,503 3,767,558 3,767,558 3,767,558 3,767,558 4,328,689 4,328,689 4,328,689 4,328,689

Note. All dependent variables are in logs. Columns 1, 3, and 5 provide estimates from the baseline specification in equation (25), with temperature bins constructed as
explained in Section 3.2, augmented with a quadratic age control. Columns 2, 4, and 6 present estimates from the degree-day model in equation (68). Columns 3, 7, and
11 provide estimates from the baseline specification in equation (25), with temperature bins constructed as explained in Section 3.2, where rainfall controls are defined
semiparametrically by ten bins instead of the linear specification in the benchmark case. Columns 4, 8, and 12 provide estimates from the baseline specification in equation
(25), with temperature bins constructed as explained in Section 3.2 but at the NUTS 3 level instead of the grid-cell level. Rows 1-4 present the effect on the log of the
dependent variable of adding an extra day in the given temperature range respectively. Standard errors are clustered at the grid-cell level and reported in parentheses. *,
**, and *** denote 10, 5, and 1% statistical significance respectively.
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C.2 Additional Sample Cuts

In this section, we address the challenge posed by multiplant firms, as discussed in Section

3.3. To mitigate concerns associated with the presence of these firms, we conduct regression

analysis where we exclude specific subsets of firms from our sample. First, we exclude all

foreign firms, as presented in Columns 1, 5, 9, and 13 of Table C.6 and Columns 1, 5, and 9

of Table C.7. Next, we exclude all listed firms, as displayed in Columns 2, 6, 10, and 14 of

Table C.6 and Columns 2, 6, and 10 of Table C.7. Furthermore, we exclude all firms that report

consolidated accounts, as illustrated in Columns 3, 7, 11, and 15 of Table C.6 and Columns 3,

7, and 11 of Table C.7. Finally, we drop firms within the top 5 percent of the sales distribution,

as depicted in Columns 4, 8, 12, and 16 of Table C.6 and Columns 4, 8, 12 of Table C.7.

Tables C.6 and C.7 consistently indicate that extreme temperatures adversely affect sales,

materials, and labor, but not capital. Consequently, the revenue-based marginal products of

materials and labor display no systematic sensitivity to extreme temperature fluctuations, in

contrast to capital. Notably, our estimates are if anything larger, confirming the downward

bias produced by firms more likely to be multiplant. Nevertheless, the consistency of results

across these specifications underscores that the presence of multiplant firms does not signif-

icantly impact our fundamental conclusions.
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Table C.6: Average Effect of Temperature on Sales and Inputs—Robustness II

Dependent Variable Sales Materials Labor Capital

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16)
Temperature Bins
(−∞, 0◦C] -0.095*** -0.095*** -0.092*** -0.085*** -0.070** -0.069** -0.065** -0.057* -0.070*** -0.070*** -0.069*** -0.069*** -0.033 -0.036* -0.037* -0.035

(0.020) (0.019) (0.019) (0.020) (0.022) (0.029) (0.029) (0.031) (0.021) (0.019) (0.020) (0.020) (0.022) (0.021) (0.021) (0.022)
(30◦C, 35◦C] -0.017* -0.017* -0.017* -0.018** -0.023 -0.022 -0.020 -0.023 -0.001 0.002 0.004 0.002 -0.000 0003 0.004 0.004

(0.009) (0.009) (0.009) (0.009) (0.014) (0.014) (0.014) (0.014) (0.008) (0.008) (0.008) (0.008) (0.010) (0.011) (0.011) (0.011)
(35◦C, 40◦C] -0.050*** -0.046*** -0.047*** -0.045*** -0.068** -0.060** -0.057** -0.056** -0.010 -0.003 -0.003 -0.004 0.001 0.004 0.006 0.006

(0.017) (0.017) (0.017) (0.017) (0.026) (0.025) (0.026) (0.025) (0.017) (0.017) (0.017) (0.017) (0.019) (0.019) (0.020) (0.020)
(40◦C,+∞) -0.827*** -0.806*** -0.829*** -0.889*** -0.571** -0.560** -0.554** -0.645** -0.433** -0.367** -0.363* -0.456** 0.040 0.033 0.024 0.001

(0.191) (0.194) (0.194) (0.200) (0.243) (0.242) (0.243) (0.254) (0.194) (0.187) (0.190) (0.195) (0.204) (0.216) (0.220) (0.211)
Fixed Effects

Firm ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Sector × Year ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
GR and SDC × Region ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Controls
Rainfalls ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Region Trends ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Observations 4,463,602 4,685,250 4,603,410 4,394,813 4,463,602 4,685,250 4,603,410 4,394,813 3,576,070 3,765,341 3,687,667 3,480,405 4,120,335 4,326,444 4,246,524 4,040,241

Note. All dependent variables are in logs. Columns. Columns 1, 6, 9, and 13 provide estimates from the baseline specification in equation (25) excluding foreign firms.
Columns 2, 6, 10, and 14 provide estimates from the baseline specification in equation (25) excluding listed firms. Columns 3, 7, 11, and 15 provide estimates from the
baseline specification in equation (25) excluding firms reporting consolidated accounts. Columns 4, 8, 12, and 16 provide estimates from the baseline specification in
equation (25) excluding firms with sales above top 5%. Rows 1-4 present the effect on the log of the dependent variable of adding an extra day in the given temperature
range respectively (temperature bin coefficients). Standard errors are clustered at the grid-cell level and reported in parentheses. *, **, and *** denote 10, 5, and 1%
statistical significance respectively.

17



Table C.7: Average Effect of Temperature on Revenue-Based Marginal Products of Inputs—Robustness II

Dependent Variable MRPM MRPL MRPK

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)
Temperature Bins
(−∞, 0◦C] -0.016 -0.018 -0.019 -0.021 0.005 0.008 0.009 0.014 -0.034 -0.030 -0.027 -0.025

(0.020) (0.019) (0.020) (0.21) (0.014) (0.013) (0.013) (0.014) (0.023) (0.022) (0.022) (0.024)
(30◦C, 35◦C] 0.007 0.006 0.004 0.006 -0.010* -0.012** -0.012** -0.011* -0.012 -0.014 -0.014 -0.015

(0.007) (0.008) (0.008) (0.008) (0.006) (0.006) (0.006) (0.006) (0.010) (0.010) (0.010) (0.011)
(35◦C, 40◦C] 0.014 0.011 0.007 0.009 -0.021 -0.021 -0.022* -0.017 -0.046** -0.045** -0.048** -0.048**

(0.015) (0.014) (0.015) (0.015) (0.013) (0.013) (0.013) (0.014) (0.020) (0.021) (0.022) (0.022)
(40◦C,+∞) -0.220 -0.206 -0.234 -0.217 -0.016 -0.020 -0.017 0.001 -0.638*** -0.579** -0.583** -0.604***

(0.160) (0.156) (0.162) (0.164) (0.148) (0.145) (0.149) (0.152) (0.217) (0.231) (0.239) (0.229)
Fixed Effects

Firm ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Sector × Year ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
GR and SDC × Region ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Controls
Rainfalls ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Region Trends ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Observations 4,463,602 4,685,250 4,603,410 4,394,813 3,576,070 3,765,341 3,687,667 3,480,405 4,120,335 4,326,444 4,246,524 4,040,241

Note. All dependent variables are in logs. Columns provide estimates from the baseline specification in equation (25). Columns 1, 5, and 9 estimate from the baseline
specification in equation (25) excluding foreign firms. Columns 2, 6, and 10 provide estimates from the baseline specification in equation (25) excluding listed firms.
Columns 3, 7, and 11 provide estimates from the baseline specification in equation (25) excluding firms reporting consolidated accounts. Columns 4, 8, and 12 provide
estimates from the baseline specification in equation (25) excluding firms with sales above top 5%. Rows 1-4 present the effect on the log of the dependent variable
of adding an extra day in the given temperature range respectively (temperature bin coefficients). Standard errors are clustered at the grid-cell level and reported in
parentheses. *, **, and *** denote 10, 5, and 1% statistical significance respectively.
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C.3 Additional Demand-Adjusted Productivity Results

Table C.8 presents sector-level losses in demand-adjusted productivity due to a 2-degree Cel-

sius increase in temperature.

Table C.8: Sector-Level Demand-Adjusted Productivity Losses

Sector NACE 1 Sector-level loss αK

Wholesale and Retail Trade G -0.344 0.027
Manufacturing C -0.343 0.075
Construction F -0.382 0.084
Other Service Activities S -0.446 0.121
Information and Communication J -0.436 0.127
Transporting and Storage H -0.395 0.132
Administrative and Support Service Activities N -0.442 0.136
Professional, Scientific and Technical Activities M -0.400 0.138
Mining and Quarrying B -0.423 0.206
Accommodation and Food Service Activities I -0.495 0.216
Arts, Entertainment and Recreation R -0.511 0.231
Agriculture, Forestry and Fishing A -0.490 0.267
Real Estate Activities L -0.699 0.548

Note. Table C.8 presents sector-level losses in demand-adjusted productivity due to a 2-degree Celsius increase
in temperature. Column 1 lists the sector names, Column 2 provides the corresponding NACE codes, Column 3
shows the loss levels, and Column 4 indicates the capital intensity.

To obtain these numbers, we applied equation (11) using our estimates from Tables 2

and 3, along with the sector-level production function elasticities as explained in Section 3.

For conciseness, we report a single number summarizing the sector-level losses. This was

done by applying the temperature bin-specific semiparametric losses for each sector to the

homogeneous 2-degree Celsius temperature increase from our benchmark scenario explained

in Section 6.1.1. Our losses are broadly in line with those reported in the literature, such as the

high damages to agriculture and lower damages for manufacturing noted by Addoum et al.

(2020) and Ponticelli et al. (2024).

D Aggregate Results

D.1 Counterfactual Temperature Distributions

This appendix describes the counterfactual distribution of days within temperature bins under

different warming scenarios compared to the observed data. Table D.9 provides summary

statistics of the distribution of days within temperature bins, while Table D.10 presents the

changes in the distribution of days under each warming scenario.
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Table D.9: Summary Statistics of Counterfactual Distribution of Days Within Tem-
perature Bins

Temperature Bins

(−∞, 0◦C] (0◦C, 30◦C] (30◦C, 35◦C] (35◦C, 40◦C] (40◦C,+∞)

Warming Scenario Variable

1999-2013

Mean 1.90 316.10 41.87 5.08 0.04
Median 0 317 44 3 0
Min 0 201 0 0 0
Max 164 365 95 56 10

1◦C

Mean 1.14 304.04 50.38 9.31 0.13
Median 0 304 51 6 0
Min 0 212 0 0 0
Max 153 365 105 64 17

2◦C

Mean 0.66 291.22 57.53 15.18 0.41
Median 0 289 59 11 0
Min 0 221 0 0 0
Max 140 365 105 70 32

4◦C

Mean 0.23 265.02 65.142 32.06 2.55
Median 0 264 65 31 1
Min 0 198 0 0 0
Max 111 365 117 87 52

RCP4.5

Mean 0.83 298.21 57.89 16.37 0.7
Median 0 289 59 11 0
Min 0 208 0 0 0
Max 142 365 113 74 37

RCP8.5

Mean 0.30 265.37 64.46 31.92 2.95
Median 0 266 65 30 0
Min 0 190 0 0 0
Max 104 365 122 92 58

Note. Table D.9 summarizes the distribution of days within temperature bins in the data and under different
warming scenarios. It includes statistics such as mean, median, minimum, and maximum values for each tem-
perature bin. The temperature bins range from below 0 degrees Celsius to 40 degrees Celsius or higher as defined
in Section 3.2.

Table D.9 summarizes the distribution of days within temperature bins for the observed

data and various warming scenarios. The temperature bins are categorized from below 0 de-

grees Celsius to 40 degrees Celsius or higher, as explained in Section 3.2. The table includes

statistical measures such as mean, median, minimum, and maximum values for each temper-

ature bin.

The first four rows present the distribution of days within each temperature bin in the

data for the period 1999-2013. The second four rows present the distribution of days within

each temperature bin for the 1-degree Celsius temperature increase counterfactual scenario.

The third four rows present the distribution of days within each temperature bin for the 2-

degree Celsius temperature increase counterfactual scenario. The fourth four rows present

the distribution of days within each temperature bin for the 4-degree Celsius temperature

increase counterfactual scenario. The fifth four rows present the distribution of days within
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each temperature bin for the RCP4.5 counterfactual scenario. The sixth four rows present

the distribution of days within each temperature bin for the RCP8.5 counterfactual scenario.

Overall, we see that the more extreme the counterfactual warming scenario, the larger the

shift in the number of days toward higher temperatures.

Table D.10: Summary Statistics of Counterfactual Change in Distribution of Days
Within Temperature Bins

Temperature Bins

(−∞, 0◦C] (0◦C, 30◦C] (30◦C, 35◦C] (35◦C, 40◦C] (40◦C,+∞)

1◦C

Mean -0.76 -12.07 8.51 4.23 0.09
Median 0 -12 9 3 0
Min -27 -33 -21 -2 0
Max 0 27 33 25 10

2◦C

Mean -1.24 -24.88 15.66 10.10 0.37
Median 0 -251 17 8 0
Min -56 -64 -31 -10 0
Max 0 56 57 39 22

4◦C

Mean -1.67 -51.09 23.27 26.98 2.51
Median 0 -52 24 27 1
Min -84 -100 -48 -15 0
Max 0 84 86 71 44

RCP4.5

Mean -1.07 -26.89 16.02 11.28 0.66
Median 0 -24 16 8 0
Min -71 -79 -41 -10 0
Max 0 71 70 57 35

RCP8.5

Mean -1.60 -50.82 22.59 26.83 2.91
Median 0 -51 23 25 0
Min -100 -120 -49 -22 0
Max 0 101 100 85 56

Note. Table D.10 presents the changes in the distribution of days within temperature bins under various warming
scenarios. It provides statistical measures such as mean, median, minimum, and maximum values for each
temperature range. The values indicate the deviation in the number of days compared to the data. Negative
values indicate a decrease, while positive values represent an increase in the number of days.

Table D.10 presents the changes in the distribution of days within temperature bins un-

der different warming scenarios. The values indicate the deviation in the number of days

compared to the observed data. Negative values represent a decrease, while positive values

indicate an increase in the number of days.

The first four rows present the change relative to the data in the distribution of dayswithin

each temperature bin for the 1-degree Celsius temperature increase counterfactual scenario.

The second four rows present the change relative to the data in the distribution of days within

each temperature bin for the 2-degree Celsius temperature increase counterfactual scenario.

The third four rows present the change relative to the data in the distribution of days within

each temperature bin for the 4-degree Celsius temperature increase counterfactual scenario.
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The fourth four rows present the change relative to the data in the distribution of days within

each temperature bin for the RCP4.5 counterfactual scenario. The fifth four rows present the

change relative to the data in the distribution of days within each temperature bin for the

RCP8.5 counterfactual scenario. Overall, we see that the more extreme the counterfactual

warming scenario, the larger the increase in the number of days with higher temperatures

and the decline in the number of days with lower temperatures.

D.2 Additional Robustness Main Results

Table D.11: Climate Change Impact on Aggregate Productivity With Adaptation

Aggregate Productivity Loss

Without Adaptation With Adaptation

1◦C 0.77% 0.60%
4◦C 6.82% 5.51%
RCP4.5 1.64% 1.32%
RCP8.5 5.35% 4.18%

Note. Column 1 reports the aggregate productivity losses without adaptation for the scenarios in the robustness
exercises in Table 7. Column 2 reports the effect of adding adaptation effects to each of these scenarios.

Table D.11 presents the impact of controlling for adaptation on the scenarios used as

robustness exercises in Section 6.1.2. Introducing adaptation in the 1-degree Celsius scenario

reduces productivity losses to 0.60, and in the 4-degree Celsius scenario, it decreases losses to

5.51. Finally, adaptation reduces productivity losses from the RCP4.5 and RCP8.5 scenarios to

1.32 and 4.18, respectively. Overall, we find that adaptation lowers the aggregate productivity

losses of the different scenarios by an average of 20 percent.

D.3 Regional Heterogeneity

This appendix section explores the impact of climate change on productivity losses at the

province level (NUTS 3) in Italy, examining four alternative warming scenarios: a 1-degree

Celsius increase, a 4-degree Celsius increase, and increases according to the RCP4.5 and

RCP8.5 scenarios. Moreover, we explore the role of adaptation for regional economic losses.

We employ the methodology described in Section 2 and apply the same approach used in

Section 6.3 to assess productivity losses for each province under these different warming sce-

narios.
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Figure D.2: Regional Productivity Losses for Alternative Warming Scenarios
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Note. Figure D.2a shows the productivity losses across NUTS 3 regions due to a 1-degrees Celsius increase in
temperature, calculated using equation (18), adjusted with the ratio of gross output to value added. Figure D.2b
shows the productivity losses across NUTS 3 regions due to the 2-degrees Celsius increase in temperature but
in the presence of adaptation, calculated using equation (18), adjusted with the ratio of gross output to value
added. Figure D.2c shows the productivity losses across NUTS 3 regions due to a 4-degrees Celsius increase in
temperature, calculated using equation (18), adjusted with the ratio of gross output to value added. Figure D.2d
shows the productivity losses across NUTS 3 regions due to the RCP4.5 scenario, calculated using equation (18),
adjusted with the ratio of gross output to value added. Figure D.2e shows the productivity losses across NUTS
3 regions due to the RCP8.5 scenario, calculated using equation (18), adjusted with the ratio of gross output to
value added. Productivity losses are in percent, and darker colors represent larger losses.

Figures D.2a, D.2c, D.2d, D.2e, and D.2b display regional productivity changes under var-

ious warming scenarios. In the 1-degree Celsius warming scenario (D.2a), Italian provinces

show diverse outcomes, with some experiencing gains of up to 0.19 percent and others facing

losses of up to 0.82 percent. Under the 4-degree Celsius scenario (D.2c), variations are even

more pronounced, ranging from slight increases of 0.09 percent to severe reductions of up to

9.80 percent. The RCP4.5 and RCP8.5 scenarios (D.2d, D.2e) also exhibit varying degrees of

change, with some provinces seeing gains and others facing losses, particularly severe under

RCP8.5, reaching -13.23 percent. The RCP4.5 and RCP8.5 scenarios exhibit themost significant

regional variations due to the non-uniform distribution of temperature increases, predicting
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larger in southern regions compared to the north. In the 2-degree Celsius warming scenario

with adaptation (D.2b), regional differences persist, with increases of 1.55 percent in the least

affected areas and decreases of 2.80 percent in the most affected ones.

The relationship between GDP per capita in our sample and future productivity losses is

depicted in Figure D.3. With the exception of the 4-degree Celsius scenario, which shows no

significant relation, all other scenarios predict increasing inequality due to climate change.

Figure D.3: Correlation Between Regional Losses and GDP Per Capita
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(b) 2◦C w. Adaptation
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(c) 4◦C
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(d) RCP4.5
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(e) RCP8.5

Note. Figure D.3a scatters the productivity losses across NUTS 3 regions due to a 1-degrees Celsius increase
in temperature against GDP per capita in the data. Figure D.3b shows the productivity losses across NUTS 3
regions due to a 2-degrees Celsius increase in temperature in the presence of adaptation against GDP per capita
in the data. Figure D.3c scatters the productivity losses across NUTS 3 regions due to a 4-degrees Celsius increase
in temperature against GDP per capita in the data. Figure D.3d scatters the productivity losses across NUTS 3
regions due to a the RCP4.5 scenario against GDP per capita in the data. Figure D.3e scatters the productivity
losses across NUTS 3 regions due to the RCP8.5 scenario against GDP per capita in the data. Light blue dots are
NUTS 3 regions and the black line represents the best fit.
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