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Abstract

The risk-free rate of return has been declining in real terms over millennia. We isolate

the role of time preference – or patience – in explaining this decline. Three facts support

our approach: experimental evidence finds significant heterogeneity in patience; individual

preference characteristics are highly intergenerationally persistent; and, longitudinal data

shows that patience is positively related with fertility decisions. Together these suggest we

should expect average societal levels of patience to increase over time as the composition

of the population shifts towards ever more patient dynasties. We test this mechanism in

a Barro-Becker model of fertility with heterogeneous dynasties. We use the present day

distribution of patience to calibrate the model. We are able match – both quantitatively

and qualitatively – the decline in the risk-free return over the last eight centuries.

JEL codes: E21; E43; J11; N30; O11.

Keywords: Heterogeneous agents; interest rates; patience; selection.

1We would like to thank Rod McCrorie as well as the participants of seminars at the University of Oxford, the

University of St. Andrews and conference participants at WEHIA 2019.
2School of Economics and Finance, Castlecliffe, The Scores, University of St Andrews, Fife, KY16 9AR, United

Kingdom. Email address: rls7@st-andrews.ac.uk.
3Adam Smith Business School, University of Glasgow, Glasgow, G12 8QQ, United Kingdom. Email address:

alex.trew@glasgow.ac.uk.



1 Introduction

Risk-free interest rates have been falling for millennia. Successive ancient civilizations have been

characterized by ever lower rates of interest. From 20–25% per annum in Sumer to 10-20% in

Babylon and 9–12% in 1st century AD Egypt (see Appendix Table 2). Evidence for the last eight

centuries follows a similar pattern. Figure 1 shows that the global risk-free real interest rate has

declined from around 12% in the fourteenth century to just over 1% today (Schmelzing, 2017).

Within England, the return on land, one of the safest assets available, fell from around 10% in

the thirteenth century to 1-2% today (Clark, 2010).
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Figure 1: Real risk-free returns, 1175–2000

The list of potential explanations for this decline is short: the risk-free interest rate is a

function of the expected rate or growth, the level of risk in an economy and individual time- and

risk-preferences. In a standard representative-agent endowment economy where individuals have

CRRA preferences and face log-normal shocks to growth, we obtain the following expression for

the risk-free rate (Cochrane, 2005):

rft = γEtgt+1 −
γ

2
σ2
t − lnβ, (1)

where rft is the log of the risk-free rate, Etgt+1 is the expected growth in consumption, σt is the

variance of consumption growth, β is the subjective discount factor and γ is the coefficient of

relative risk aversion.

We naturally think of risk and growth as time-varying. That is, the decline in the rate of

interest may be explained by at least one of either a steady decline in expected growth or by

a continual increase in risk over time. Neither of these explanations seem plausible. First, the

evidence on per capita incomes up until around 1750 is that they were flat, and potentially

growing slowly in some countries (The Maddison Project, 2013). After 1750 growth rates rose
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sharply with the start of the industrial revolution. Second, shocks to consumption, assets and

production have either remained stable or declined over time. Climate variability has been

relatively constant over the last millennium up until the 20th century, with air temperature

exhibiting an average variation of 0.5 degrees centigrade (Salinger, 2005). Levels of violence

and warfare have also systematically declined (Pinker, 2012). Furthermore, the development of

technologies to understand probabilities and the emergence of sophisticated insurance markets

have improved the resilience of agents to shocks (Bernstein, 1998).

So the directions of change in expected growth and volatility have, if anything, made the de-

clining risk-free rate harder to explain.4 The remaining components of the equilibrium risk-free

rate are preference parameters: the discount factor and the coefficient of relative risk aversion.

We would not normally think of these parameters as changing over time at the individual level.

However, in an economy populated by heterogeneous agents that have different preference pa-

rameters, we may think about the evolution of average societal patience and risk aversion if those

parameters are partly inherited and if they also affect fertility. If, for example, more patient types

have more children that are themselves also more patient, then the share of more patient types

in an economy will grow over time, causing the average level of patience to increase.

The relationship between relative risk aversion and the risk-free rate depends, by (1), on

the sign of
(
Etgt+1 − 1

2σ
2
)
. The available Maddison (2013) data suggests that the country-level

average annual variance in per capita incomes since 1800 are at least one order of magnitude less

than the average level of annual growth. So the declining risk-free rate may be explained by risk

aversion falling over time. The evidence is, however, that risk aversion has, if anything, emerged

and grown over time as an evolutionary adaptation (Robson, 1996; Levy, 2015).

We are left with the discount factor as a potential explanation for the decline in the risk-

free rate. If patience is indeed heterogeneous, if it is inter-generationally persistent, and if it

is related to fertility, then we may indeed think of a time-varying societal level of patience, βt,

which increases over time and in turn drives falling risk-free interest rates.

Evidence on patience First, modern empirical studies find that there is significant hetero-

geneity of patience. Andersen et al. (2008) use experimental evidence from a representative

4One further possibility is that the observed historical rates of interest are not really returns on risk-free

assets. That is, the historical rates of return are some rt = rft + dt where rft is the hypothetical risk-free return

as described in (1) and dt is a risk premium reflecting the default risk of the asset being priced. In that case,

the decline in the real rates may be the result of the decline in the default risk, which is certainly plausible for

the successive ancient civilizations. The decline over the last eight centuries is less easy to explain this way. The

contribution of Schmelzing (2017) is to construct a series based on identifying those countries at the financial

frontier at each point in time. Thus the series is constructed from the rates of returns on sovereign debt in 14th

century Genoa, 18th century UK and 20th century US. Clark (2010), in contrast, uses data for one country and

calculates returns on the safest assets within a single country. Clark (2007) makes the case that the default risk on

land has not fallen over the period of his sample, that the medieval land market offered a “practically guaranteed”

return (Clark, p.44).
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sample of Danes to elicit time and risk preferences. Alan and Browning (2010) use structural

estimation on data in the longitudinal PSID survey. Both studies find similar levels of hetero-

geneity in discount factors across individuals, whether or not estimating discount factors jointly

with risk attitude. More recently, Falk et al. (2018) establish the substantial extent to which

preferences vary both across the globe and within countries.

Second, the strong intergenerational transmission of preferences, either by genetics, imitation

or by socialization, has been identified in a number of studies. Brenøe and Epper (2018) find

substantial transmission of patience across generations of Danish families. Chowdhury et al.

(2018) find the same based on experimental evidence in Bangladesh. Other elements of pref-

erences are also persistent intergenerationally: Dohmen et al. (2011) show a strong connection

between generations of a family of attitudes to risk and trust.

Third, while there are theoretical reasons (as we discuss below) to think households with

higher patience will optimally choose to have more children, the empirical evidence on the con-

nection is more limited. In Appendix B, we use German Socio-Economic Panel (SOEP) data

to show that there is a robust, positive relationship between individual patience levels and the

quantity of offspring. The SOEP is a longitudinal dataset which collects information by interview

from around 30,000 unique individuals in nearly 11,000 households (see Wagner et al., 2007).

Among the data collected is household net income, marital status and age. In 2008 and 2013, the

interviews included a question asking for ‘general personal patience’ on a scale of 0-10 (where 0 is

very impatient and 10 is very patient). The 2008 measure has been validated using experimental

methods (Vischer et al., 2013). We find a statistically strong positive correlation between the

self-reported patience of an individual and the number of children they have. This holds when

we control for a large number of additional variables, including age, net income, gender and

household status.

Related literature A number of other papers have identified importance of the long-run

evolution of patience. Using testamentary data for Suffolk (England), Clark (2007) shows that

families at the turn of the seventeenth century with more wealth tended to have more children.

Moreover, records on Royal tenants (whose wealth would have been greater than average), suggest

that a relationship between wealth and fertility goes back at least to the mid-thirteenth century.

Thus, for Clark, the economy evolved in a Darwinian ‘survival of the richest’. In an economy

that increasingly valued literacy, numeracy and patience, this evolution laid the foundations

for the later industrial revolution. For Clark, however, variation in the number of children per

household comes purely from the Malthusian relationship between income and fertility. Since

innate patience is more deep-rooted than wealth, and since the accumulation of wealth is a direct

consequence of higher patience, we view patience as the fundamental driver of differences in both

dynastic wealth and household fertility. The same evolutionary pressures yield a society that is

wealthier, more literate and more patient, but the mechanism is ‘survival of the patient’.
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Galor and Özak (2016) present a model in which, similar to Clark (2007), higher patience leads

to better economic outcomes and, by consequence, greater reproductive success. Geographical

variation in returns to agricultural investment mean that the returns to patience also varies.

Since patience is partly inherited, and since better economic outcomes lead to more children,

locations that offer greater returns to patience observe over time a larger share of long-term

orientated individuals. Galor and Özak present empirical evidence which shows that cross-

sectional variation in measures of long-term orientation can be explained by historical differences

in crop yields. Outcomes that benefit from patience, such as technological adoption, are also

connected with agricultural productivity. While Galor and Özak can thus explain a portion of

the level differences in patience around the world, our contribution is to understand the dynamics

of the evolution of patience in a quantitative model that can match the data.

Our model also draws a connection between family-level decisions and their macroeconomic

consequences. As such, we relate to the growing literature on family macroeconomics (see Doepke

and Tertilt, 2016 for a recent survey). While our treatment of the complexities of family decision-

making is simplified, our study suggests another way in which changes over time in the nature

of fertility decisions can manifest themselves in significant changes to macroeconomic variables.

Finally, our work also relates to research on whether the decline in the risk-free rate in the

past few decades is a result of long-run trends or cyclical shifts (see, for example, the chapters in

Teulings and Baldwin, eds, 2014). Del Negro et al. (2018) study the determinants of the interest

rate using a VAR analysis of data since 1870 for advanced countries. Del Negro et al. isolate

the role of growing risk and declining growth rates in explaining the decline of the last ten years,

but limited role for a stochastic discount factor. As we will show, the evolution of society toward

the more patient generates a decline in the risk-free rate that slows over time and is thus hard

to discern even in data since 1870.

Structure The rest of the paper is structured as follows. In section 2 we develop a Barro-Becker

model of fertility with heterogenous dynasties that differ according to their discount factor, while

section 3 presents the solution of the model. Section 4 calibrates the model to existing modern

data on the distribution of patience and section 5 presents quantitative results. Section 6 offers

some concluding remarks.

2 Baseline Model

Consider an economy of I dynasties, indexed by i = 1, . . . , I, each populated by N i
t households at

time t. Households within a dynasty are identical, but dynasties differ in their discount factors,

βi. Without loss of generality, the sequence {βi}Ii=1 is strictly increasing in i, so dynasty I has
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the greatest discount factor βI . Each household5 is endowed each period with a unit of labor that

it inelastically provides on the market in exchange for a wage, wt, as well as some capital stock

(or land), kit, that it inherited from its parent and that it rents out on the market in exchange

for a rental rate, rt. Each household of type i then solves the following problem in every period

t:

U i
t (k

i
t) = max

cit,n
i
c,t,x

i
t

α log(cit) + (1− α) log(ni
t+1) + βiU i

t+1(k
i
t+1) (2)

cit + ni
c,t + ptx

i
t ≤ wt + rtk

i
t

ni
t+1 = π + ni

c,t

kit+1 =
kit + xi

t

ni
t+1

.

As in Barro and Becker (1988, 1989), households derive utility from their own consumption,

cit, the expected size of the household at the end of the current and the beginning of the next

period, ni
t+1, and children’s average continuation utility, U i

t+1(k
i
t+1). This particular choice of

utility function follows Lucas (2002) and Bar and Leukhina (2010). Parents face a trade-off

when it comes to children. They enjoy bigger families, but at the same time they derive welfare

from children who are wealthier. Given their income from supplying labor, wt, and renting out

capital, rtkt, households choose the quantity of their consumption, cit, the number of children to

have, ni
c,t, and the quantity of capital to accumulate, xi

t. For simplicity, we assume that the cost

of a child is the same as the cost of a unit of consumption (this can be readily modified). The

price of purchasing capital stock is given by pt. We also assume that the survival probability for

existing households is age independent, constant across dynasties and exogenous and given by

π and that the survival probability of children is 1 (this can easily be generalized). Together,

these imply that the expected number of people in a household at the end of the period (and the

beginning of the subsequent period ) will be ni
t+1 = π+ni

c,t. We assume that parents care equally

about their children and endow them with an equal share of accumulated capital. Thus, parents

face a quantity-quality tradeoff with respect to the number of children a la Barro and Becker

(1988, 1989). Finally, we also assume that the child of an adult in dynasty i perfectly inherit the

discount factor βi. This transmission can be thought of as coming from genetics, imitation or

socialization and, given the lack of clear identification of mechanisms in the empirical literature,

is left as a reduced form assumption.

At time zero, there are N i
0 identical members of the dynasty of type i. Each individual in the

dynasty chooses the number of children, nc,t, all of which survive. In the subsequent period the

number of households in a dynasty will depend on the number of children that each household

5Since households within a dynasty are identical, and since we obtain solutions to the model in terms of

dynasty-aggregates, we omit a household index here. Household-level quantities are lower-case, so, e.g., cit is the

time t consumption of an individual household in dynasty i; dynasty-aggregates are upper case, so Ci
t is the sum

of consumption by households in dynasty i at time t.
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in the dynasty chose to have as well as the expected number of surviving adults. The number of

people in dynasty i at time t+ 1 will be given by N i
t+1 = ni

t+1N
i
t .

Time Zero Households and Dynastic Planners Since households care about the outcomes

of their future children, we can simplify the above problem and, by iterative substitution, re-

write the individual household problem in the framework of a time zero household of each type

as follows:

max
{cit,ni

c,t,x
i
t}∞

t=0

∞∑
t=0

(βi)t
(
α log(cit) + (1− α) log(ni

t+1)
)

(3)

cit + ni
c,t + ptx

i
t ≤ wt + rtk

i
t

ni
t+1 = π + ni

c,t

kit+1 =
kit + xi

t

ni
t+1

.

The above reflects the choice of an individual time zero adult household. Since households

within a dynasty are identical, and since there are N i
0 identical members of each dynasty i at time

zero, we can re-write the time zero household problem as the problem facing a single dynastic

planner for each type. We know that the total number of people of each type evolves according

to: N i
t+1 = N i

tn
i
t+1. Dynasty-aggregate values are Ci

t ≡ citN
i
t , N i

c,t ≡ ni
c,tN

i
t , Ki

t ≡ kitN
i
t ,

Xi
t ≡ Xi

tN
i
t and so we re-write the time-zero household problem for the dynastic planner of each

type as:

max

∞∑
t=0

(βi)t
(
α log(Ci

t) + (1− α− βi) log(N i
t+1)

)
(4)

Ci
t +N i

c,t + ptX
i
t ≤ wtN

i
t + rtK

i
t

N i
t+1 = πN i

t +N i
c,t

Ki
t+1 = Ki

t +Xi
t .

Just as in Lucas (2002), to ensure strict concavity of the objective we need to assume that

1−α−βi > 0. Notice that the discount factor appears both as the term used for discounting the

future, but also as a preference weight for children. This reflects the fact that current children

are effectively a consumption good in this model. In particular, the more patient agents place

less weight on current children as they are partially viewed as current consumption goods rather

than entirely investment goods for the future.

Economy-wide aggregates of consumption, population, children and capital are the sum across

dynasty-aggregates and denoted, respectively, Ct ≡
∑

i C
i
t , Nt ≡

∑
i N

i
t , Nc,t ≡

∑
i N

i
c,t and

Kt ≡
∑

i K
i
t .
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Firms The representative firm hires workers (Nt) and capital (Kt) to produce final output.

The maximization problem of the firm is given by:

max
{Kt,Nt}

DKν
t N

1−ν
t − wtNt − rtKt. (5)

In our setup, we will be thinking of capital as a fixed, non-reproducible and scarce quantity more

akin to land rather than what we normally think of as reproducible capital.

Market Clearing Finally, the market clearing conditions are given by:

I∑
i=1

Ci
t = Ct ,

I∑
i=1

N i
t = Nt ,

I∑
i=1

N i
c,t = Nc,t ,

I∑
i=1

Ki
t = Kt = K̄

Ct +Nc,t = DKν
t N

1−ν
t

The above are entirely standard. One point to emphasize once more is that we assume there

exists a fixed quantity of capital, K̄. This is an important way of introducing scarcity into the

model. Since natural selection works through adjustments in how agents respond to scarcity,

this will be a crucial part of our mechanism.

Competitive Equilibrium A competitive equilibrium, for given parameter values and initial

conditions {N1
0 , . . . , N

I
0 ,K

1
0 , . . .K

I
0}, consists of allocations {Ci

t , N
i
c,t, N

i
t+1,K

i
t+1, X

i
t}∞t=0 for each

dynasty i = 1, . . . , I and prices {wt, rt, pt}∞t=0 such that firms’ and dynasties’ maximization

problems are solved, and all markets clear.

3 Solution

Characterization To solve the model, we derive the first order conditions of firms and the

dynastic planner (see Appendix C). For given parameter values, and given initial distributions of

the size of dynasties {N1
0 , . . . N

I
0 } and stock of capital {K1

0 , . . .K
I
0}, the competitive equilibrium

of the problem is, for each dynasty i = 1, . . . , I, characterized by consumer first-order conditions

with respect to choice of children and consumption as:

(1− α− βi)

N i
t+1

+ (π + wt+1)
αβi

Ci
t+1

=
α

Ci
t

, (6)

Ci
t+1

Ci
t

= βi pt+1 + rt+1

pt
, (7)

with consumer budget constraints for each dynasty i:

Ci
t +N i

t+1 + ptK
i
t+1 ≤ (wt + π)N i

t + (rt + pt)K
i
t . (8)
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The firm first-order conditions are:

wt = (1− ν)DKν
t N

−ν
t (9)

rt = νDKν−1
t N1−ν

t . (10)

The market clearing conditions are:
I∑

i=0

N i
t = Nt, (11)

I∑
i=0

Ki
t = Kt = K̄. (12)

Finally, there two transversality conditions per dynasty:

lim
t→∞

(βi)tu′(Ci
t)K

i
t+1 = 0, (13)

lim
t→∞

(βi)tu′(Ci
t)N

i
t+1 = 0, (14)

where, u(Ci
t) = log(Ci

t) is the period utility of consumption.

Solution From the above we obtain the following two Euler equations that describe the evo-

lution of aggregate consumption and aggregate population:

Ci
t+1

Ci
t

= βiRt+1, t ≥ 0, (15)

N i
t+1

N i
t

= βiR̃t+1, t ≥ 1 (16)

where in the above Rt+1 ≡
(

pt+1+rt+1

pt

)
is the gross real interest rate on capital whilst R̃t+1 ≡

Rt+1
Rt−(wt+π)

Rt+1−(wt+1+π) is the gross real interest rate on children. Note that these two interest rates

differ since children are both a consumption good and an investment good, whereas capital is

only an investment good.

Given the above Euler equations, and since the interest rates are common across dynasties, we

can write the following expressions relating the relative evolution of consumption and population

for any two dynasties {i, j} which is true for all t ≥ 0 for the first expression and for t ≥ 1 for

the second expression:

Ci
t+1

Ci
t

=
βi

βj

Cj
t+1

Cj
t

and
N i

t+1

N i
t

=
βi

βj

N j
t+1

N j
t

. (17)

Using repeated substitution, together with market clearing conditions, we have the shares of con-

sumption and population of each dynasty relative to economy-wide aggregate consumption and
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population, respectively, as a function of the initial distribution of dynasty-specific consumption

and population:
Ci

t

Ct
=

(βi)tCi
0∑I

j=1(β
j)tCj

0

, and
N i

t+1

Nt+1
=

(βi)tN i
1∑I

j=1(β
j)tN j

1

(18)

for t ≥ 0. Note that given the initial distributions, the evolution of a particular dynasty’s

population and consumption shares depends only on that dynasty’s patience relative to the

patience of other dynasties. In particular, recall that dynasty I is that with the highest patience,

the above expressions imply that as t → ∞, so
NI

t+1

Nt+1
→ 1 and

CI
t+1

Ct+1
→ 1 whilst, for all i < I,

Ni
t+1

Nt+1
→ 0 and

Ci
t+1

Ct+1
→ 0. In a result which echoes the Ramsey (1928) conjecture, this means

that the consumption and population of the most patient type will dominate the economy over

time.6 As t → ∞ the model collapses to standard homogenous agent model with discount factor

βI and a standard Barro-Becker steady state. Consequently, the model can be solved with a

reverse-shooting algorithm.

Steady State We can derive the steady-state equilibrium as t → ∞ since the economy becomes

entirely dominated by that dynasty with the highest patience. In particular, denoting steady

state values as Nss, etc., we have:

N I
ss = Nss and N i

ss = 0 ∀i < I (19)

KI
ss = Kss = K̄ and Ki

ss = 0 ∀i < I (20)

CI
ss = Css and Ci

ss = 0 ∀i < I. (21)

Using the above with the first order conditions and budget constraints (6)-(8), along with the

firm’s first order conditions (9) and (10), it follows that in the steady state:

N I
ss = Nss =

(
D(1− α− βI + αβI(1− ν))

(1− π(1− α))(1− βI)

) 1
ν

K̄ (22)

CI
ss = Css = (DK̄νN−ν

ss + π − 1)Nss (23)

pss = ν
βI

1− βI
DK̄ν−1N1−ν

ss (24)

wss = (1− ν)DK̄νN−ν
ss (25)

rss = νDK̄ν−1N1−ν
ss . (26)

Note that the above steady state is identical to the steady state which would arise in an economy

populated by only one dynasty with discount factor βI . The equilibrium of the heterogenous

agent model converges to an equilibrium of the homogenous agent model with discount factor.

6Ramsey (op. cit., p. 559) conjectured that, in an economy populated by two groups each with different levels

of patience, “...equilibrium would be attained by a division of society into two classes, the thrifty enjoying bliss

and the improvident at the subsistence level.” See also Becker (1980) and Mitra and Sorger (2013).
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Aggregation It is numerically convenient to solve the model in two stages: first, we solve the

model for economy-wide aggregate variables and prices; and, second, given prices and economy-

wide aggregates, we calculate the evolution of dynasty-specific aggregate variables.

In Appendix C we show how using the first order conditions and the steady-properties of the

problem we can establish a relationship between the population of each dynasty (relative to that

of the most patient dynasty) in the first period to the consumption of each dynasty (relative to

that of the most patient dynasty) in the first period:

Ci
0

CI
0

=
N i

1

N I
1

(
1− α− βI

1− α− βi

)
. (27)

Given this expression we can re-write the equations in (18) only in terms of aggregate popu-

lation and the distribution of populations in periods 1:

Ci
t =

(βi)t(1− α− βi)N i
1∑I

j=1(β
j)t(1− α− βj)N j

1

Ct, and N i
t+1 =

(βi)tN i
1∑I

j=1(β
j)tN j

1

Nt+1, (28)

where, from the market clearing condition, aggregate consumption is given by:

Ct = DKν
t N

1−ν
t − (Nt+1 − πNt) . (29)

Recall that Kt = K̄ is fixed and note that equation (29) pins down aggregate consumption

as a function of aggregate population. Then, substituting equations (28), along with equilibrium

wages from equation (9), into equation (6) for i = I, gives us a single, second order difference

equation in aggregate population. Then, given aggregate population at t = 1, the distribution of

population across dynasties at t = 1 and the assumption that the model converges to its steady

state value after some finite number of periods T , we can thus solve for {Nt}Tt=0 using a standard

reverse-shooting algorithm. With solutions for aggregate population, we can solve for aggregate

consumption over time from (29). Then, substituting equations (28) into equation (7) for i = I

and using the solutions to {Nt}Tt=0 gives us a first order condition in prices of capital, that can

be solved for {pt}Tt=0, again under the assumption that the model converges to its steady state

value after some finite number of periods T .

Given the preceding solutions for economy-wide aggregates and prices, the equations (18) can

be used to find dynasty aggregates of consumption and population for t ≥ 1. Given that, the

budget constraint of each dynasty can be used to back out dynastic capital for t ≥ 0. Note that

the only subtlety in the above is that we need to first choose period 1 population distributions,

and only given those will we then be able to back out period zero population distributions.

Thus, if we are trying to match the distribution of population in period zero, we need to do this

indirectly by first ‘guessing’ a distribution of time 1 population and then seeing if that guess

gives rise to the ‘correct’ distribution in period zero.
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4 Calibration

The key aims of the calibration are to reproduce the increase in world population between

the years 1300 and 2000, to capture the distribution of patience types using contemporaneous

experimental data, and, to match the remaining technological and preference parameters to

reproduce various key moments in global data.

Model parameters and their calibrated values are summarized in Table 1. We take one

period in the model to be 25 years (a generation) and we assume that period zero in the model

corresponds to the year 1300 in the data. We normalize the level of technology so that D = 1.

The initial level of population is set to be N0 = 0.370 corresponding to a world population of

0.37 billion in 1300 and the total amount of land is chosen to be K̄ = 11.780 so that the model

reproduces a global population of 6.08 billion at period 28 in the model, which is the year 2000

(The Maddison Project, 2013). The land elasticity of the production function is set to ν = 0.190

to match the share of land in value added found by Caselli (2005). We assume that all children

survive into adulthood (25 years) and set π = 0.67 to yield an expected lifetime of 75 years.7

We specify the number of dynasties to be I = 2000. This is largely a computational choice

which makes little difference to our results for a large enough number of dynasties.8 We assign a

discount factor to each dynasty and, without loss of generality, order them such that the sequence

{βi}Ii=1 is strictly increasing in i. Given our requirement that 1−α−βi > 0, each discount factor

is bounded by 0 < βi < β̄, where β̄ ≡ 1 − α. We divide this interval (0, β̄) into I equally-sized

sub-intervals and locate each type’s patience level at the central point of every sub-interval, so

that, for each i, βi = β̄ (2i−1)
2I . To pin down the sequence of βi’s, we need to find values for α and

β̄. We find these by noticing that the share of expenditure on consumption relative to aggregate

income in the steady-state, scss, is given by:

scss ≡
α (1− βI(1− ν(1− π)))

(1− π(1− α)) (1− βI)
, (30)

that the highest discount factor in our grid, βI , is related to the upper bound of the discount

factors, β̄, by the expression βI = β̄
(
2I−1
2I

)
and that β̄ ≡ 1−α. With scss = 0.75 chosen to match

to the average global steady-state income share post-2000,9 we can solve the above equations

simultaneously to obtain: α = 0.428 and β̄ = 0.572.

Finally, we need the initial distribution across dynasties of capital,
{
Ki

0

}I

i=1
, and population,{

N i
0

}I

i=1
. Note that this data is not directly available for the year 1300. Instead, our calibration

strategy will rely, first, on an assumption that the model was in equilibrium prior to our initial

7This is of course higher than historical evidence would suggest, but since survival probability is exogenous,

and since has a consequence principally for the steady state of the model, targeting modern life expectancy makes

more sense.
8If too few dynasties are chosen, the resulting transitions are non-smooth. Since we view our model as largely

approximating a continuous-like distribution of types in the data, we select a large number of types in the model.
9See Appendix B for details.
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Table 1: Model parameters

Parameter Value Target/Description/Source

D 1 Normalization

N0 0.370 Aggregate population, 1300

K̄ 11.780 Aggregate population, 2000

ν 0.190 Land share, Caselli (2005)

π 0.667 Adult life expectancy of 75

I 2000 Number of types{
βi
}I

i=1

{
β̄(2i−1)

2I

}I

i=1
Subdivide domain into grid

α 0.428 Consumption share (see text)

β̄ 0.572 Maximum (generational) discount factor

{γ, δ} {36,60} Standard deviation of discount factors (Ander-

sen et al., 2008; Falk et al., 2018) and long run

rate of return (see text){
Ni

0

N0

}I

i=1
See text Andersen et al. (2008) and Falk et al. (2018){

Ki
0

K̄

}I

i=1
See text Consistency assumption (see text)

period, and, second, on using the model to obtain the relative initial population of each dynasty

from contemporaneous data.

Capital distribution The initial distribution of capital across dynasties determines the pop-

ulation of those dynasties in subsequent periods. To obtain this initial capital distribution, we

assume that the growth of each dynasty’s population is always consistent with solutions of the

model. That is, our model is characterized at t = 0 by population growth rates that are consis-

tent with solutions of the model from t = 1 on. This simply means that we are ignoring potential

shocks, such as wars or famines, that may cause population growth from t = 0 to be determined

by a different process than that from period t = 1 (which makes sense in our fully deterministic

framework). The initial distribution of capital is thus chosen such that population growth rates

are solutions of the model from period t = 0. Practically, this means assuming that equation

(16) also holds for t = 0 which in turn implies that the second expression in (17) also holds at

t = 0, viz.:

N i
1

N i
0

=
βi

βj

N j
1

N j
0

(31)

and hence the share of each type of population in period zero satisfies the following:

N i
0

N0
=

(βi)−1N i
1∑I

j=1(β
j)−1N j

1

. (32)
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Our assumption on consistency of solutions means that we choose
{
Ki

0

}I

i=1
so that equation (32)

holds for each i.

Population distribution Since we do not have data on the population distribution of patience

in the year 1300 (t = 0 in the model), we choose our period-zero distribution of types so that

the model replicates evidence (which we describe below) on the distribution of types in the year

2000 (t = 28 in the model). Equation (18) gives the population share of each dynasty over time

as a function of the t = 1 population share and each dynasty’s level of patience. Using this and

(32), we have the t = 0 population share of each dynasty i relative to dynasty I:

N i
0

N I
0

=
N i

t

N I
t

(
βi

βI

)t

, (33)

With evidence on the distribution of patience at some later date t, we could thus calibrate the

initial distribution of the population across levels of patience. One problem with this approach is

that modern data will capture only a censored portion of the full initial distribution of preference

types: even the most populous dynasties of the year 1300 could be completely indiscernible in data

for the year 2000.10 To address this issue, we let the distribution of generational discount factors

in the population be a scaled beta distribution defined on (0, β̄) with cumulative distribution

function, F (·) given by:

F (β; t) =
B
(
β/β̄, γt, δt

)
B(γt, δt)

. (34)

In the above, B(γt, δt) and B
(
β/β̄, γt, δt

)
are the complete and incomplete Beta functions,

respectively, and γt, δt > 1 are two potentially time-varying shape parameters that determine

the mean and dispersion of the distribution.

There are a number of reasons for choosing this distribution. First, it is a distribution that

can be defined on any positive sub-interval, and thus is useful for considering discount factors

which are naturally bounded. Second, it is a flexible distribution that is often used to mimic

other distributions, both skewed and centered, given appropriate bounds. Finally, the the beta

distribution is also intimately linked to the evolution of the population distribution implied by

our model, as the following Lemma shows:

Lemma 1. If I → ∞ and dynastic discount factors are distributed according to a scaled-beta

distribution on (0, β̄) with shape parameters γt̄ and δt̄ for some period t̄, then dynastic discount

factors will also be distributed according to a scaled-beta distribution in period t̄+1 on (0, β̄) with

shape parameters γt̄+1 = γt̄ + 1 and δt̄+1 = δt̄.

Proof. See Appendix D.

10For example, consider two dynasties i and I with discount factors βi = 0.05 and βI = 0.5. From equation

(33), the relative size of the two dynasties in the year 2000 (t = 28) and the year 1300 (t = 0) will differ by a

factor of
Ni

0/N
I
0

Ni
28/N

I
28

=
(

βi

βI

)28
= 10−28.
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Figure 2: Distribution of annualized discount factors in model and data, BW=0.005. (Source: see text)

Lemma 1 establishes that, for a fine enough grid, if discount factors obey a scaled-beta

distribution in any one period then they will follow a scaled-beta distribution in all other periods.

If the beta distribution fits the data well in a given year, the model predicts it will fit the data well

in any other year. Furthermore, because the model pins down the evolution of parameters of the

scaled-beta distribution, our choice of year to calibrate the scaled-beta distribution (here the year

2000) will be irrelevant – in principle, the same parameters (adjusted for time) would emerge if we

were to recalibrate the model using data at another point in time. An immediate implication of

the Lemma is that we can derive expressions for the mean and variance of generational discount

factors at for any t:

Et(β) = β̄
γ0 + t

γ0 + t+ δ
and vart(β) = β̄2 (γ0 + t)δ

((γ0 + t) + δ)2(γ0 + t+ δ + 1)
(35)

As t → ∞, the mean beta converges to β̄ and the variance goes to zero: thus the agent with

the highest discount factor comes to entirely dominate the economy, just as Ramsey (1928)

conjectured.

Note that the two shape parameters of the distribution of generational discount factors may

be obtained if we observe the mean and variance of that distribution. Our measure of the

variance is derived from data on annual discount rates. Our target for the mean is a function of

the prevailing long-run interest rate in the economy. We thus need expressions for the variance

of the annualized generational discount factor and for the long-run interest rate in terms of the

parameters of the distribution of generational discount factors. The variance of the annualized

generational discount factor, β
1
25 , is given by:

vart(β
1
25 ) = β̄

2
25
Γ(γt + δt)

Γ(γt)2

(
Γ(γt)Γ(

2
25 + γ)

Γ( 2
25 + γt + δt)

−
Γ(γt + δt)Γ(

1
25 + γt)

2

Γ( 1
25 + γt + δt)2

)
. (36)

and an approximate expression (see Appendix D) for the annualized gross risk free interest rate:

R
1
25
t ≈ 1 +

(
γt − 1 + δt

β̄γt

) 1
25

. (37)
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Figure 3: Aggregate population

As described in Appendix B, we set var28(β
1
25 ) = 0.0052 to match experimental evidence

from representative individuals in Denmark (Andersen et al., 2008) and the individual-level data

in the Global Preference Survey (GPS) described in Falk et al. (2018). We set R
1
25
28 − 1 = 0.063

to match the average (annualized) generational rates of return on global equities.11 Together,

these two equations imply the following shape parameters of the beta distribution: γ28 = 36 and

δ28 = 60. As can be seen in Figure 2, there is a good fit between the annualized distribution of

generational discount factors in the year 2000.

Once parameters γt and δt have been calibrated, we can use the CDF to approximate, for

some I, the proportion of the population assigned to each dynasty i in the year 2000 (i.e. period

t = 28) by:
N i

28

N28
= F

(
βi +

β̄

2I
; 28

)
− F

(
βi − β̄

2I
; 28

)
. (38)

With the above proportions in hand, we can then calculate the t = 0 distribution of population

using equation (33) with t = 28, and proceed to solve the model.

5 Results

Figure 3 shows the increase in aggregate population over time generated by the model. Since this

was calibrated to match the levels of global population in the years 1300 and 2000, the model

matches the increase in world population over the period – although the increase predicted by

the model is unsurprisingly more smooth that what we observe in the data.

11In Appendix B we show that over the time spans under consideration by dynastic planners – a basket of

global equities was just as safe as bonds or treasuries but offered higher rates of return. Specifically, the variation

in the global rates of return on equities over 25 year periods are either smaller or practically indistinguishable

from rates of return on government bonds or treasuries. Since we are focusing on dynasty planners that have a

horizon of 25 years or more, we calibrate to the higher rates of equity return.



17

0 0.1 0.2 0.3 0.4 0.5
0

1

2

3

4

5

·10−3

D
e
n
si
ty

1300

0 0.1 0.2 0.3 0.4 0.5
0

1

2

3

4

5

·10−3 1450

0 0.1 0.2 0.3 0.4 0.5
0

1

2

3

4

5

·10−3

D
e
n
si
ty

1600

0 0.1 0.2 0.3 0.4 0.5
0

1

2

3

4

5

·10−3 1750

0 0.1 0.2 0.3 0.4 0.5
0

1

2

3

4

5

·10−3

β

D
e
n
si
ty

1900

0 0.1 0.2 0.3 0.4 0.5
0

1

2

3

4

5

·10−3

β

2050

Figure 4: Distribution of patience at different years



18

1300 1400 1500 1600 1700 1800 1900 2000 2100
0%

20%

40%

60%

80%

100%

βa

βb

βc

βd

Year

P
o
p
u
la
ti
o
n

(S
h
a
re

,
%
)

βa∈ (0, 0.1) βb∈ (0.1, 0.19)

βc∈ (0.19, 0.29) βd∈ (0.29, 0.38)

βe∈ (0.38, 0.48) βf∈ (0.48, 0.57)

Figure 5: Population share of groups

Next, we examine the predictions of the model for the distribution of patience-levels in the

population. Figure 2 showed the distribution of discount factors across the population in both

the model and the data in the year 2000. A key implication of our model, is that this distribution

changes over time: the mean patience of the population increases, whilst the variance (normalized

by the mean) decreases as is shown in equation (35). Figure 4 depicts this evolution over time.

In our initial period, 1300, societal patience is low - almost no-one belongs to the dynasties with

β > 0.2 (an annual discount factor of around 0.94). More patient households however, will tend

to have more children who in turn will have the same higher levels of patience as their parents.

The distribution of the population will thus shift towards higher levels of patience as relatively

more patient households are born. By 1900 the median dynasty has a discount factor of β = 0.2.

The (un-normalized) distribution of patience in the population will first gradually becomes less

concentrated over time (as more patient agents have more children) and then later it will become

more concentrated over time (as the mass of the population reaches the upper limit of patience,

β̄). The mean-normalized patience distribution will decrease monotonically.

The key parameter governing this evolution is the shape parameter of the Scaled-Beta disti-

bution, γt, which – as we argued in Lemma 1 – evolves approxiamtely according to the first-order

difference equation, γt+1 = γt + 1. In the population genetics literature this type of evolution

of a characteristic over time, first identified and discussed by Darwin (1859), is known as ‘direc-

tional selection’. This is a form of natural selection in which extreme characteristics of agents

are favored over less-extreme characteristics (in a given environment) and which in turn causes

the relative frequency of the extreme variant of an agent to shift over time in the direction of

that particular agent type. Under this sort of selection the numbers of the advantageous type

of agent increase as a consequence of differences in survival and reproduction abilities among

different types. In our simplified case, survival probabilities are the same across agents and
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Figure 6: Capital of groups of population

only reproduction abilities vary. Another feature of this type of directional-selection that also

holds in our model, is that the increase in the share of the dominant type is independent of the

dominance of the particular type at any given moment (Molles, 2010). This fact follows directly

from the above first-order difference equation which is independent on the population share of

the dominant type of agent.

To help present and examine changes in the population over time, we assign agents to one

of six groups according to their levels of patience. This allows us to examine the characteristics

of low, medium and high-patience types over time. Figure 5 gives the share of each group as a

percentage of the total population over time. Notice, that there is a distinctive, cyclical evolution

of dominant patience types. The world starts out being dominated by the least patient agents,

βa, who initially account for approximately 90% of the total population in 1300. Over time

however, the share of these agents falls, and the group with the next highest patience level, βb,

takes their place, accounting for more than 90% of all agents in the years 1600. The dominance

of this group, however, is broken by the rise of the βcgroup which in turn comes to overtake the

population over the subsequent 400 years. This wave-like pattern continues into the future until,

eventually, the entire population is dominated by the most patient group of agents. This figure

emphasizes the findings shown in Figure 4, which demonstrates that the mean level of population

patience shifts steadily by changing the importance of individual patience groups. Importantly,

the transition from least to most patient is not instantaneous – instead each dynasty and group

of dynasties has their rise to and their fall from dominance of the overall population.

The key to understanding this lies in Figure 6, which reports the capital owned by each

group over time. Since agents are able to lend and borrow capital in making optimal choices

of consumption and children, the βa-group of dynasties begins to borrow from the more pa-

tient dynasties in order to substitute away from children toward the current consumption good.
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The extent to which impatient dynasties can increase their consumption depends then on the

population size of – and the capital owned by – those more patient types. The growth of the

βb-group thus facilitates the (relative) decline of the βa-group since there emerges a larger and

larger market for their capital. As the βa-group diminishes, so the βb-group emerges as the

largest population and the dominant owner of capital. The eventual emergence of the βc-group

then yields to the βb-group the increasing opportunity to sustain high consumption through sale

of their capital holdings. Figure 7 gives the aggregate of each group of dynasty’s consumption

levels. While at first the βa-group is dominant in population share, there is initially a low global

population and so its aggregate consumption is low. Successive groups of dynasties rise and fall

reaching higher levels of consumption as the aggregate population grows.

Finally, figure 8 reports the model fit against the interest rate data in Schmelzing (2017). We

observe a significant fall in the implied risk free rate as the level of societal patience grows. This

decline is approximated by equation (??). Note that in addition to matching the decline, the

model also captures the slowing rate of decline in the risk free rate. While there are fluctuations

around the long-run trend that we do not capture, our model does not include factors such as

time-varying growth rates, risk levels or cyclical shocks such as wars and plagues. Thus the

model, calibrated to extant macroeconomic data but, more restrictively, to modern evidence on

the distribution of types of patience in the year 2000, successfully captures the main trend in the

real risk free rate over the course of eight centuries.
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6 Concluding remarks

We have found, using a simple fertility model with heterogeneous preferences calibrated to the

modern-day distribution in patience, that we can explain the trend in the risk-free interest

rate over the last eight centuries. There are many further implications to consider. First,

in our model the population shift toward more patient types occurs partly via trading in the

fixed asset, land. That suggests a potentially important relationship between the constraints on

trade or borrowing, the evolution in the population and the risk-free rate. Second, we argued

that the time-varying pattern of growth and risk go against the decline in the real rate. With

a more general model and with data for the evolution in risk and growth, we may conduct

an exercise to attribute portions of the trend to different causes. Third, we have focused on

a simple form of the intergenerational transmission of preferences. More likely than perfect

transmission is some form of partial transmission, either by genetic mutation or environmental

adaptation or imitation. Moreover, we studies heterogeneous patience levels as the only time-

varying element of societal preferences. The evidence on the heterogeneity of risk aversion,

together with its intergenerational transmission and affect on fertility, suggests that this could

be an additional further preference heterogeneity that evolves over time alongside patience. A

more general model could account for the evolution of the distribution across patience and risk

aversion. Fourth, we have focused our model on its implications for the interest rate but our

time period encompasses the onset of the industrial revolution. The role for the evolution of

societal preferences in explaining potentially endogenous technological progress is a clear avenue

for future research.
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A Additional Tables

Table 2: Rates of Return, 3000 BC to 2000 AD

Period Place Rate (%) Note

3000-1900 BC Sumer 20–25 Rate of interest on silvera

c.2500 BC Mesopotamia ≥20 Smallest fractional unitb

1900–732 BC Babylonia 10–25 Return on loans of silvera

C6th BC Babylonia 16–20 Interest on loansa

C5th-2nd BC Greece ≥10 Smallest fractional unitb

C2nd BC on Rome ≥8 1
3 Smallest fractional unitb

C1st-3rd AD Egypt 9–12 Land return, interest on loansa

C1st-9th AD India 15-30 Interest on loansa

C10th AD South India 15 Yield on temple endowmentsa

1200 AD England 10 Return on land, rent chargesa

1200–1349 AD Flanders, France,

Germany, Italy

10–11 Return on land, rent chargesa

C15th AD Various European 9.43 Risk-free rental ratec

C16th AD Ottoman Empire 10–20 Interest on loansa

C19th AD Various European 3.43 Risk-free rental ratec

2000 AD England 4–5 Return on land, rent chargesa

2000–17 AD Various European 1.24 Return on land, rent chargesc

Notes: aCalculated or referenced in Clark (2007). bHudson (2000). cSchmelzing (2017).

B Data Appendix

B.1 The German Socio-Economic Panel

The German Socio-Economic Panel (SOEP) is a longitudinal dataset which has, since 1984, col-

lected information by interview on around 30,000 unique individuals in nearly 11,000 households

(see Wagner et al., 2007). Among the data collected is household net income, marital status

and age. Of particular use to this paper is a question asking for ‘general personal patience’ on

a scale of 0-10 (where 0 is very impatient and 10 is very patient). This question was asked in

2008 and 2013. We use SOEP-Core version 33.1 which includes data up to 2016. Since there

is some variability in self-reported patience of individuals between 2008 and 2013, we use the

2008 measure of patience since it has been validated using experimental methods (Vischer et
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al., 2013). We then focus on the number of unique children in each household at 2008 plus the

number of additional household children up to 2013.

To construct our sample, we merge 2008 and 2013 using the ‘never changing person ID’. We

calculate the total number of children of each household as the number present at 2008 plus any

additional children at 2013. We drop those 41 observations where patience is not observed in

2008 as well as the resident relatives and non-relatives. Our sample of 17,452 individuals thus

leaves only the head of the household and their partner. The average number of children in each

household is 0.71 (with a standard deviation of 1.00); the average number in a household that

has at least one child is 1.71 (s.d. 0.84). The average patience level is 6.1 (s.d. 2.28).

Equation (16) gives the equilibrium relationship between dynasty population dynamics, the

dynasty-specific discount rate and the gross real interest rate on children (which is common

across dynasties). Since N i
t+1 = N i

tn
i
t, we can re-write (16) in terms of the number of children

each household has as simple ni
t = βiR̃t+1. Motivated by this simple relationship, we estimate

the following specification,

childreni,2013 = β0 + β1patiencei,2008 +X′
iβ + εi (39)

where childreni,2013 is the unique number of children of person i over the period 2008–13,

patiencei,2008 is the self-reported patience in 2008, and X is a vector of control variables in-

cluding age, log of net income, as well as dummy variables for gender and marital status.

Table 3 column 1 reports our most parsimonious regression specification, where we restrict the

sample to those of child-rearing age (18-40). We can see a statistically strong positive correlation

between the patience of an individual and the number of children they have. Columns 2 to

4 include observations of all ages. Column 2 includes a control for age, column 3 adds the

log of net income and column 4 adds dummy variables for whether an observation is male,

head of the household, married, widowed, divorced or separated. Our preferred specification, in

Column 5, reports results with all controls for only those observations aged 18-40. In each of

these specifications, the coefficient on patience is statistically significant and of the expected sign.

Based on the coefficient in the preferred specification, Column 5, a one standard deviation change

in patience is associated with 0.05 standard deviations increase in the number of children.12 Table

4 reports the results from an alternative approach to age, where we use dummy variables for age

brackets instead of including age as a linear variable.

B.2 Steady state consumption share

Data on final consumption expenditures in US dollars (NE.CON.TOTL.CD) and GDP at market

prices in US dollars (NY.GDP.MKTP.CD) comes from the World Development Indicators. To

12For those aged 18-40, the standard deviation of patience is 2.37; the standard deviation of children number

is 1.09.
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Table 3: Patience and Children

(1) (2) (3) (4) (5)

VARIABLES totalChildren totalChildren totalChildren totalChildren totalChildren

HHpatience 0.027** 0.013*** 0.017*** 0.012*** 0.022***

(0.010) (0.004) (0.004) (0.004) (0.009)

HHage -0.024*** -0.021*** -0.030*** 0.017***

(0.001) (0.001) (0.001) (0.005)

lincome 0.414*** 0.274*** 0.175***

(0.016) (0.017) (0.035)

Observations 4,341 17,224 17,222 17,222 4,340

R2 0.004 0.176 0.256 0.336 0.312

Controls no no no yes yes

Ages 18-40 All All All 18-40

Robust standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1

Notes: Standard errors are clustered at the household level. Observations are weighted according to SOEP

individual person weights. lincome is the log of household post-government income. Controls are dummy variables

for whether an observation is male, the household head, married, widowed, divorced or separated.
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Table 4: Patience and Children: Age bins

(1) (2) (3)

VARIABLES totalChildren totalChildren totalChildren

HHpatience 0.010** 0.016*** 0.014***

(0.004) (0.004) (0.004)

mediumyoung 0.573*** 0.272*** 0.146***

(0.061) (0.062) (0.056)

mediumold 0.884*** 0.471*** 0.199***

(0.057) (0.060) (0.058)

old -0.056 -0.362*** -0.729***

(0.050) (0.052) (0.055)

lincome 0.420*** 0.312***

(0.017) (0.017)

Observations 17,224 17,222 17,222

R2 0.181 0.259 0.317

Controls yes yes yes

Robust standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1

Notes: Standard errors are clustered at the household level. Observations are weighted according to SOEP

individual person weights. lincome is the log of household post-government income. mediumyoung is a dummy

equal to 1 if 25 < HHage <= 35; mediumold is a dummy equal to 1 if 35 < HHage <= 45; and, mediumyoung

is a dummy equal to 1 if 45 < HHage. Controls are dummy variables for whether an observation is male, the

household head, married, widowed, divorced or separated.
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match the scss term in the main body of the text, we proceed as follows. We first calculate the

ratio of global consumption to global GDP in every year and then calculate the average of world

consumption shares for the years 2000-2018 which comes to 75%.

B.3 Calibrating the beta distribution

The annualized variance of generational discount factors We proceed in two steps to

calculate a global variance for individual discount rates. A natural source would be the Global

Preference Survey described in Falk et al. (2018). This cannot be used directly, however, as its

data is normalized (each preference variable has a zero global mean and unit standard deviation).

The GPS data is also based on responses to survey questions that are each focused on distinct

preference characteristics. This is problematic given the evidence in Andersen et al. and other

work that the joint-elicitation of time and risk preferences matters for measures of patience.

Andersen et al. (2008) report the standard error of their estimate for the discount rate, r. Since

β = 1
1+r in equilibrium, we need to express var

(
1

1+r

)
as a function of the mean E(r) and variance

var(r). We use a first-order Taylor expansion of the second moment of the transformed variable

to find var
(

1
1+r

)
= 1

(1+E(r))4 vart(r). Thus we use the time preference evidence in Andersen et al.

to ‘de-normalize’ the Falk et al. data by fixing the GPS variation across individuals in Denmark

to that found in the experiments. We then obtain a measure of the global variation across

individuals, having taken account of region-specific fixed effects. We find the mean standard

deviation across countries is 0.005.

The long run interest rate To find data on the long run interest rates we use the Credit Suisse

Global Investment Returns Yearbook (Elroy Dimson and Staunton, 2002). This publication

provides cumulative real returns from 1900 to 2015 for equities, bonds and treasury bills for

23 major economies that cover 98% of the world equity market in 1900 and 92% at the end of

2015. Furthermore, the yearbook provides an “all-country world equity index denominated in

a common currency, in which each of the 23 countries is weighted by its starting-year equity

market capitalization. (It) also compute(s) a similar world bond (and treasury) index, weighted

by GDP.”

For each country (c), year (t) and asset class (s), we are given a cumulative real return, Rs
c,t.

We then use this to calculate both the annual rate of return (rsc,t) and the annualized 25-year

generational rate of return (r̄sc,t) as:

rsc,t+1 =

(
Rs

c,t+1

Rs
c,t

)
− 1, (40)

and

r̄sc,t+25 =

(
Rs

c,t+25

Rs
c,t

) 1
25

− 1. (41)
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Table 5: Annual Rates of Return, un-weighted.

Asset N Mean Median Std p90/p10

Equities 2520 0.064 0.056 0.206 0.464

Bonds 2520 0.009 0.006 0.125 0.169

Treasuries 2520 0.016 0.012 0.129 0.248

Table 6: Generational Rates of Return (Annualized), un-weighted.

Asset N Mean Median Std p90/p10

Equities 1930 0.049 0.051 0.038 0.094

Bonds 1930 0.001 0.011 0.043 0.092

Treasuries 1930 0.004 0.010 0.054 0.119

Tables 5 and 6 show summary statistics for both the annualized and generational rates of return.

Notice that as usual returns are highest for equities. For annual data, it is also true that the

variation in returns is much higher in equities than in either bonds or treasuries. Generational

return on equities however (these are the annualized rates of return from making and holding

an investment for 25 years) still offer higher average rates of return than bonds or treasuries,

but are no longer as volatile - the variation in generational equity returns is either smaller or

indistinguishable from variation in returns on treasuries or bonds. This motivates why we choose

to calibrate our model to average, generational returns on equities - dynastic planners have a

long time horizon and rates of returns of equities over this horizon are higher than of bonds or

treasuries - and their variation is no higher.

The rate of return used in the calibration of the main body of the paper is obtained as follows.

We calculate the (weighted) generational rate of returns of the world equity index, r̄sW,t, in every

year and then find the average of the implied rates of return between 1975 and 2015 which is

equal to annualized 6.3%.
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C Model derivation

The following expands on elements of the model solution, as described in Sections 2-3.

Household Problem We can re-write the household consumer maximization problem (4) by

substituting out for N i
c,t and Xi

t so that the problem for each dynasty i becomes:

max
Ci

t ,K
i
t+1,N

i
t+1

∞∑
t=0

(βi)t
(
α log(Ci

t) + (1− α− βi) log(N i
t+1)

)
(42)

Ci
t +N i

t+1 + ptK
i
t+1 ≤ (wt + π)N i

t + (rt + pt)K
i
t . (43)

The first order conditions for this problem are given by:

λi
t =

α(βi)t

Ci
t

, (44)

(1− α− βi)(βi)t

N i
t+1

+ (π + wt+1)λ
i
t+1 = λi

t (45)

ptλ
i
t = (pt+1 + rt+1)λ

i
t+1, (46)

where, λi
t is the Lagrange multiplier on the constraint (43). Now, substituting out for λi

t in the

last two FOCs using the first FOC, we obtain:

(1− α− βi)

N i
t+1

+ (π + wt+1)
αβi

Ci
t+1

=
α

Ci
t

(47)

and
Ci

t+1

Ci
t

= βi pt+1 + rt+1

pt
. (48)

The above hold for all t ≥ 0 and for all i. Defining Rt+1 ≡ pt+1+rt+1

pt
we obtain equation (15) in

the main text.

Firm Problem From the firm’s problem in (5) we obtain the following first order conditions

for all t ≥ 0:

wt = (1− α)DKα
t N

−α
t (49)

and

rt = αDKα−1
t N1−α

t . (50)
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Population Euler Equation To derive equation (16) we proceed as follows. We re-write

FOC (6) as

N i
t+1 =

(1− α− βi)

α
(

Ci
t+1

Ci
t

− πβi − βiwt+1

)Ci
t+1,

and use the Euler Equation, (48), to substitute out for
Ci

t+1

Ci
t

to obtain and expression for N i
t+1:

N i
t+1 =

(1− α− βi)

αβi (Rt+1 − π − wt+1)
Ci

t+1.

Bringing the above equation forward one period in time we obtain:

N i
t+2 =

(1− α− βi)

αβi (Rt+2 − π − wt+2)
Ci

t+2.

Taking the ratio of these two equations and substituting for
Ci

t+2

Ci
t+1

from the Euler equation, (48),

we obtain:
N i

t+2

N i
t+1

= βiR̃t+2, (51)

where in the above R̃t+2 ≡ Rt+2
Rt+1−(wt+1+π)
Rt+2−(wt+2+π) . The above equation holds for all t ≥ 0. We can

also re-write it as:
N i

t+1

N i
t

= βiR̃t+1, (52)

where in the above R̃t+1 ≡ Rt+1
Rt−(wt+π)

Rt+1−(wt+1+π) , as long as t ≥ 1. This is equation (16) in the

main text.

Initial Population and Consumption To obtain equation (27) in the main text, we plug in

equation (18) into (6).

(1− α− βi)
(βi)tNi

1∑I
j=1(β

j)tNj
1

Nt+1

+ (π + wt+1)
αβi

(βi)t+1Ci
0∑I

j=1(β
j)t+1Cj

0

Ct+1

=
α

(βi)tCi
0∑I

j=1(β
j)tCj

0

Ct

, (53)

Simplifying and re-writing this expression relative to the highest discount factor among agents

results in:

(1− α− βi)
Ni

1∑I
j=1(

βj

βI )tNj
1

Nt+1

+ (π + wt+1)
α

Ci
0

βI
∑I

j=1(
βj

βI )t+1Cj
0

Ct+1

=
α

Ci
0∑I

j=1(
βj

βI )tCj
0

Ct

, (54)

Now as t → ∞ the above equation becomes:

(1− α− βi)
Ni

1

NI
1
Nss

+ (π + wss)
α

Ci
0

βICI
0
Css

=
α

Ci
0

CI
0
Css

. (55)

Then, substituting from the solutions of the steady state shown in equations (22)-(26) into the

above, for each i < I we can then show that:

Ci
0

CI
0

=
N i

1

N I
1

1− α− βI

1− α− βi
. (56)
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D Asymptotic results

D.1 Proof of Lemma 1

In the baseline calibration of the model we assumed a discrete number of types of agents. In this

section, we consider what happens when the number of types of agents approaches infinity, in

order to prove Lemma 1.

Lemma 1. If I → ∞ and dynastic discount factors are distributed according to a scaled-beta

distribution on (0, β̄) with shape parameters γt̄ and δt̄ for some period t̄, then dynastic discount

factors will also be distributed according to a scaled-beta distribution in period t̄+1 on (0, β̄) with

shape parameters γt̄+1 = γt̄ + 1 and δt̄+1 = δt̄.

Proof. Suppose that there are n dynasties with discount factors, βi, distributed evenly along a

grid so that β(i;n) = 2i−1
2n for i = 1, · · · , n. Notice that the distance between any two points is

simply: ∆(n) ≡ β(i + 1;n) − β(i;n) = 1
n . We define the following function: νt(β(i;n)) ≡ Ni

t

Nt ,

which maps the discount factor of a particular dynasty to the fraction of the total population of

that dynasty i at time t. Notice, that we can think of this function as a probability mass function

of a discrete random variable with realization, β(i;n), on the domain { 2i−1
2n |i = 1, · · · , n}. We

wish to characterize the evolution of the asymptotic function, νt(β(i;n))
∆(n) , over time as n → ∞ -

that is as the number of dynasties or types becomes infinite. The idea here is that although our

model will be solved numerically, and thus, we will always need to construct a grid and hence

choose a finite number of types, we wish to emphasize that the choice of the size of the grid

will be less and less relevant as long as it is relatively large. Furthermore, later we will wish

to calibrate the model at a particular point in time, and hence it will be useful to show that a

form of stability for the distribution function of types exists over time. This is easier to do in a

continuous setting than a discrete case.

For each agent i, we can re-write equation (16) as:

N i
t+1 = βiR̃t+1N

i
t . (57)

Summing these expressions over all agents, we obtain the following, Nt+1 = βiR̃t+1

∑n
j=1 β

jN j
t ,

which can also be written as:

Nt+1 = βiR̃t+1Nt+1

n∑
j=1

βjνnt (β
j). (58)

Dividing equation (57) by equation (58) we obtain:

νnt+1(β
i) =

βiνnt (β
i)∑n

j=1 β
jνnt (β

j)
. (59)

This recursive formulation defines the evolution of the probability mass function over time. We

are interested in the properties of this function as n → ∞. To aid us in this investigation, notice
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that the cumulative distribution function of βi at time t for a grid of size n is:

Fn
t (β

i) ≡
∑i

j=1 β
jνnt (β

j)∑n
j=1 β

jνnt (β
j)
. (60)

This also means that:

νnt (β
i) = Fn

t (β
i+1)− Fn

t (β
i) = Pn

t (β
i ≤ β ≤ βi+1). (61)

Given the above, notice that (59) can be re-written as:

νnt+1(β
i)

∆i(n)
=

βi ν
n
t (βi)
∆i(n)∑n

j=1 β
jPn

t (β
j ≤ β ≤ βj+1)

. (62)

Taking the limit of both sides of the above as n → ∞ we obtain the following expression:

ft+1(β) =
βft(β)

Et(β)
, (63)

where ft is the continuous probability density function corresponding to the discrete mass func-

tion νnt
13 and Et(β) ≡

∫ 1

0
uft(u)du = limn→∞

∑n
j=1 β

jPn
t (β

j ≤ β ≤ βj+1), is simply the mean

of the corresponding continuous random variable. Notice that the above functional equation

describes the evolution of the distribution of the limit function over time. It is easy to show

that a time invariant solution f(β) of the above does not exist (see appendix). Instead, we are

interested in a solution that takes the following form ft(β) ≡ f(β;θt), where θt is a vector of

potentially time varying parameters of the distribution f . In other words, we are looking for a

solution to the above that remains of a fixed type, with only its parameters changing.

Below, we show that one solution to the above functional equation is the beta distribution.

The probability density function of this distribution f is defined on (0, 1) and is assumed to have

two - in our case potentially time dependent - shape parameters, which we call γt > 0 and δt > 0.

Notice that this distribution has a probability density function given by:

ft(β;θt) ≡ f(β; γt, δt) =
(1− β)δt−1βγt−1

B(γt, δt)
, (64)

where B(γt, δt) is the beta function. The mean of this distribution is given by:

E(β; γt, δt) =
γt

γt + δt
. (65)

Using equations (63)-(65), we can write the pdf of discount factors at time t+ 1 as:

ft+1(β; γt, δt) =
(1− β)δt−1βγt

γt

γt+δt
B(γt, δt)

(66)

=
(1− β)δt−1βγt

B(1 + γt, δt)

= f(β; γt+1, δt+1)

13To see this, notice that limn→∞
νt(β(i;n))

∆(n)
= limn→∞

Ft(β(i+1;n))−Ft(β(i;n))
β(i+1;n)−β(i;n)

=

limn→∞
Ft(β(i;n)+∆(n))−Ft(β(i;n))

∆(n)
= F ′

t (β(i;n))
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where, γt+1 = 1 + γt and δt+1 = δt ≡ δ. The second equality follows from a Beta function

identity that B(1+x, y) = x
x+yB(x, y). Thus, one solution to the functional equation (63) is the

beta distribution with parameters given by γt+1 = 1 + γt and δt ≡ δ.

D.2 Asymptotic expression for the rate of interest

In the model, the mean discount factor influences the interest rate. Recall that

Rt+1 =
Ci

t+1/C
i
t

βi
=

(
κI
t+1(β

i)/∆(I)

κI
t (β

i)/∆(I)

)
Ct+1

Ct

βi
(67)

where κI
t (β

i) ≡ Ci
t/Ct. Note also that we can write:

κI
t (β

i)

∆(I)
=

βi

1−α−βi

νI
t (β

i)
∆(I)∑I

j=1
βj

1−α−βj νIt (β
j)
. (68)

Taking the limit of both sides of the above as I → ∞ we obtain the following expression:

fct(β) =

β
1−α−β ft(β)

Et(
β

1−α−β )
, (69)

where ft and fct are the continuous probability density function corresponding to the discrete

mass functions νIt and κI
t . Note also that using the relationship derived between ft+1(β) and

ft(β) in the Appendix we have the following expression:

fct+1(β)

fct(β)
= β

Et

(
β/(β̄ − β)

)
Et

(
β2/(β̄ − β)

) (70)

Taking the limit of both sides of (67) as I → ∞ we obtain:

Rt+1 =
Et

(
β/(β̄ − β)

)
Et

(
β2/(β̄ − β)

) Ct+1

Ct
. (71)

Note that over time the growth rate of aggregate consumption converges to 1. In particular

for high enough t the approximation Ct+1

Ct
≈ 1 holds. Consequently, we can write the following

expression for mean generational gross interest rates for high enough t:

Rt+1 ≈
Et

(
β/(β̄ − β)

)
Et

(
β2/(β̄ − β)

) . (72)

If we assume that the discount factors follow a beta distribution, then for high enough t we can

write the annualized net interest rate as:

R
1
25
t+1 − 1 ≈

(
γt + δt

β̄(1 + γt)

) 1
25

. (73)
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