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Abstract

We study identification and estimation of causal effects of a binary treatment in settings
with panel data. We highlight that there are two paths to identification in the presence
of unobserved confounders. First, the conventional path based on making assumptions on
the relation between the potential outcomes and the unobserved confounders. Second, a
design-based path where assumptions are made about the relation between the treatment
assignment and the confounders. We introduce different sets of assumptions that follow
the two paths, and develop double robust approaches to identification where we exploit
both approaches, similar in spirit to the double robust approaches to estimation in the
program evaluation literature.
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1 Introduction

Panel data are widely used to assess causal effects of policy interventions on economic out-

comes. These data are particularly useful in settings where there is substantial heterogeneity

both between units at the same point in time, as well as heterogeneity over time within units.

Fundamentally the presence of panel data allows for two conceptually different comparisons to

estimate causal effects. First, we can compare treated and control outcomes for the same unit

at different points in time, that is, make across-time within-unit comparisons. Such compar-

isons are not possible in cross-section settings. Second, following approaches in cross-sectional

settings, we can compare treated and control outcomes at the same point in time for different

units, i.e., within-period across-unit comparisons. In that case, we use the panel data simply

to allow for a richer set of controls than we would use in a cross-section setting. Different sets

of assumptions justify the two approaches. In practice, researchers often make assumptions

that simultaneously justify both types of comparisons. For example, many empirical papers

use a linear two-way fixed effect specification that implicitly justifies both the within-unit and

within-period comparisons:

Yit = αi + λt + τWit + β>Xit + εit. (1.1)

Here Wit is an indicator for the treatment, with τ the causal effect of interest, and Xit are the

time-unit specific control variables. In this specification, the αi capture the permanent unit-

specific effects, and the λt capture the common time effects. After removing the unit and time

fixed effects, we can compare outcomes for treated units both to outcomes for the same unit in

time periods where the unit was not treated, or to control units in the same time period.

In this paper, we take a different perspective, building on the program evaluation or causal

inference literature. We start with the assumption that conditional on an unobserved unit-

specific variable Ui (possibly vector-valued), the T -component vector of treatment assignments

over time for unit i, W i, with t-th element equal to Wit, is independent of the vector of potential

outcomes Y i(w):

W i ⊥⊥
{
Y i(w)

}
w

∣∣∣ Ui. (1.2)
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This assumption has no immediate content because we can make it hold by construction by

setting Ui equal to the vector of assignments W i. Nevertheless, it clarifies what the issue is and

why cross-section data alone are not sufficient: there is an unobserved variable Ui that invali-

dates comparisons of observed outcomes by treatment status because this unobserved variable

is correlated both with the potential outcomes and with the treatment assignment. Although

it is not always articulated in this form implicitly this conditional independence assumption is

made in many of the approaches to identification in panel data settings used in the empirical

literature.

For the case where (in contrast to the case we consider in the current paper) (1.2) holds with

Ui observed, the program evaluation literature has developed a number of effective methods

for estimating the average causal effect of Wit on Yit (see Imbens [2004], Abadie and Cattaneo

[2018] for reviews). One approach is to remove the association between Ui and the treatment

Wit by using the propensity score either through weighting or through conditioning. Second,

one can transform the outcome by removing the association between the outcome and Ui. This

is typically done by subtracting from the outcome the conditional mean of the outcome Yit

given Ui. Third, and most effectively, one can use double robust methods and combine the

propensity score adjustment and the outcome modeling/transformation. These methods inspire

the proposals developed in the current paper for the case where Ui is not observed.

In the case where Ui is not observed one has to make additional assumptions to ensure

point-identification. For the most part, applied researchers have been focusing on making as-

sumptions regarding the relationship between the outcome and the unobserved characteristic.

This approach is natural, often follows directly from an economic model, and is supported by

the econometric theory (see, e.g., the surveys: Chamberlain [1984], Arellano and Honoré [2001],

Arellano [2003], Arellano and Bonhomme [2011]). At the same time, such restrictions are very

different from (1.2) because they are not motivated by a model of W i (model of assignment).

The point that we are making in this paper is that a model for W i provides an alternative path to

identification argument, and, moreover, it can be considered separately from the model for the

outcome. We show that with panel data, one can base the identification argument on either

the outcome model or the assignment model being correct. This is where our approach differs

conceptually from the double robust estimation literature. Here both the design assumptions

and the outcome modeling approaches are used in the identification stage.

First, analogous to the outcome modeling, we can use models and assumptions to motivate a
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transformation of the potential outcomes such that the unobserved component is independent of

the transformed potential outcomes, and the transformed outcomes themselves are informative

about the causal effect of interest. Formally,

Ui ⊥⊥ g

({
Y i(w)

}
w

)
, (1.3)

for some function of the potential outcomes g(·), possibly after some conditioning. Many meth-

ods used in the empirical literature, including the two-way fixed effect estimator, can be thought

of as fitting in this approach. For example, consider a two-period setting. The two-way fixed

effect estimator transforms the outcomes by taking differences, e.g., in the two period case

∆i = g(Y i(w)) = Yi2(w) − Yi1(w), so that ∆i is free of dependence on the unobserved compo-

nent Ui.

The second approach is design-based, where the goal is to find a set of conditioning vari-

ables Si that removes the association between the treatment assignment and the unobserved

component analogous to the propensity score approach.

Ui ⊥⊥ W i

∣∣∣ Si. (1.4)

A version of this assumption has been used in the panel literature before (e.g., the exchangeabil-

ity assumption in Altonji and Matzkin [2005] or the exponential family assumption in Arkhangel-

sky and Imbens [2018]). In this paper, we argue that it holds for a variety of models that have

been commonly used for binary data (e.g., Honoré and Kyriazidou [2000], Chamberlain [2010],

Aguirregabiria et al. [2018]). In principle, the two-way fixed effect estimator can also be thought

of as following this approach by comparing treated and control units at the same time within the

set of units with the same fraction of treated periods, that is, conditioning on Si =
∑T

t=1Wit.

However, as a general approach to identifying treatment effects in a panel data setting, this

design-based approach that is common in the treatment effect literature has not been explored,

and we do so in the current paper.

Third, we explore robust versions where we combine outcome modeling and assumptions

on the assignment mechanism. Essentially there we develop models that justify (1.3) for some

transformation, and models that justify (1.4) for some conditioning variables Si, and then con-

sider strategies that only require that the independence in (1.3) holds within subpopulations
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defined by Si:

Ui ⊥⊥ g

({
Y i(w)

}
w

) ∣∣∣ Si. (1.5)

The paper fits in with the recent literature on causal inference in panel data settings,

including the closely related synthetic control literature (Abadie et al. [2010], Arkhangelsky

et al. [2019], Xu [2017], Ben-Michael et al. [2018]) difference in differences methods (de Chaise-

martin and D’Haultfœuille [2018], Goodman-Bacon [2017], Athey and Imbens [2018], Athey

et al. [2017]), and fixed effect methods (Imai and Kim [2019], Arkhangelsky and Imbens [2018]).

1.1 Notation

For p ∈ [1,∞] we use Lp (P) to denote the space of all random variables X that satisfy

E[‖X‖p]
1
p < ∞. For any two random variables X1, X2 ∈ Lp (P) we use ‖X1 − X2‖p to denote

the Lp(P) distance. For a random sample {Xi}ni=1 and any real-valued functions f1, f2 : X → R
we define:

Pnf1(Xi) :=
1

N

N∑
i=1

f1(Xi)

‖f1 − f2‖n,p = (Pn (f1(Xi)− f2(Xi))
p)

1
p

(1.6)

For a matrix A we use σmin(A) to denote its smallest singular value.

2 Setup

We observe N units over T periods (i and t being a generic unit and period, respectively).

We focus on settings with large N and fixed T . We are interested in the effect of a binary

policy variable w on some economic outcome Yit. To formalize this we consider a potential

outcome framework (Imbens and Rubin [2015]). The policy can change over time, and so is

indexed by unit i and time t, Wit ∈ {0, 1}. Let wt ≡ (w1, w2, . . . , wt) denote the sequence of

treatment exposures up to time t, with w as shorthand for the full vector of exposures wT .

Define W i ≡ (Wi1, . . . ,WiT ) to be the full assignment vector for unit i. For the first part of the

paper we assume that researchers do not observe additional unit-level covariates and explicitly
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introduce them in Section 4. In general, one can view all our identification results as conditional

on covariates.

Let Yit(w
t) denote the potential outcome for unit i at time t, given treatment history up to

time t wt:

Yit(w
t) ≡ Yit(w1, w2, . . . , wt). (2.1)

In this paper we consider a static version of this general model.

Assumption 2.1. (No Dynamics) For arbitrary wt(1) and wt(2) such that wt1 = wt2 we have

the following:

Yit(w
t
(1)) = Yit(w

t
(2)) (2.2)

This restriction implies that past treatment exposures do not affect contemporaneous out-

comes. This assumption does not restrict time-series correlation in the realized outcomes and

so on its own does not have any testable implications. However, given a particular assignment

process, Assumption 2.1 can be tested. Since a substantial part of the empirical literature fo-

cuses on contemporaneous effects and assumes away dynamic effects, we view this as a natural

starting point. The issues we raise are relevant for the dynamic treatment effect case as well

but are discussed most easily in the static case.

Given the no-dynamics assumption we can index the potential outcomes by a single binary

argument w, so we write Yit(w), for w ∈ {0, 1}. In this setup we can be interested in various

treatment effects. Define individual and time-specific treatment effects:

τit ≡ Yit(1)− Yit(0) (2.3)

We focus primarily on average treatment effects, typically a convex combination of individual

effects τit. Define also Y i(w) ≡ (Yi1(w1), . . . , Yit(wT )) to be the vector of potential outcomes.

We make two additional assumptions. First, we restrict out attention to settings with strictly

exogenous covariates (e.g., Arellano [2003]) and make the following assumption:

Assumption 2.2. (Latent Unconfoundedness) There exist a random element Ui ∈ U such
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that the following conditional independence holds:

W i ⊥⊥
{
Y i(w)

}
w

∣∣∣ Ui (2.4)

This assumption effectively says that once we control for Ui, then all the differences in

the treatment paths W i across units are unrelated to the potential outcomes. This type of

assignment should be contrasted with the sequential assignment where Wit can depend on past

outcomes and latent characteristics. See Arellano [2003] for a discussion in the linear case.

On its own Assumption 2.2 is not restrictive because we allow Ui to be unobserved: we can

mechanically choose Ui = W i so that this assumption is satisfied by construction. There are

multiple papers that essentially follow this road, going back at least to Chamberlain [1992] (also

see Chernozhukov et al. [2013] for a very general version of this approach).

We view Ui as a unit characteristic that we need to control for if we wish to compare

outcomes across units. We formalize this by making the following assumption on the (infeasible)

generalized propensity score (Imbens [2000]) that ensures that in principle such comparisons are

possible.

Assumption 2.3. (Latent Overlap) Define the infeasible generalized propensity score:

rinf(w, u) ≡ pr(W i = w|Ui = u). (2.5)

For any u ∈ U:

max
w
{rinf(w, u)} < 1 (2.6)

This assumption essentially says that in the population there exist units with the same Ui

but different values of W i. This type of assumption is common in the (cross-section) program

evaluation literature: without such an overlap assumption even if we observed Ui we would not

be able to identify the average causal effect of the treatment without functional form restrictions.

However, this latent overlap assumption is not always maintained in the panel literature. For

example, if only time-series variation is used to make causal statements, then one does not

need to make Assumption 2.3. Of course, this comes at a cost – one has to restrict the way

potential outcomes can change over time. At the same time, if one also wants to exploit the
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cross-sectional variation, then some version of Assumption 2.3 appears to be unavoidable, but

the outcome model can be more flexible compared to the approaches that rely on over-time

comparisons.

3 Double Robustness Identification

3.1 Preliminaries

Before we consider identification in various models we need to define additional objects. Let W

be the support of the vector of assignments W i; we can think of W as a matrix with at most 2T

rows and T columns, where each row is an element of the support of W i. Let Wk be a k row of the

matrix W – a T -dimensional vector of zeros and ones. Let πk ≡ pr(W i = Wk) = E
[
1W i=Wk

]
.

All πk are positive, otherwise the corresponding row of W can be dropped. Let K be the number

of rows in W .

For example, if T = 3 then W can have the following form:

W =


0 0 0

1 0 1

0 1 1

1 1 1

 (3.1)

Each row of this matrix represents a possible assignment, and in this particular case only 4 out

of the 23 = 8 possible combinations have positive probability. For a particular unit i, let k(i)

be the row Wk of W such that Wk = W i. For the identification argument we assume we know

W and the probabilities πk and consider estimation in Section 4.

We are interested in estimating weighted averages of the treatment effects τit. Our estimators

will be linear in Y , with weights that depend on W i:

τ̂ =
1

NT

N∑
i=1

T∑
t=1

ωitYit.

Choosing an estimator therefore corresponds to choosing a set of weights ωit. We maintain

throughout this section the no-dynamics assumption (Assumption 2.1), latent unconfoundedness
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assumption (Assumption 2.2), and latent overlap (Assumption 2.3).

3.2 Three Estimation Strategies with Observed Confounders

As discussed briefly in the introduction, the latent unconfoundedness assumptiwon can be ex-

ploited in two directions. To build intuition, it is useful to briefly make an analogy to the

conventional unconfoundedness case with observed confounders, in a cross-section setting.

Suppose we have unconfoundedness (Rosenbaum and Rubin [1983]) with an observed con-

founder Xi. Here we use its weak form (Imbens [2000]):

1Wi=w ⊥⊥ Yi(w)
∣∣∣ Xi, ∀w. (3.2)

In that case researchers have followed two approaches. One is to exploit the propensity score

result that (irrespective of whether (3.2) holds),

1Wi=w ⊥⊥ Xi

∣∣∣ pr(Wi = w|Xi), (3.3)

where pr(Wi = w|Xi) is the generalized propensity score. (3.2) and (3.3) combined imply that

conditional on the generalized propensity score we have

1Wi=w ⊥⊥ Yi(w)
∣∣∣ pr(Wi = w|Xi). (3.4)

Thus, we can conditioning on a variable, here pr(Wi = w|Xi) such that the association of the

treatment indicator, here 1Wi=w and the variable we originally need to condition on, here Xi,

vanishes.

A second approach is to transform the potential outcomes. Define the conditional ex-

pectations µ(w, x) ≡ E[Yi(w)|Xi = x) and e(Xi) ≡ pr(Wi = w|Xi). We do not actually

need the full independence assumption in (3.2), only the mean-independence since it implies,

E[Yi(w)|1Wi=w, Xi] = E[Yi(w)|Xi]. Now define

Ỹi(w) ≡ g(Yi(w)) ≡ Yi(w)− µ(w, x)− E[e(Xi)]
Wi(1− E[e(Xi)])

1−Wi

e(Xi)Wi(1− e(Xi))1−Wi

(
µ(1, Xi)− µ(0, Xi)

)
.

This transformation of the potential outcomes does not change mean-indepence of Ỹi(w) and
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1Wi=w conditional on Xi, and we have

E[Ỹi(w))|Wi, Xi] = E[Ỹi(w)|Xi].

Hwever, for this transformed outcome we have something much stronger. Here we do not need

the conditioning on Xi to have the result that the expected value is free of dependence on Wi,

and mean-independence holds without conditioning on Xi:

E[Ỹi(w))|Wi = 1] = E[Ỹi(w)|Wi = 0] = E[Ỹi(w)] = E[Yi(1)− Yi(0)].

We can combine these two approaches and estimate

E[Ỹi(1)|Wi = 1, e(Xi)], and E[Ỹi(0)|Wi = 0, e(Xi)],

and average the difference over the marginal distribution of e(Xi). This will have double ro-

bustness properties.

The first insight that we take to the panel data case is that we can either use the conditional

distribution of the assignment given the confounder to remove biases associated with a direct

comparison of treated and control units, or we can remove the dependence of the outcomes on

the confounder. This general strategy works whether the confounder is observed or not, but

implementing the two approaches is a bigger challenge if the confounder is not observed, and we

need to make additional assumptions in order to do so. The second insight is that combining

these two approaches may lead to more robust estimates of the treatment effects.

3.3 Double Robust Identification – An Example

In this section we consider a simple example that illustrates the main message of the paper. For

simplicity we start assuming that τit = τ – constant treatment effects – and no covariates Xi.

At the end of the section we discuss heterogenity in treatment effects. We introduce covariates

in Section 4.

Consider the case with three periods and suppose that the distribution of W i is given by

Table 1. A researher wants to use a standard fixed effects model and runs the following regression
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Table 1: Assignment process and weights

P(W i) W1 W2 W3 ω
(fe)
1 (W i) ω

(fe)
2 (W i) ω

(fe)
3 (W i)

0.09 0 0 0 0.46 -0.64 0.18
0.04 1 0 0 5.70 -3.26 -2.44
0.11 0 1 0 -2.16 4.60 -2.44
0.14 1 1 0 3.08 1.98 -5.07
0.07 0 0 1 -2.16 -3.26 5.42
0.08 1 0 1 3.08 -5.88 2.80
0.15 0 1 1 -4.78 1.98 2.80
0.32 1 1 1 0.46 -0.64 0.18

(in population):

Yit = αi + λt + τ feWit + εit

E[εit|W i, αi] = 0
(3.5)

Usual OLS logic implies that τ fe has the following representation:

τ fe = E[Yitω
(fe)
t (W i)] (3.6)

where ω
(fe)
t (W i) are fixed effects weights that depend only on the distribution of W i. For the

distribution given above the weights are presented in Table 1. By construction these weights sum

up to 0 for every row and every column (once reweighted by the probabilities). If the two-way

model is correctly specified than the estimator based on a sample analog of these weights has

excellent statistical properties (see e.g., Donoho et al. [1994], Armstrong and Kolesár [2018b], and

references therein). At the same time, such estimator is not entirely satisfactory. In particular,

assume that the assignment is random conditional on W i ≡ 1
T

∑T
t=1Wit:

W i ⊥⊥
{
Y i(w)

}
w

∣∣∣ W i (3.7)

In this case, the relevant outcome model has the following structure:

Yit = ht(W i) + τWit + ξit

E[ξit|W i] = 0
(3.8)
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The estimator based on the fixed effect weights is consistent if the following condition is satisfied

for every t and W i:

E[ω
(fe)
t (W i)|W i] = 0 (3.9)

Table 2 shows that this is not true for the given distribution of W i. As a result, if the outcome

Table 2: Aggregated weights

W i E[ω
(fe)
1 (W i)|W i] E[ω

(fe)
2 (W i)|W i] E[ω

(fe)
3 (W i)|W i]

0 0.46 -0.64 0.18
1 -0.73 0.60 0.13
2 -0.08 0.36 -0.28
3 0.46 -0.64 0.18

model is given by (3.8) then the fixed effect weights will give us an inconsistent estimator. This

is not surprising because ω
(fe)
t (W i) are not constructed to deal with such outcome models.

At this point, it is natural to ask whether we can achieve both goals simultaneously, i.e.,

can we find the weights that “work” if either the fixed effect model (3.5) or the design process

(3.7) is correctly specified? The answer is positive and the weights that satisfy this restriction

are given in Table 3. It is evident that the weights some up to zero for each row and simple

Table 3: Doubly robust weights

ω
(dr)
1 (W i) ω

(dr)
2 (W i) ω

(dr)
3 (W i)

0.00 0.00 0.00
6.59 -3.95 -2.64

-1.46 4.10 -2.64
3.24 1.66 -4.90

-1.46 -3.95 5.42
3.24 -6.39 3.15

-4.81 1.66 3.15
0.00 0.00 0.00

calculation shows that E[ω
(dr)
t (W i)|W i] = 0 for every t and W i. As a result, there is no trade-off

in terms of identification and we can construct the estimator that works for both models.

So far we have assumed that the treatment effects are constant. This assumption is very

strong and it is well documented that two-way estimators have problems in case with heteroge-

nous treatment effects (e.g., see de Chaisemartin and D’Haultfœuille [2018]). This is evident
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after looking at Table 1: in the last row we assign negative weight to treated units in the second

period. In contrast to this, all treated units receive non-negative weight when we use doubly

robust weights from Table 3. This is not a coincidence and below we discuss a procedure that

guarantees that this property is satisfied.

3.4 Identification Through the Outcome Model

First we consider outcome models. Recall that by the no-dynamics assumption the potential

outcomes Yit(w) are indexed by a binary treatment w. A common outcome model that goes

back at least to Chamberlain [1992] is the following one:

Assumption 3.1. The potential outcomes satisfy:

E[Yit(w)|Ui] = α(Ui) + λt + τ(Ui)w. (3.10)

Given Assumption 2.2 the content of this model is that it restricts the time-dependency of

the conditional mean of the control outcome and the treatment effect. Rewriting the model we

can see that more directly. The conditional control mean is

E[Yit(0)|Ui] = α(Ui) + λt,

which is restricted to be additively separable in time, and the conditional treatment effect is

E[τit|Ui] = τ(Ui),

which is restricted to be time-invariant.

We are interested in identifying a convex combination of the heterogenous treatment effects

τ(Ui) (which itself is a convex combination of τit) in this model. We do this by using the weights

ωkt that satisfy the following restrictions:

1

T

K∑
k=1

T∑
t=1

πkωktWkt = 1, ∀k, 1

T

∑
t

ωktWkt ≥ 0

∀k, 1

T

T∑
t=1

ωkt = 0, ∀t,
K∑
k=1

πkωkt = 0

(3.11)
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Let Woutc be the set of weights {ωtk}t,k that satisfy these restrictions. We can evaluate these

restrictions and thus we can construct this set. For any generic element ω ∈ Woutc define the

random variables ωk(i)t:

ωk(i)t ≡
K∑
k=1

ωkt{W i = Wk} (3.12)

Using these stochastic weights we can compute the following expectation:

τ(ω) = E

[
1

T

T∑
t=1

Yitωk(i)t

]
(3.13)

Proposition 1. Suppose Assumptions 2.1, 2.2, and 3.1 hold, and that ω ∈ Woutc. Then τ(ω)

is a convex combination of τ(Ui).

As a result, a certain convex combination of τ(Ui) can be identified whenever Woutc is non-

empty. A natural question when this is the case. The answer is quite simple: the matrix W

should contain at least one of the following three submatrices (up to permutations):

W1 =

0 1

0 0

 , W2 =

1 1

0 1

 , W3 =

0 1

1 0

 . (3.14)

Consider each of these three cases separately. In the first case there are adoptors of the treatment

with (Wit = 0,Wit+1 = 1) and in the same periods t and t + 1 non-adoptors with (Wit =

0,Wit+1 = 0). In the second case there are adoptors of the treatment with (Wit = 0,Wit+1 = 1)

and in the same periods t and t + 1 units who have already adopted and keep the treatment,

with (Wit = 1,Wit+1 = 1). In the last case there are adopters with (Wit = 0,Wit+1 = 1) and

units who switch out with (Wit = 1,Wit+1 = 0). To put this discussion in perspective, it is not

sufficient to have assignment matrices of the type

W4 =

0 0

1 1

 , W5 =

0 1

0 1

 ,

where with the first design some units are always in the control group and all others are always
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in the treatment group, and where with the second design all units adopt the treatment at

exactly the same time.

3.5 Identification Through Design

In this section we consider assignment processes that satisfy a certain sufficiency property. We

state it as a high-level assumption and then show examples of economic models that satisfy this

assumption:

Assumption 3.2. (Sufficiency) There exist a known W i-measurable sufficient statistic Si ∈
S and a subset A ⊂ S such that: (i)

W i ⊥⊥ Ui

∣∣∣ Si, (3.15)

and (ii), for all s ∈ A:

max
w
{r(w, s)} < 1. (3.16)

where r(w, s) is the feasible generalized propensity score:

r(w, s) ≡ pr(W i = w|Si = s). (3.17)

This assumption might look restrictive, but an Si such that conditional on Si the treatment

W i and the unboserved variable Ui are independent always exists, namely Sgen
i ≡ fU |W (·|W i),

where fU |W (x|y) is the conditional distribution of Ui given W i. In general, Sgen
i is an infinite-

dimensional object (a function) and is unknown, because fU |W (x|y) is unknown. As a result,

the first restriction that we make in Assumption 3.2 is that Si is known. Part (ii) does not

allow for Si = Sgen
i because we require W i to have a non-generate distribution given Si. Below

we consider various assignment models that are common in the empirical panel data literature

and demonstrate that in all of them there exist Si that one can easily compute.

The main implication of the Assumption 3.2 coupled with Assumption 2.2 is summarized in

the following proposition:
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Proposition 2. Suppose Assumptions 2.1, 2.2, and 3.2 hold. Then for any w:

1W i=w
⊥⊥ Y i(w)

∣∣∣ Si. (3.18)

This proposition demonstrates that unconfoundedness conditional on Ui can be transformed

into undonfoundedness conditional on Si under the additional assumption that restricts the

assignment process.

The assignment models that we consider in this section are restrictive, in a sense that they

must satisfy Assumption 3.2. At the same time, most of the models for the binary time-

series process Wit that are used in the applied and theoretical literature actually satisfy these

restrictions (see, e.g., Honoré and Kyriazidou [2000], Chamberlain [2010], Aguirregabiria et al.

[2018]). In fact, in certain cases existence of a sufficient statistic is a necessary requirement for

estimation of common parameters (e.g., Magnac [2004]). This is especially relevant, because

many of such models have an underlying economic intuition and can be interpreted as models

of optimal choice.

We are not interested in estimating common parameters of the model for W i, which is the

standard object in non-linear panel analysis. Instead, we only require that the conditional

distribution of W i admits a certain representation. Parameters of this representation are not

identified with fixed T , but they do not play any role in Proposition 2, which is the only result

that we need.

Static model. As a first example that we consider a static logit model with heterogeneity

over time. Formally, we consider the following model:

E[Wit|Ui] =
exp(αT (Ui)ψ(t) + λt)

1 + exp(αT (Ui)ψ(t) + λt)

Wit ⊥⊥ {Wil}l 6=t
∣∣∣ Ui (3.19)

where ψ(t) is a known function of t. It is easy to demonstrate that in this model

Si =
T∑
t=1

ψ(t)Wit/T.
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This model is a generalization of the standard fixed-effects logit model analyzed in Chamberlain

[2010]. �

Dynamic model. Next we consider a time homogenous Markov model:

E[Wit|Ui,W t−1
i ] =

exp(α(Ui) + γ(Ui)Wit−1)

1 + exp(α(Ui) + γ(Ui)Wit−1)

Wit ⊥⊥ {Wil}l>t
∣∣∣ Ui,W t−1

i

(3.20)

In this model

Si =

(
T−1∑
t=2

Wit,
T∑
t=2

WitWit−1,Wi1,WiT

)
.

�

General case For sufficiency we need the following representation for the conditional distri-

bution of W i:

log (P(W i|Ui)) = S(W i)
>α(Ui) + β(Ui) + γ(W i) (3.21)

where S(·) is a known function of W i. All previous examples have this representation. More

generally, Aguirregabiria et al. [2018] show that this structure arises in flexible models of dynamic

choice. �

Let Si be a potential sufficient statistics. Let W s be a matrix representation of the support

of W i conditional on Si = s and W s
k be a generic row (element of the support). For example, if

Si =
∑

tWit and W is given by (3.1) then Si takes 3 possible values and we have the following:
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W 0 =
(

0 0 0
)

W 2 =

1 0 1

0 1 1


W 3 =

(
1 1 1

)
(3.22)

When considering identification strategy based on design assumptions we do not restrict

potential outcomes, but instead require that assumptions behind Proposition 2 are satisfied. In

this case, one can identify a convex combination of individual treatment effects using the weights

that satisfy the following restrictions (for all k, s and t):

1

T

∑
tk

πkωktWkt = 1

∑
k:Wk∈W s

πkωktWkt ≥ 0

∑
k:Wk∈W s

πkωkt = 0

(3.23)

Let Wdesign be the set of weights {ωtk}t,k that satisfy these restrictions. It is easy to see that

Wdesign is nonempty whenever there exists at least one s such that Ws contains at least two

rows. This is guaranteed by the second part of Assumption 3.2. For any ω ∈Wdesign define the

random variables ωk(i)t in the same way as before and consider the following expectation:

τ(ω) = E

[
1

T

T∑
t=1

Yitωk(i)t

]
(3.24)

Proposition 3. Suppose Assumptions 2.1, 2.2, 2.3, and 3.2 hold, and that ω ∈ Wdesign. Then

τ(ω) is a convex combination of treatment effects.

3.6 Double robustness

The sets of Woutc and Wdesign are motivated by different models and in general do not need to

be similar. In some sense, one can say that the weights in Woutc target within-unit comparisons,
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while those in W2 target within-period comparisons. This interpretation is convenient, but is

not entirely correct because in general Woutc∩Wdesign is not empty. Consequently, one does not

need to take a stand on what comparisons to use: those based on looking at the same units

across time or at different units for a fixed time period. As a result, we suggest using the weights

in Woutc ∩Wdesign. In fact, we restrict this set even further and define the following one:

Wdr ≡ {ω}

subject to:
1

T |W |
∑
tk

πkωktWkt = 1,
1

T

T∑
t=1

ωkt = 0

∑
k:Wk∈W s

πkωkt = 0, ωktWkt ≥ 0

(3.25)

Denote this set by Wdr, and note that Wdr ⊂ (Woutc ∩Wdesign). The difference between Woutc ∩
Wdesign and Wdr is quite small – we simply impose the additional restriction that every treated

unit receives a non-negative weight. Note that neither weights in Woutc nor in Wdesign in general

satisfy this restriction. This is important in practice, because we want to be robust to arbitrary

heterogeneity in treatment effects.

When is the set Wdr non-empty? Combining earlier discussion of Woutc and Wdesign it is easy

to see that a necessary and sufficient condition for Wdr to be non-empty is that there exists an

s such that the corresponding W s contains at least one of the following two sub-matrices (up

to permutations):

W1 =

0 1

1 0

 W3 =

0 1

0 0

 (3.26)

In particular, note that the matrix W2 from (3.14) is not sufficient. The reason for this is that

we require the weights for treated units to be non-negative and sum up to zero for each row.

This implies that the first row should receive a zero weight and thus we cannot make cross-

sectional comparisons. The requirement for W s to contain these sub-matrices is in general

more demanding than the second part of Assumption 3.2. At the same time, if Si includes W i

then for any s, W s can contain W3 only if it contains W1 and this is equivalent to the overlap

condition.
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Finally we can state the main identification result. The following theorem is a direct conse-

quence of Propositions 1 and 3:

Theorem 1. Suppose Assumptions 2.1, 2.2, and 2.3 hold, and either 3.1, or Assumption 3.2,

or both hold. Then for any ω ∈ Wdr, the estimand τ(ω) is a convex combination of treatment

effects.

4 Estimation and inference

4.1 Statistical framework

We assume that we observe a random sample {Y i,W i, Xi}Ni=1 from some distribution P with T

(number of periods) being fixed. We assume that a researcher has constructed sufficient statistics

Si ≡ S(W i, Xi) based on a design model. We maintain Assumption 2.1 and additionally restrict

the outcome model:

Assumption 4.1. For each t one of the following outcome models is correct. Either there exist

a sufficient statistic Si such that the following is true:

Yit(0) = βt + ψ0(Xi, t)
>δ + ψ1(Xi, Si, t)

>γ + ξit

E[ξit|Xi, Si] = 0

(ξi1, . . . ξiT ) ⊥⊥ W i|Xi, Si

(4.1)

or Ui = (W i, Xi) and we have the following:

Yit(0) = α(W i, Xi) + βt + ψ0(Xi, t)
>δ + εit

E[εit|Xi,W i] = 0
(4.2)

where ψ0(Xi, t) and ψ0(Xi, Si, t) are known p-dimensional functions.

This assumption allows for our design model to be correct, so that we only need to control

for (Si, Xi), or the more traditional fixed effects model to be correct. We do not impose any

restrictions on Yit(1) and thus on heterogeneity in treatment effects. For simplicity we assume

that in both cases the conditional expectations are linear in parameters with respect to a known
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finite-dimensional dictionary. Since all our identification results hold conditional on Xi this

assumption is not necessary and the estimation procedure below can be adopted to allow for

unknown ψ0 and ψ1. At the same time, we believe that our estimator is a natural alternative for

the current status quo which is a two-way fixed effect model estimated by OLS which is based

on (4.2). We leave further nonparametric generalizations to future work.

4.2 Estimator

Our estimator is defined in the following way:

τ̂ :=
1

NT

∑
it

ω̂itYit (4.3)

where the weights {ω̂it}it solve the optimization problem:

{ω̂it}it = arg min
{ωit}it

1

(NT )2

∑
it

ω2
it

subject to:
1

nT

∑
it

ωitWit ≥ 1

1

T

∑
i

ωit = 0

1

N

∑
t

ωit = 0

1

NT

∑
it

ωitψ(Xi, Si, t) = 0

ωitWit ≥ 0

(4.4)

where we define ψ(Xi, Si, t) := (ψ0(Xi, t), ψ1(Xi, Si, t)). At the optimum the first inequality

is binding and we write it down in this form to simplify the dual representation below. The

weights ω̂it are related to standard OLS fixed effects weights, but here we are explicitly looking

for weights that balance out functions of Si, not only fixed attributes Xi, and satisfy certain

inequality constraints. The last restriction is crucial, because it is well documented that the

standard OLS estimators with fixed effects in general do not correspond to reasonable estimands

if the effects are heterogeneous (see e.g., de Chaisemartin and D’Haultfœuille [2018]).

It is natural to ask if the weights that solve the problem above exist. In Lemma A.1 we show
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that a necessary and sufficient condition for the existence is that the control and treated units

satisfy a certain overlap condition. In particular, there is no {λi, µt, γ}i,t such that the following

is true:

λi + µt + ψ>itγ ≥ 0

Wit = {λi + µt + ψ>itγ > 0}
(4.5)

This is a very mild overlap condition that is likely to be satisfied for any reasonable assignment

process.

Our estimator fits naturally into recent theoretical literature on balancing weights (e.g.,

Imai and Ratkovic [2014], Zubizarreta [2015], Athey et al. [2016], Hirshberg and Wager [2017],

Chernozhukov et al. [2018a,b], Armstrong and Kolesár [2018a]). The main technical difference

between our approach and the ones proposed in the literature is that we need to balance unit-

specific functions and explicitly impose non-negativity constraints. At the same time, we only

balance a small parametric class of functions of (Xi, Si), while others consider much more general

functional classes. We leave this generalization to future research.

4.3 Dual representation

The Lagrangian saddle-point problem for the program (4.4) has the following form:

inf
ωit

sup
λ(t),λ(i),γ,µit≥0,π≥0

1

(NT )2

∑
it

ω2
it +

1

N

∑
i

λ(i)

(
1

T

∑
i

ωit

)
+

1

T

∑
t

λ(t)

(
1

N

∑
t

ωit

)
+ π

(
1− 1

NT

∑
it

ωitWit

)
−

γ>

(
1

NT

∑
it

ωitψit

)
− 1

NT

∑
it

µitωitWit (4.6)
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where we use ψit as a shorthand for ψ(Xi, Si, t). In Lemma A.1 we show that strong duality

holds and we can rearrange the minimization and maximization:

sup
λ(t),λ(i),γ,µit≥0,π≥0

inf
ωit

1

(NT )2

∑
it

ω2
it +

1

N

∑
i

λ(i)

(
1

T

∑
i

ωit

)
+

1

T

∑
t

λ(t)

(
1

N

∑
t

ωit

)
− π

(
1

NT

∑
it

ωitWit − 1

)
−

γ>

(
1

NT

∑
it

ωitψit

)
− 1

NT

∑
it

(µitωitWit) (4.7)

Solving this in terms of ωit (an unconstrained quadratic problem) we get the following repre-

sentation:

inf
λ(t),λ(i),γ,µit≥0,π≥0

Pn

[
1

T

T∑
t=1

(
πWit − λ(t) − λ(i) − γ>ψit − µitWit

)2]− 4π

N
(4.8)

We can further simplify this expression by concentrating out µit and π. To this end, define the

following loss function:

ρz(x) := x2(1− z) + x2+z (4.9)

After some algebra we get the following:

inf
λ(t),λ(i),γ

Pn

(
1

T

T∑
t=1

ρWit

(
Wit − λ(t) − λ(i) − γ>ψit

))
(4.10)

Let {λ̂(t), λ̂(i), γ̂}i,t be the solutions to this problem. The optimal unnormalized weights are equal

to the following:

ω̂
(un)
it =

(
Wit − λ̂(t) − λ̂(i) − γ̂>ψit

)
(1−Wit) +

(
Wit − λ̂(t) − λ̂(i) − γ̂>ψit

)
+
Wit (4.11)
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and the optimal weights are given by the normalization:

ω̂it :=
ω̂
(un)
it

1
NT

∑
it ω̂

(un)
it Wit

(4.12)

By construction the weights are non-negative for the treated units and sum up to one once

multiplied by Wit. The denominator is strictly positive under the conditions of Lemma A.1.

4.4 Inference

In order to state the inference results we need to make several statistical assumptions:

Assumption 4.2. (a) P-a.s. (Xi, Si) ∈ Ω – compact subset of some metric space; (b) ψ(Xi, Si, t)

is a continuous function of its arguments (on Ω); errors uit satisfy the following moment condi-

tions:

E[u2it|W i, Xi] ≤ σ2
u <∞

E[u4it] <∞
(4.13)

Part of the assumption about uit is standard in the literature on projection estimators. We

assume compactness to streamline the proofs and we think that it covers most problems that

researchers face in applications. There is no doubt that it can be considerably relaxed.

Assumption 4.3. (a) Si includes W i; (b) for all t and η > 0 we have E[Wit|Si, Xi] ≤ 1 − η;

(c) the following holds:

Γit := (1−Wit)ψit −
∑T

l=1(1−Wil)ψil∑T
l=1(1−Wil)

σmin

(
T∑
t=1

E
[
ΓitΓ

>
it

])
≥ κ > 0

(4.14)

Next theorem states properties of τ̂ and ω̂it:

Theorem 2. Suppose Assumptions 4.1, 4.2, 4.3 are satisfied. Then there exist a collection of
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random variables {ω?(Xi,W i, t)}Tt=1 such that the following holds:

1

T

T∑
t=1

‖ω̂t − ω?t ‖2 = op(1) (4.15)

Define the following conditional estimand:

τemp =
1

NT

∑
it

ω̂itWitE[τit|W i, Xi] (4.16)

the scaled difference between the estimator and τemp converges in distribution to a normal random

variable:

√
n (τ̂ − τemp)→ N (0, σ2) (4.17)

where the variance has the following form:

σ2 := E

( 1

T

T∑
t=1

ω?it ((uit +Wit (τit − E[τit|W i, Xi]))

)2
 (4.18)

where ω?it := ω?(Xi,W i, t), and uit is equal to either ξit or εit.

This theorem describes the performance of our estimator in larger samples. The population

weights ω? depend on (Xi,W i), not only on Si which is an implication of the fact that we need

to deal with individual fixed effects.

Our next result shows that standard nonparametrtic bootstrap provides a conservative esti-

mator for σ2.

Theorem 3. Let {τ̂(b)}Bb=1 be a set of non-parametric (unit-level) bootstrap analogs of τ̂ . Define:

σ̂2 :=
N

B

B∑
b=1

(
τ̂(b) − τ̂

)2
(4.19)

and suppose that assumption of Theorem 2 hold. Then if E[τit|W i, Xi] = τ σ̂2 is consistent for

σ2; otherwise σ̂2 is conservative.
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5 Conclusion

In this paper, we propose a novel identification argument that can be used to evaluate a causal

effect using panel data. We show that one can naturally combine familiar restrictions on the

relationship between the outcome and the unobserved unit-level characteristics with reasonable

economic models of the assignment. Our approach allows us to construct a doubly robust

identification argument: out estimand has causal interpretation if either the outcome model

is correct, or the assignment model is correct (or both). Using these results, we construct a

natural generalization of the standard two-way fixed effects estimator that is robust to arbitrary

heterogeneity in treatment effects and show that it has reasonable theoretical properties.
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6 Appendix

6.1 Propositions

Proof of Proposition 1: For any ω ∈Woutc we defined the random variables

ωk(i)t ≡
K∑
k=1

ωkt{W i = Wk} (A.1)

and considered the following estimator:

τ(ω) = E

[
1

T

T∑
t=1

Yitωk(i)t

]
(A.2)

By assumption we have the representation:

E

[
1

T

T∑
t=1

Yitωk(i)t

]
= E

[
1

T

T∑
t=1

(α(Ui) + λt + τ(Ui)Wit + εit)ωk(i)t

]
=

E

[
1

T

T∑
t=1

(α(Ui) + λt + τ(Ui)Wit + εit)
K∑
k=1

ωkt{W i = Wk}

]
= E

[
1

T

T∑
t=1

(α(Ui)ωkt{W i = Wk})

]
+

1

T

T∑
t=1

λt

K∑
k=1

E [ωkt{W i = Wk}] + E

[
τ(Ui){W i = Wk}

1

T

K∑
k=1

T∑
t=1

Wktωkt

]
=

1

T

T∑
t=1

λt

K∑
k=1

πkωkt + E [τ(Ui)ξ(W i)] = E [τ(Ui)ξ(W i)] (A.3)

where ξ(W i) := {W i = Wk} 1T
∑K

k=1

∑T
t=1Wktωkt ≥. The first equality follows from the restrictions

on the outcome model, the second – by definition of the weights, the third – because E[εi|Ui] = 0

and strict exogeneity assumption; finally the last two equalities follow by construction of weights. By

construction we also have that ξ(W i) ≥ 0 and E[ξ(W i)] = 1. This proves the claim.

Proof of Proposition 3: The proof is very similar to the one above and is omitted.

Proof of Proposition 2: We need to prove the following for arbitrary w and measurable A0, A1:

E[{W i = w}{Y i(0) ∈ A0, Y i(1) ∈ A1}|Si] = E{W i = w}|Si]E[{Y i(0) ∈ A0, Y i(1) ∈ A1}|Si] (A.4)
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We have the following chain of equalities that proves the claim.

E[{W i = w}{Y i(0) ∈ A0, Y i(1) ∈ A1}|Si] =

E[{W i = w}E[{Y i(0) ∈ A0, Y i(1) ∈ A1}|Si, Ui,W i]|Si] =

E[{W i = w}E[{Y i(0) ∈ A0, Y i(1) ∈ A1}|Ui, Si]|Si] =

EE[{W i = w}|Si, Ui]E[{Y i(0) ∈ A0, Y i(1) ∈ A1}|Ui, Si]|Si] =

E[E[{W i = w}|Si]E[{Y i(0) ∈ A0, Y i(1) ∈ A1}|Ui, Si]|Si] =

E{W i = w}|Si]E[{Y i(0) ∈ A0, Y i(1) ∈ A1}|Si] (A.5)

where the second inequality follows by strict exogeneity, the fourth one – by sufficiency.

6.2 Lemmas

Lemma A.1. Suppose that {Wit}i,t are such that there is no {αi, βt, γ}i,t such that the following is

true:

αi + βt + ψ>itγ ≥ 0

Wit = {αi + βi + ψ>itγ > 0}
(A.6)

Then (a) the primal problem always has a unique solution and (b) the strong duality holds, i.e., for a

function

h(λ, µ, π, γ, ω) :=
1

(nT )2

∑
it

ω2
it +

1

n

∑
i

λ(i)

(
1

T

∑
i

ωit

)
+

1

T

∑
t

λ(t)

(
1

n

∑
t

ωit

)
+ π

(
1− 1

nT

∑
it

ωitWit

)
−

γ>

(
1

nT

∑
it

ωitψit

)
− 1

nT

∑
it

µitωitWit (A.7)

we have

inf
ωit

sup
λ(t),λ(i),γ,µit≥0,π≥0

h(λ, µ, π, γ, ω) = sup
λ(t),λ(i),γ,µit≥0,π≥0

inf
ωit

h(λ, µ, π, γ, ω) (A.8)
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Proof. Direct application of Generalized Farkas’ lemma implies that the constraint set is empty iff

there exist (α?i , β
?
t , γ

?) such that the following is true:

α?i + β?t + ψ>itγ
? ≥ 0

Wit = {α?i + β?t + ψ>itγ
? > 0}

(A.9)

By assumption such (α?i , β
?
t , γ

?) does not exist and thus the constraint set is not empty and convex.

Since the objective function is strictly convex we have that the primal problem has the unique solution.

Since all the inequality constrains are affine strong duality holds (see 5.2.3 in Boyd and Vandenberghe

[2004]) and we have the result.

Lemma A.2. For arbitrary γ define g(X,W, γ) in the following way:

g(X,W, γ) ∈ arg min
α

{
1

T

T∑
t=1

ρWt(Wt − α− ψ>t γ)

}
(A.10)

Then for any W such that W < 1 this function is uniquely defined. Also if ‖ψt‖∞ < K then g(X,W, γ)

is P a.s. uniformly (in (X,W )) Lipschitz in γ.

Proof. If W < 1 then the minimized function is strictly convex with a unique minimum. Define

ht := Wt −ψ>t γ; and let h̃(1), . . . , h̃(
∑T

t=1Wt)
be the decreasing ordering of ht for units with Wt = 1; let

h̃(0) = 0. For k = 0, . . . ,
∑T

t=1Wt define the following functions:

gk(X,W, γ) :=

∑T
t=1(1−Wit)ht +

∑k
l=0 h̃(l)∑T

t=1(1−Wit) + k
(A.11)

It is easy to see that we have the following:

g(X,W, γ) = g0(X,W, γ) +
k∑
l=1

{h̃(l) ≥ g(l−1)}(gl(X,W, γ)− (gl−1(X,W, γ)) (A.12)

From this representation if follows that g(X,W, γ) is differentiable and P-a.s. uniformly (in (X,W ))

Lipschitz in γ.

Lemma A.3. Let {W i, Xi} be distributed according to P; assume that Si includes W i and E[Wit|Si, Xi] <

1− η P a.s. for η > 0. Then there exist a σ(W i, Xi)-measurable random variable α?i and a vector γ?

31



such that the following conditions are satisfied:

ξit := Wit − α?i − ψ>itγ?

E

[
T∑
t=1

ξitψit(1−Wit{Wit − α?i − ψ>itγ? ≤ 0})

]
= 0

T∑
t=1

ξit(1−Wit{Wit − α?i − ψ>itγ? ≤ 0}) = 0

(A.13)

Proof. Define F := {f ∈ L2(P)T : ft = g(W i, Xi) + ht(Si, Xi), g, ht ∈ L∞(P)}, similarly define

G := {g = (g1, . . . gT ) : gt = f + ψ>t γ, f ∈ L2(P), γ ∈ Rp}.

Consider the following optimization program:

inf
g∈G

E

[
1

T

T∑
t=1

ρWit(Wit − git)

]
(A.14)

and let r? be the value of infimum. We prove that there exists a function g? ∈ G that solves this

problem. This is not entirely trivial because G is not compact and the loss function is not quadratic

so we cannot directly use neither Weierstrass nor the standard projection theorem.

Consider the set F(r?) := {f ∈ F : E
[
1
T

∑T
t=1 ρWit(Wit − fit)

]
≤ r?}. It is straightforward to see that

this set is convex and because R(f) is continuous on LT2 (P) it follows that f ∈ F(r?) ⇒ R(f) ≤ r?.

The set F(r?) is closed and convex. Now assume that g? does not exist and thus F(r?) ∩ G = ∅. By

construction G is closed (in L2(P)) and convex; as a result we have two closed convex sets with empty

intersection.

Assume that F(r?) is weakly compact then by strict separating hyperplane theorem it follows that

there exist h? ∈ LT2 (P) and a ∈ R such that sup
f∈F(r?)(f, h

?) < a1 < a2 < infg∈G(g, h?). Assume that

there exist a function f? ∈ F(r?)∪G0 such that R(f?) ≤ R(f) for any function f ∈ F(r?)∪G0. Fix an

ε > 0 and consider a function gε ∈ G such that R(gε) < r? + ε. Using this function construct g0ε ∈ G0

such that R(g0ε) < r? + ε. For t ∈ [0, 1] consider a function r(t) = R(f? + t(f? − g0ε)). By convexity of

t it follows that r(t) is convex and by definition of f? it follows that r(t) has a minimum at zero.

For t ∈ [0, 1] consider a function:

(h?, f? + t(g0ε − f?)) =: a+ bt (A.15)
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and define t1 := a1−a
b and t2 := a2−a

b . It follows that t2−t1
t1

= a2−a1
a1−a > 0 – does not depend on

g0ε . By construction it follows that r(t1) ≥ r? and r(t2) < r? + ε and by convexity we have r(t2) ≥

r(t1) + r(t1))−r(0)
t1

× (t2 − t1) ≥ r? + r?−R(f?)
t1

× (t2 − t1). The RHS of this inequality does not depend

on ε which leads to contradiction.

To finish the proof we need to show that (a) f? exists and is unique and (b) that F(r?) is weakly

compact. The latter statement will follow if we prove that F(r?) is bounded in L2(P). This follows

because R(f) is convex and has a unique minimum at f? in F(r?).

Finally we prove the R(f) has a unique minimum at f?. Consider f? such that f?t := E[Wit|Si, Xi].

Because Si includes W i it follows that 1
T

∑T
t=1 f

?
t = W i. Take any function f ∈ F and consider a convex

combination f(λ) := f? + λ(f − f?). Because f ∈ L∞(P) and f?t ≤ 1− η it follows that for all λ < λ0

we have ft(λ) < 1 almost surely. For any λ < λ0 we have that R(f(λ)) = E
[
1
T

∑T
t=1(Wt − f?t )2

]
+

E
[∑T

t=1(f
?
t − ft(λ))2

]
> R(f?). By convexity of R(f) it follows that R(f) > R(f?) which proves that

g? exists. The final result follows because R(f) is Gato-differentiable on F and the results follows by

taking first order conditions.
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6.3 Theorems

Proof of Theorem 2: We split the proof into two parts. First, we assume that ‖(ω?)un − ω̂un‖2 =

op(1), (ω?it)
un is uniformly bounded, and E

[
1
T

∑T
t=1(ω

?
it)
unWit

]
> 0, and prove the normality result.

Then we prove the first statement.

Part 1: Assume that ‖(ω?)un − ω̂un‖2 = op(1).

For the estimator τ̂ we have the following:

τ̂ =
1

nT

∑
it

ω̂itYit =
1

nT

∑
it

ω̂itτitWit +
1

nT

∑
it

ω̂ituit = τemp +
1

nT

∑
it

ω̂ituit =

τemp +
1

Pn 1
T

∑T
t=1 ω̂

un
it Wit

(
1

nT

∑
it

(ω?it)
unuit +

1

nT

∑
it

(ω̂unit − (ω?it)
un)uit

)
(A.16)

By construction and assumption we have the following:

E[(ω̂unit − (ω?it)
un)uit|{W j , Xj}nj=1] = (ω̂unit − (ω?it)

un)E[uit|{W j , Xj}nj=1] =

(ω̂unit − (ω?it)
un)E[uit|W i, Xi] = 0 (A.17)

This implies that by conditional Chebyshev inequality we have the following:

ζn(ε) := E

[{
√
n

∣∣∣∣∣Pn 1

T

T∑
t=1

(ω̂unit − (ω?it)
un)uit

∣∣∣∣∣ ≥ ε
}
|{W j , Xj}nj=1

]
≤

PnE
[(∑T

t=1(ω̂
un
it − (ω?it)

un
)2
|{W j , Xj}nj=1

]
T 2ε2

≤ σ2u
Tε2
‖(ω?)un − ω̂un‖22 = op(1) (A.18)

Since indicator is a bounded function it follows that for any ε > o

E[ζn(ε)] = o(1) (A.19)

and thus we have 1
nT

∑
it ‖(ω?)un− ω̂un‖2uit = op

(
1√
n

)
. Finally we need to check that CLT applies to

1
nT

∑
it(ω

?
it)
unuit. The mean of each summand is zero and the variance is bounded:

E

( 1

T

T∑
t=1

(ω?it)
unuit

)2
 ≤ 1

T

T∑
t=1

E
[
((ω?it)

unuit)
2
]
≤

T∑
t=1

√
E[u4it]E[((ω?it)

un)4] <∞ (A.20)
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Finally, define:

ω?it :=
(ω?it)

un

E
[
1
T

∑T
t=1(ω

?
it)
unWit

] (A.21)

It is easy to see that we have:

Pn
1

T

T∑
t=1

ω̂unit Wit = E

[
1

T

T∑
t=1

(ω?it)
unWit

]
+ op(1) (A.22)

and thus we have the following:

‖ω? − ω̂‖2 = op(1)

√
n(τ̂ − τemp)→ N (0, σ2τ )

(A.23)

which concludes the first part.

Part 2: In this part we prove that ‖(ω?)un − ω̂un‖2 = op(1), (ω?it)
un is uniformly bounded, and

E
[
1
T

∑T
t=1(ω

?
it)
unWit

]
> 0. We use the dual representation derived in Section 4.3 and show that the

solution converges to a population one.

The proof below shows that empirical weights converge to oracle weights that solve a certain problem

in population. We use a natural adaptation of the “small-ball” argument from Mendelson [2014]. This

is not necessary and most likely one can construct a simpler proof using classical results for GMM

estimators. We present a different argument because it can be naturally generalized to handle more

sophisticated estimation procedures – something that we want to address in future work.

We start by defining relevant oracle weights. Consider ({α?i }ni=1, γ
?) that satisfy the following restric-

tions:

ξit := Wit − α?i − ψ>itγ?

E

[
T∑
t=1

ξitψit(1−Wit{Wit − α?i − ψ>itγ? ≤ 0})

]
= 0

T∑
t=1

ξit(1−Wit{Wit − α?i − ψ>itγ? ≤ 0}) = 0

(A.24)

Where we include time fixed effects λt into the definition of ψit, since T is fixed this does not create
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any problems. We prove that oracle weights that satisfy these restrictions exists in Lemma A.3. Using

these parameters we consider a lower bound on individual components of the loss function:

ρWit(Wit − αi − ψ>itγ) = (Wit − αi − ψ>itγ)2
(

1−Wit{Wit − αi − ψ>itγ ≤ 0}
)

=

(Wit − αi − ψ>itγ)2
(

1−Wit{Wit − α?i − ψ>itγ? ≤ 0}
)

+

(Wit − αi − ψ>itγ)2Wit

(
{Wit − α?i − ψ>itγ? ≤ 0} − {Wit − αi − ψ>itγ ≤ 0}

)
≥

(Wit − αi − ψ>itγ)2
(

1−Wit{Wit − α?i − ψ>itγ? ≤ 0}
)
−

(Wit − αi − ψ>itγ)2Wit{α?i + ψ>itγ
? < 1 ≤ αi + ψ>itγ} (A.25)

Using this and the properties of the oracle weights we get the following inequality for the excess loss

for unit i:

T∑
t=1

(
ρWit(Wit − αi − ψ>itγ)− ρWit(Wit − α?i − ψ>itγ?)

)
≥

T∑
t=1

(
(α?i − αi) + ψ>it (γ

? − γ))2
(

1−Wit{Wit − α?i − ψ>itγ? ≤ 0}
))

+

T∑
t=1

(
ξit(α

?
i − α?i )

(
1−Wit{Wit − α?i − ψ>itγ? ≤ 0}

))
+

T∑
t=1

(
ξitψ

>
it (γ

? − γ)
(

1−Wit{Wit − α?i − ψ>itγ? ≤ 0}
))
−

T∑
t=1

(
(Wit − αi − ψ>itγ)2Wit{α?i +X>i γ

? < 1 ≤ αi + ψ>itγ}
)

=

T∑
t=1

(
(α?i − αi) + ψ>it (γ

? − γ))2
(

1−Wit{Wit − α?i − ψ>itγ? ≤ 0}
))

+

T∑
t=1

(
ξitψ

>
it (γ

? − γ)
(

1−Wit{Wit − α?i − ψ>itγ? ≤ 0}
))
−

T∑
t=1

(
(Wit − αi − ψ>itγ)2Wit{α?i + ψ>itγ

? < 1 ≤ αi + ψ>itγ}
)

(A.26)

Note that the last equality follows by definition of ξit and ({α?i }ni=1, γ
?).
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In Lemma A.2 we show that α?i is a function of γ? and data for unit i:

α?i = g(Xi,Wi, γ
?) (A.27)

and prove that g is uniformly Lipschitz. By construction for every γ we only need to consider αi that

satisfies the following equality:

αi = g(Xi,Wi, γ) (A.28)

Define:

fit = αi + ψ>itγ

f?it = α?i + ψ>itγ
?

(A.29)

and observe that we have the following:

Pn
T∑
t=1

(1−Wit{Wit < f?it})(fit − f?it)2 ≥ Pn
T∑
t=1

(1−Wit)(fit − f?it)2 ≥

(γ − γ?)>
(

T∑
t=1

PnΓitΓ
>
it

)
(γ − γ?) = κ‖γ − γ?‖22 + op(‖γ − γ?‖22) (A.30)

where

Γit := (1−Wit)ψit −
∑T

l=1(1−Wil)ψil∑T
l=1(1−Wil)

(A.31)

Assume that ‖γ − γ?‖22 = r2, which implies that |αi − α?i | ≤ C1r. Assumptions guarantee that ψit is

bounded and thus
∑T

t=1 ‖ft − f?t ‖∞ ≤ C2r. Using CS we get the following inequality:

Pnξitψ>it (γ? − γ)
(

1−Wit{Wit − α?i − ψ>itγ? ≤ 0}
)
≤

‖γ? − γ‖2 ×
∥∥∥Pnξitψit (1−Wit{Wit − α?i − ψ>itγ? ≤ 0}

)∥∥∥
2

(A.32)
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We also have the following inequality:

Pn

[
1

T

T∑
t=1

(Wit − αi − ψ>itγ)2Wit{α?i + ψ>itγ
? < 1 ≤ αi + ψ>itγ}

]
≤

Pn

[
1

T

T∑
t=1

(f?it − fit)2{f?it < 1 ≤ fit}

]
≤ ‖f? − f‖2∞ × Pn

[
1

T

T∑
t=1

{f?it < 1 ≤ fit}

]
(A.33)

where the first implication follows because of the indicator, and the the second one follows by Holder

inequality. Since ‖f? − f‖∞ ≤ C2r we have the following:

Pn

[
1

T

T∑
t=1

{f?it < 1 ≤ fit}

]
≤ Pn

[
1

T

T∑
t=1

{f?it < 1 ≤ f?it + C2r}

]
(A.34)

DKW inequality implies that we have the following with high probability:

Pn

[
1

T

T∑
t=1

{f?it < 1 ≤ f?it + C2r}

]
≤ E

[
1

T

T∑
t=1

{f?it < 1 ≤ f?it + C2r}

]
+
C3√
n

(A.35)

It is now easy to see that if r is greater than O
(

1√
n

)
then the excess loss is positive with high probability.

Since the loss function is convex this implies that optimum should belong to a ball of radius 1√
n

around

({α?i }ni=1, γ
?) with high probability which proves that for all t ‖ω̂(un)

t − (ω?t )
un‖2 = op(1).
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Proof of Theorem 3:

Part 1 For each observation i define Mi – the number of times this observation is sampled in a

bootstrap sample. Using this notation we can define bootstap analogs of αi and γ from the proof of

Theorem 2:

{α(b)
i , γ(b)}ni=1 = arg minPnMi

1

T

T∑
t=1

ρWit(Wit − αi − ψTitγ) (A.36)

in case if Mi = 0 we define α
(b)
i using the function g(Xi,Wi, γ

?) from 2. It is straightforward to extend

the proof of Theorem 2 and show that bootstrap weights converge to population ones. Most part follow

because of two key properties of {Mi}ni=1:

PnMiXi = E[Xi] + op(1)

PnMiεi = Op

(
1√
n

) (A.37)

for any square integrable Xi and any square integrable mean-zero εi (all independent of Mi). The

second inequality follows by applying Chebyshev inequality, the first one follows from the second one.

The only additional result that we need is the following one:

PnMi

[
1

T

T∑
t=1

{f?it < 1 ≤ f?it + C2r}

]
= Pn(Mi − 1)

[
1

T

T∑
t=1

{f?it < 1 ≤ f?it + C2r}

]
+

Pn

[
1

T

T∑
t=1

{f?it < 1 ≤ f?it + C2r} − E

[
1

T

T∑
t=1

{f?it < 1 ≤ f?it + C2r}

]]
+

E

[
1

T

T∑
t=1

{f?it < 1 ≤ f?it + C2r}

]
= E

[
1

T

T∑
t=1

{f?it < 1 ≤ f?it + C2r}

]
+Op

(
1√
n

)
(A.38)

where the last line follows by DKW inequality, the fact that the set of intervals is Donsker, and the

multiplier process converges to same limit process as the standard empirical one. It follows that we

have convergence results:

‖ω(b) − ω?‖∞ = op(1)

‖ω(b) − ω?‖2 = Op

(
1√
n

) (A.39)
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Part 2: By construction of bootstrap estimator we have the following representation:

τ̂ (b) − τ̂ = PnMi
1

T

T∑
t=1

ω
(b)
it τitWit − Pn

1

T

T∑
t=1

ω̂itτitWit+

PnMi
1

T

T∑
t=1

ω
(b)
it uit − Pn

1

T

T∑
t=1

ω̂ituit =

PnMi
1

T

T∑
t=1

ω
(b)
it (τit − E[τit])Wit − Pn

1

T

T∑
t=1

ω̂it(τit − E[τit])Wit+

Pn(Mi − 1)
1

T

T∑
t=1

ω?ituit + op

(
1√
n

)
(A.40)

From this representation it follows that if τit = const then the bootstrap estimator is consistent for

the asymptotic variance of τ̂ . In case if τit is heterogenous we further expand the first term. Define

τt(W i, Xi) := E[τit|W i, Xi] and ηit := τit − τt(W i, Xi). We have the following:

PnMi
1

T

T∑
t=1

ω
(b)
it τitWit − Pn

1

T

T∑
t=1

ω̂itτitWit =

PnMi
1

T

T∑
t=1

ω
(b)
it τt(W i, Xi)Wit − Pn

1

T

T∑
t=1

ω̂itτt(W i, Xi)Wit+

PnMi
1

T

T∑
t=1

ω
(b)
it ηitWit − Pn

1

T

T∑
t=1

ω̂itηitWit =

Pn
1

T

T∑
t=1

(Miω
(b)
it − ω̂it)τt(W i, Xi)Wit + Pn(Mi − 1)

1

T

T∑
t=1

ω?itηitWit + op

(
1√
n

)
(A.41)

It follows that we have the following:

τ̂ (b) − τ̂ = Pn(Mi − 1)
1

T

T∑
t=1

ω?it(ηitWit + uit)+

Pn
1

T

T∑
t=1

(Miω
(b)
it − ω̂it)τt(W i, Xi)Wit + small order terms (A.42)

Since the second summand is uncorrelated with the first one we have that the bootstrap variance is a

conservative estimator of the correct variance.
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