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Abstract

An agent has access to multiple data sources, each of which provides information

about a different attribute of an unknown state. Information is acquired continu-

ously—where the agent chooses both which sources to sample from, and also how to

allocate resources across them—until an endogenously chosen time. We show that the

optimal information acquisition strategy proceeds in stages, where resource allocation

is constant over a fixed set of providers during each stage, and at each subsequent

stage a new provider is added to the set. We additionally apply this characterization

to derive results regarding: (1) equilibrium information provision by competing data

providers, and (2) endogenous information acquisition in a binary choice problem.
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1 Introduction

Markets are increasingly saturated with numerous and diverse sources of information about

consumers. Determining how to acquire information in these environments thus often in-

volves a question of how to aggregate information across different sources. For example,

suppose a hotel chain wants to forecast demand for a new location in Puerto Rico. Multiple

data sets may be relevant to this forecasting problem—e.g. the hotel can acquire data on

discretionary spending from US-based credit card companies to predict vacation travel from

the United States, or acquire search trend data from Google to predict travel demand from

Mexico, or acquire demographic data from data brokers to predict the volume of business

travel to this location. The firm chooses which sources to acquire data from, and also how to

allocate potentially limited time and resources across them. If additionally it can supplement

current data with more data in the future, then the information acquisition decisions should

also take this into account.

In this work, we consider a firm that has access to various data sources, each modeled

as a Brownian motion whose drift is an unknown attribute that the data source provides

information about. The firm can continuously allocate a budget of resources (e.g. employee

hours) across these Brownian motions, where more resources allocated to any data source

results in greater precision of information about the corresponding attribute value.1 The

firm acquires information until an endogenously chosen time, at which point it implements

a decision based on the information acquired so far. Our key assumption is that the firm’s

final decision depends (only) on a weighted sum of the attribute values, which we call the

payoff-relevant state.

What complicates the firm’s information acquisition problem is the possibility for the

different attribute values to be correlated. For example, one data source may provide in-

formation about vacation travel demand from American travelers, while another provides

information about vacation travel demand from Canadian travelers. Although these two de-

mand levels factor separately into the firm’s total demand forecast, their correlation means

that information about one affects the value of information about the other. Thus, the firm

has to choose the optimal proportion of resources to allocate to each data source at any

given moment, taking into account the potential complementarity or substitution among the

different data sources.

1Often firms purchase raw data which must be re-processed, analyzed, or cross-referenced to existing

data before it is useful. We can interpret allocation of attention/resources to the data source as allocation

of employee hours towards extracting information from the given data set.
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Under a condition on the prior that we provide, the optimal dynamic data acquisition

strategy turns out to take a simple form. It consists of K stages, where K is the number of

data sources. In the first stage, the firm exclusively observes the single most informative data

source. In each subsequent stage k, the firm acquires information from one additional data

source, and allocates resources in a constant fraction across these k sources. Once the firm

reaches the final stage, it acquires information in a constant fraction over all data sources

from that point on. Both the nested support sets of data sources observed at each stage,

as well as the mixtures over them, are history-independent, and can be determined directly

from the informational primitives.

This characterization reveals several properties about optimal information acquisition

in our setting. First, despite the complexity of the information environment (i.e. multiple

sources, flexible correlation), the firm’s optimal rule is simple: Once it starts acquiring

information from a given data source, it continues to acquire information from that source.

At fixed times, the firm adds in a new source, re-weighting its resources over the sources

observed in the past as well as the new source. Since the times at which the firm brings in

new sources, and also the fraction of resources across these sources, do not depend on the

history of signal realizations, the firm can map out and implement a deterministic plan for

information acquisition from time 0.

Second, the optimal information acquisition strategy does not depend on the firm’s payoff

function or its choice of when to stop acquiring information, provided that the payoff-relevant

state does not change. Returning to our previous example, so long as the (forecast of)

demand for the Puerto Rico location remains a sufficient statistic for the firm’s decision, the

optimal strategy described above is robust to changes in the decision as well as changes in the

firm’s discount factor. That is, if the hotel’s objective changed from pricing the Puerto Rico

location to a decision about whether to open the location at all, its past resource allocations

would remain optimal for this new objective. Likewise if the firm’s data acquisition budget

were unexpectedly cancelled, its choices up to that point would coincide with those it would

have made had it foreseen this outcome.

The condition that we assume on the prior belief roughly requires that the covariances

of the different attributes are small in magnitude relative to their variances. For the case

of two attributes, it is sufficient for the covariances to be smaller than the variances; in

general “how much smaller” will depend on the number of data sources. Intuitively, such

a condition puts an upper bound on the possible complementarity or substitution effects

between different data sources. As a result, the firm’s short-run and long-run information

acquisition incentives are aligned, so that it is optimal to focus on the most informative
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sources at this moment.2 Although our condition on the prior belief is restrictive, we show

that under optimal sampling from any prior belief, the firm’s posterior beliefs will eventually

satisfy the condition, at which point our characterization applies.

We conclude by showing how our characterization of the optimal information acquisition

strategy can be applied to make advances in other problems. First, we consider an extension

of our environment in which the data providers are themselves strategic, and can control the

precision of the information that they provide.3 We suppose that a mass of forward-looking

firms optimally acquire information from the providers over time. Using our characterization

of the agents’ information acquisition strategy, we derive the equilibrium choices of precision.

These precision levels turn out to be monotonically increasing in the data providers’ discount

rate and in the degree to which the unknown attributes are correlated. That is, the more

patient the providers are, and the less correlated the attributes are, the lower the precision

of the signals.

Second, we turn to a different but related setting: endogenous information acquisition

for binary choice. In the classic binary choice problem, a consumer can choose between two

goods with unknown payoffs, and learn about either payoff before making his decision. A

result in Fudenberg et al. (2018) considers endogenous allocation of attention across learning

about either payoff, and characterizes the optimal attention allocation strategy under the

assumption that payoffs are independent and identically distributed.

The binary choice problem corresponds to the special case of our setting with two un-

known attributes, where the agent wants to learn a difference of the attributes. The optimal

attention allocation strategy we demonstrate holds in this case for all prior beliefs, thus gen-

eralizing the result in Fudenberg et al. (2018) to allow for correlation across the two payoffs.

(We would expect payoffs to be correlated, for example, if the values of the goods depended

on a common source of uncertainty—e.g., different portfolio choices, or consumer goods with

shared features.) Using our characterization, we derive a new comparative static result with

respect to prior uncertainty. We show that an increase in initial uncertainty about either

payoff results in a uniform change in attention (that is, either weakly more attention paid

to learning about that payoff at every instant, or weakly less), but the direction depends on

the size of correlation between the unknown payoffs. Specifically: an increase in the initial

uncertainty about one payoff results in higher attention to the corresponding data source

2Formally, these are the sources that maximize the marginal reduction in the posterior variance of the

payoff-relevant state.
3For example, Google may decide whether to provide search trend data aggregated at the hour-level or

the week-level.
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when the two payoffs are weakly correlated in the prior, but results in lower attention when

the payoffs are strongly correlated.

Our analyses in Section 4 (competing data providers) and Section 5 (information acqui-

sition for binary choice) are only two problems whose solutions are facilitated by our main

results, and we hope that the characterizations we provide can be used in future work to

yield further insights in other applications.

1.1 Related Literature

Our model resembles, but does not fall under, the classic multi-armed bandit (MAB) frame-

work (Gittins, 1979; Bergemann and Välimäki, 2008). To see this, recall that in MAB,

actions play the dual role of influencing the evolution of beliefs and determining flow pay-

offs. In our setting, information acquisition choices influence the evolution of beliefs, whereas

actions—taken separately—determine payoffs. Thus in our paper, information acquisition

decisions are driven by learning concerns exclusively.

We primarily build on a large literature about optimal dynamic information acquisition.

In contrast to an earlier focus in the literature on the choice of signal precisions (Moscarini

and Smith, 2001), our framework characterizes the choice between different kinds of infor-

mation, as in the work of Fudenberg et al. (2018) (where the information sources are two

Brownian motions), and Che and Mierendorff (2019) and Mayskaya (2019) (where the sources

are two Poisson signals). Compared to this work, our main contribution is to accommodate

many sources that may be flexibly correlated.4

Another strand of the literature considers an agent who chooses from completely flexible

information structures at entropic (or more generally, “posterior-separable”) costs, such as

in Steiner et al. (2017), Hébert and Woodford (2018) and Zhong (2018). Compared to these

papers, our agent has access to a prescribed (physical) set of signals, and acquires information

under a resource/attention capacity constraint. Thus the different signals in our setting are

equally costly to acquire regardless of the current belief, which is the key distinction from

measuring information acquisition costs by the reduction of uncertainty.

Finally, this paper is related to recent work on data acquisition by firms. Azevedo

et al. (2019) studies allocation of resources (i.e. test users) to learn about the quality of

multiple innovation projects. These authors show that the tail distribution of innovation

4Relatedly, Callander (2011) considers sequential search from correlated signals. But the signals in Callan-

der (2011) come from a single Brownian motion path, which yields a special correlation structure. Similar

models are studied in Garfagnini and Strulovici (2016) and in Bardhi (2018).
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quality crucially affect the (static) optimal experimentation strategy. Immorlica et al. (2018)

considers dynamic allocations of a budget of data samples for learning about an evolving

state, and demonstrates (near) efficiency guarantees for certain classes of benchmark policies.

Bonatti and Cisternas (2019) analyze a dynamic game in which firms use a consumer’s

“score” to infer about her preferences and set prices. Different from these papers, we have a

setting in which the firm has to dynamically aggregate multiple sources of information. Our

characterizations trace out a time path of market demand for various kinds of information,

which is absent from the literature.

2 Model

An agent (i.e. firm) has uncertainty about the values of K attributes θ = (θ1, . . . , θK)′,5

and his prior is that they are jointly normal with known mean vector µ and covariance

matrix Σ, where Σ has full rank. The agent wants to learn an unknown payoff-relevant

state ω = 〈α, θ〉, which is a linear combination of these attribute values. The weight vector

α ∈ RK is known and fixed, and we assume without loss of generality that each coordinate

αi is strictly positive, so that the state depends positively on all of the attribute values.6

Time is continuous. There is a data source that provides information about each at-

tribute, and the agent divides his attention (i.e. resources) across these sources at every

instant. Formally, we assume that the agent has one unit of attention in total at every point

in time, and chooses attention levels βt1, . . . , β
t
K subject to βti ≥ 0 and

∑
i β

t
i ≤ 1.7

These choices influence the diffusion processes X1, . . . , XK (observed by the agent) in the

following way:

dX t
i = βti · θi · dt+

√
βti · dBt

i .

Above, each Bi is an independent standard Brownian motion, and the term
√
βti is a nor-

malizing factor to ensure constant informativeness per unit of attention devoted to each

source.

Although we have assumed that the drift of each Xi is proportional to an individual

attribute θi, the same analysis applies if this drift is instead some linear combination 〈ai, θ〉
with ai ∈ RK . This is because we can re-define the “primitive” attribute values θ̃i = 〈ai, θ〉.

5Here and later, we use the apostrophe to denote vector or matrix transpose.
6It is without loss to assume that the weights are non-negative because any attribute value can be replaced

with its negative. Those attribute values with zero weights can be dropped without affecting the results.
7See e.g. Fudenberg et al. (2018) and Che and Mierendorff (2019) for recent models with fixed budgets

of attention.
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Then, the vector of re-defined attributes θ̃ = (θ̃1, . . . , θ̃K)′ is again jointly normal, and the

payoff-relevant state ω can be expressed as a (different) linear combination of θ̃i. This

transformation is valid so long as the vectors a1, . . . , aK are linearly independent.

Let (Ω,P, {Ft}t∈R+) describe the relevant probability space, where the information Ft that

the agent observes up to time t is the set of paths
{
X≤ti

}K
i=1

. An information acquisition

strategy S is a map from observations
{
X≤ti

}K
i=1

into ∆({1, . . . , K}), representing how the

agent divides attention at each instant as a function of the observed Brownian motions.

In addition to allocating his attention, the agent chooses how long to acquire information

for; that is, at each instant he determines (based on the history of observations) whether

to continue sampling information at some flow cost, or to stop acquiring information and

take an action. Formally, the agent chooses a stopping time τ , which is a map from Ω into

[0,+∞] satisfying the measurability requirement {τ ≤ t} ∈ Ft for all t.

At the endogenously chosen end time τ , the agent will choose from a set of actions A and

receive the payoff u(a, ω), where u is a known payoff function that depends on the action

taken a and the payoff-relevant state ω. The agent’s posterior belief about ω at this time

determines the action that maximizes his expected flow payoff E[u(a, ω)]. To ensure that

optimal information acquisition is unique, we make a mild assumption about u such that the

agent always strictly benefits from having more precise information.8 Formally, we impose

throughout:

Assumption. For any variance σ2 > 0 and any action a∗ ∈ A, there exists a positive

measure of µ for which a∗ does not maximize E[u(a, θ) | θ ∼ N (µ, σ2)].9

In words, the agent’s expected value of θ affects the optimal action to take (holding fixed

his belief variance). This rules out the existence of dominant actions, which would make

information acquisition irrelevant. Besides this, the functional form of u(·) can be arbitrary.

To summarize, the agent chooses his information acquisition strategy and stopping time

(S, τ) to maximize

max
S,τ

E
[
max
a

E[u(a, ω)|Fτ ]− c(τ)
]
,

where c(τ) is a non-negative and weakly increasing function that measures the cost of waiting

until time τ .10 Our focus throughout this paper is on the optimal information acquisition

strategy S. In general, the strategies S and τ should be determined jointly, but our results

8To be completely rigorous, the optimal information acquisition strategy is uniquely determined up to the

stopping time, after which the attention choices do not matter. We will ignore this when stating our results.
9A sufficient condition is that the two limiting states θ → +∞ and θ → −∞ disagree about the optimal

action. This is true for many applications of the model.
10Adding geometric or other forms of discounting to the model would not affect any of the results.
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will show that in fact these problems can be separated, with the optimal S characterized

independently from the choice of τ .

3 Optimal Information Acquisition Strategy

3.1 K = 2

We begin by considering the case of two data sources and two attributes. The agent has a

prior (
θ1

θ2

)
∼ N

((
µ1

µ2

)
,

(
Σ11 Σ12

Σ21 Σ22

))
and has access to the two Brownian motions. He seeks to learn ω = α1θ1 +α2θ2, where each

αi > 0.

We impose the following assumption on the agent’s prior belief:

Assumption 1. The prior covariance matrix satisfies α1(Σ11 + Σ12) + α2(Σ21 + Σ22) ≥ 0.

Since both variances Σ11,Σ22 are positive, Assumption 1 can be understood as requiring

that the covariance Σ12 is not too negative relative to the size of either variance. A sufficient

condition is for the weights on the two attributes to be equal, i.e. α1 = α2, in which case

Assumption 1 holds for all priors.11 A different sufficient condition is for the attributes to

be positively correlated (Σ12 = Σ21 ≥ 0), in which case Assumption 1 holds for all weights

α1 and α2.

Our next result establishes the optimal information acquisition strategy under this as-

sumption.

Theorem 1. Suppose Assumption 1 is satisfied. Define

t∗1 :=
y1 − y2
x2

; t∗2 :=
y2 − y1
x1

where x1 = α1 det(Σ), y1 = α1Σ11+α2Σ12, x2 = α2 det(Σ), and y2 = α1Σ21+α2Σ22. W.l.o.g.

let yi ≥ yj. Then the optimal information acquisition strategy (βt1, β
t
2) consists of two stages:

• Phase 1: At all times t ≤ t∗i , the agent optimally allocates all attention to attribute i

(that is, βti = 1 and βtj = 0).

11This follows from 2 · |Σ12| ≤ 2 ·
√

Σ11 · Σ22 ≤ Σ11 + Σ22.
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• Phase 2: At all times t > t∗i , the agent optimally allocates attention in the constant

fraction (βt1, β
t
2) =

(
α1

α1+α2
, α2

α1+α2

)
.

Thus there are two stages of information acquisition. In the first stage, which ends at

some t∗ (that depends only on the prior covariance matrix Σ and the weight vector α),

the agent allocates all of his attention to one of the attributes. After time t∗, he divides

his attention across the attributes in a fraction that is constant across time. The long-

run attention level is proportional to the weights α, which means that dividing attention

according to this fraction achieves the most efficient aggregation of information about ω.

Observe additionally that the optimal information acquisition strategy does not depend

on the agent’s cost of waiting or the details of his payoff function, so long as α is unchanged

and ω = α′ ·θ remains the payoff-relevant state. Thus, when the prior belief satisfies Assump-

tion 1, the optimal information acquisition strategy is constant across different objectives

and also across different stopping rules. Relatedly, we can solve for the optimal stopping

rule in this setting as if information acquisition were exogenously given by Theorem 1. We

mention that Assumption 1 is also necessary for the optimal strategy to be constant across

all cost functions c(·); see Lemma 8 and Lemma 9 for details.

3.2 General K

We now consider the case of general K, where we will show that the results for the K = 2

case extend qualitatively.

A key condition on the prior belief, parallel to the one used in Assumption 1, is the

following:12

Assumption 2. The prior covariance matrix satisfies |Σij| ≤ 1
2K−3 · Σii,∀i 6= j.

This condition requires that the covariance between every pair of attribute values is small

relative to the variances. For the case of two attributes, this condition requires only that the

covariance Σ12 is smaller in magnitude than both variances Σ11 and Σ22, which would imply

our previous Assumption 1. In general, the condition in Assumption 2 is harder to satisfy

when the number of sources K is larger.

Under this condition, the optimal information acquisition strategy is described as follows:

12In the appendix, we prove the result under the following weaker—but somewhat less inter-

pretable—condition: The prior precision matrix Σ−1 satisfies [Σ−1]ii ≥
∑
j 6=i |[Σ−1]ij | ∀1 ≤ i ≤ K.
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Theorem 2. Suppose Assumption 2 is satisfied. Then, there exist times

0 = t0 ≤ t1 ≤ · · · ≤ tK−1 < tK = +∞

and nested sets

∅ = B0 ( B1 ⊂ · · ·BK−1 ( BK = {1, . . . , K},

such that for each 1 ≤ k ≤ K, the optimal attention level is constant at all times t ∈ [tk−1, tk)

and supported on the sources in Bk.

In particular, the optimal attention level at any time t ≥ tK−1 is proportional to α.

The times tk as well as the attention level (including its support Bk) at each stage can

be determined directly from the primitives α and Σ, and are independent of the signal

realizations. Theorem 2 thus tells us that the agent can reduce the dynamic information

acquisition problem to a sequence of K static problems, each of which involves finding the

optimal constant attention for a fixed period of time (from tk−1 to tk). Furthermore, as in

the K = 2 case, the optimal information acquisition strategy does not depend on the agent’s

payoff function or stopping rule.

To interpret the use of Assumption 2, note that prior covariances measure the complemen-

tarity or substitution effects across the information provided by different data sources (i.e.

whether information from one data source increases or decreases the learning benefits from

other sources). Assumption 2 limits the magnitude of such complementarity/substitution,

so that the agent’s short-run and long-run information acquisition incentives are aligned.13

It is this property that underlies the characterization in Theorem 2.

We previously discussed the sense in which Assumption 1 is tight when there are just two

data sources. With K > 2, Assumption 2 is sufficient but not in general necessary for the

characterization in Theorem 2 to hold. In particular, optimal information acquisition may

also consist of K stages as described in the theorem under alternative assumptions on Σ and

α; see Section 4 for an example.14 However, the constant 1
2K−3 in Assumption 2 cannot be

improved upon in the statement of the theorem, as we formalize in Appendix C.6.

Moreover, it turns out that the agent’s posterior beliefs under optimal sampling from any

prior belief will eventually satisfy Assumption 2. In fact, optimal sampling is not required:

Along any path in which each data source is infinitely sampled (which is necessary for

13Otherwise, the agent may (for example) prefer one data source for the short run but choose to learn

from another pair of complementary data sources for the long run.
14Generalizing Assumption 2 to a necessary and sufficient condition would be an interesting direction for

future work.
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complete learning of ω and thus satisfied under optimal sampling), the agent’s beliefs will

enter and stay within the set of beliefs defined by Assumption 2.

Formally, define cumulated attention for source i qi(t) =
∫ t
0
βsi ds under an arbitrary

sampling strategy. We then have:

Lemma 1. Starting from any prior belief, the optimal information acquisition strategy has

the property that the induced cumulated attentions qi(t)→∞ for each 1 ≤ i ≤ K as t→∞.15

Lemma 2. Suppose qi(t) → ∞ for each 1 ≤ i ≤ K. Then, the agent’s posterior beliefs

eventually (i.e. at all late times) satisfy Assumption 2.

Combining Lemma 1, Lemma 2 and Theorem 2, we have the following result:

Proposition 1. Starting from any prior belief, the optimal information acquisition strategy

is eventually a constant attention level (across all data sources) proportional to the weight

vector α.16

3.3 Proof Sketch for Theorem 2

The plan of the proof is to first define a strategy which results in pointwise minimum variance

along its path—we call this strategy uniformly optimal—and next to show that this strategy

is the optimal information acquisition strategy. Then we characterize its structure.

Definition of a uniformly optimal strategy. As mentioned above, at every time t the

agent’s past attention levels integrate to a cumulated attention vector

q(t) = (q1(t) . . . , qK(t))′ ∈ RK
+

describing how much attention has been paid to each source. These cumulated attention

vectors q(t) determine the agent’s posterior variance about ω at time t via:

V (q(t)) = α′(Σ−1 + diag(q))−1α

15We note that starting from a general prior belief, qi(t) can be a random variable depending on past signal

realizations. Thus the lemma asserts that each source is infinitely sampled regardless of signal realizations.
16More specifically, we show in the proof that there exists t depending only on α and Σ, such that the

optimal attention level at any time t ≥ t is proportional to α. This holds independently of the payoff function

or past signal realizations.
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where diag(q) is the diagonal matrix with entries q1(t), . . . , qK(t). Recall that Σ is the agent’s

prior covariance matrix about the vector of attribute values, and α is the weight vector, both

primitives of the model.

Define the t-optimal vector to be

n(t) = argmin
q1,...,qK≥0,

∑
i qi=t

V (q1, . . . , qK)

namely the allocation that minimizes posterior variance (among all attention vectors that

allocate a budget of t).17 We will say that a strategy is uniformly optimal if it achieves a

t-optimal attention vector at every instant t.

Definition 1. Say that a strategy S is uniformly optimal if the induced cumulated attention

vector at each time t is n(t) (independently of signal realizations).

That is, the strategy S deterministically leads to minimum posterior variance about ω

at every time t. This is a strong property, and existence of such a strategy is in general not

guaranteed.

When a uniformly optimal strategy exists, it is optimal. By definition, if a cumu-

lated attention vector is t-optimal, it implies that the agent has learned as much about ω as

possible in the interval [0, t). Thus, if the agent stops acquiring information at instant t (and

takes the optimal action), then his expected flow payoff is maximized among all strategies

that stop at t.18 Requiring that q(t) is t-optimal at every time t then implies that the in-

formation acquisition strategy is most informative about ω at every history and maximizes

expected payoffs given any exogenous stopping time. In our Gaussian environment, such a

strategy also maximizes expected payoffs even when the stopping time can be endogenously

chosen; this follows from a result of Greenshtein (1996). Given this discussion, whenever a

uniformly optimal strategy exists, it must be the optimal strategy in our problem.

Existence and structure of the uniformly optimal strategy. It remains to show that

under Assumption 2, a uniformly optimal strategy exists, and has the structure described in

Theorem 2.

17We show in Lemma 5 that this minimizer is unique.
18Due to normal beliefs, achieving minimum posterior variance means that the agent’s information up to

time t is Blackwell more informative than under any other strategy (Hansen and Torgersen, 1974). Thus the

form of the payoff function u does not matter.
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Suppose without loss of generality that the t-optimal vector n(t) at some time t is sup-

ported on the first k sources. The posterior variance function V (q) is continuously differen-

tiable, so the vector n(t) is determined by a straightforward first-order condition. Specifically,

the first k sources should maximize |∂iV |, the marginal reduction in the posterior variance.

What is less obvious is that the same first-order condition continues to hold as the agent

increases n(t) in a direction that represents a mixture over the first k data sources, and

moreover that this direction remains optimal for a period of time. The analysis here in-

volves comparisons of cross-partial derivatives of V . Indeed, from a technical perspective,

the marginal change of n(t) as t increases can be found by differentiating the first-order

condition, and is thus (inversely) related to the Hessian matrix of V .

Intuitively, the second derivatives of V capture how the latest information acquisition

affects the marginal values of each data source. The condition in Assumption 2 ensures that

as the agent optimally divides attention among the first k data sources, the specific mixture

of new information reduces the marginal value of each of the k sources. This turns out to

be sufficient for information acquisition in this mixture to remain optimal (i.e. maintain the

first-order condition). Thus as the cumulated attention vector changes in this direction, the

resulting posterior beliefs continue to minimize the posterior variance (for a while).

As the agent acquires information from the first k data sources, his beliefs about the

first k attributes become more precise. The marginal values of learning about the remaining

attributes (relative to learning about the first k) thus increase continuously during this time.

Eventually, some new data source will have the same marginal value as the first k sources.

At this point the agent expands his observation set to include that new source, and we can

repeat the reasoning above. Demonstrating that the previous k data sources continue to

receive positive attention (i.e. nested supported sets) is a key technical challenge, and we

refer the reader to the appendix for details.

4 Application: Competing Information Providers

We now consider an application of our main results to a setting in which the data sources/providers

are themselves strategic, and can control the precision of the information that they provide.

For example, if the data source corresponds to search data or discretionary spending data, the

data provider may control the resolution at which this information is provided (i.e. whether

the data is aggregated at the week-level or month-level). Suppose a mass of forward-looking

firms optimally acquire information from the sources over time, and each data provider seeks

to maximize engagement with their data. What are the equilibrium choices of precision by

13



the data providers?

In more detail, we suppose that firms seek to predict the sum of attributes θ1 + θ2, and

their common prior over the parameters is(
θ1

θ2

)
∼ N

((
µ1

µ2

)
,

(
1 ρ

ρ 1

))
,

where ρ ∈ (−1, 1) measures prior correlation between θ1 and θ2. Each of two data providers

i = 1, 2 (freely) chooses a noise variance σ2
i , so that the information it provides is

θi + εi, εi ∼ N (0, σ2
i ).

Note that there is no cost to choosing higher precision values.

Firms optimally allocate attention given these precision choices (which are fixed across

time). Since we’ve assumed a common prior, all firms make the same information acquisition

decisions, and it is without loss to consider a single firm whose allocation at time t is denoted

(βt1, β
t
2). To map this setting into our main model, we normalize the noise terms to have unit

variances as follows: Define θ̃i = θi
σi

, so that each data provider’s signal is equivalent to θ̃i

plus standard Gaussian noise. Under this transformation, the firm seeks to learn σ1θ̃1 +σ2θ̃2,

where its prior covariance matrix over (θ̃1, θ̃2) is

Σ̃ =

(
1
σ2
1

ρ
σ1σ2

ρ
σ1σ2

1
σ2
2

)
.

Note that Assumption 1 is satisfied, since

σ1(Σ̃11 + Σ̃12) + σ2(Σ̃21 + Σ̃22) = (1 + ρ)

(
1

σ1
+

1

σ2

)
≥ 0.

Thus the optimal attention choices (βt1, β
t
2) are characterized by Theorem 1.

Each data provider i’s payoff is the discounted average attention paid to that source∫
e−rtβtidt, where r is a (common) discount rate. We can interpret this as reduced form for

a profit margin, where each data provider receives a payoff proportional to the time the firm

spends gathering its information.19

Proposition 2. The unique equilibrium is a pure strategy equilibrium (σ∗, σ∗) with

σ∗ =

√
1− ρ

2r
.

19Here, for the sake of illustrating the equilibrium, we are considering the case where firms sample forever.

This corresponds to the limit as the waiting cost function c(·) decreases point-wise to zero.
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Equilibrium precision (1/(σ∗)2 = 2r
1−ρ) is monotonically increasing in the discount rate r and

also in the prior correlation ρ.

We note that the less patient the information providers are, the more precise the signals

are in equilibrium. Intuitively, when data provider i increases the precision of the information

it provides, there are two opposing effects: On the one hand, weakly more attention is

attracted to i early on, since i’s information becomes more valuable relative to source j, and

it is more likely to be the source chosen in phase 1. On the other hand, increasing precision

lowers the long-run frequency σi
σi+σj

with which i is viewed, since firms need fewer observations

of i’s information to achieve the same level of precision about θi. Thus, less patient data

providers compete over short-run profits (i.e. being chosen in phase 1) and provide precise

signals, while patient data providers compete for long-run profits (i.e. long-run frequency)

and provide imprecise signals. As far as we are aware, the effect of information precision on

the time path of people’s information demand has not been noted in the previous literature.

Additionally, the more positively correlated the unknown parameters are (higher covari-

ance ρ), the higher the precision of the signals provided in equilibrium. This is because (as

we derive in the proof of the proposition) the threshold t∗i =
(σj−σi)σi

1−ρ increases in ρ, which

increases the value to being the information source chosen in phase 1. The competition for

short-run profits thus drives the signals to be more precise. We provide a rough intuition

for why t∗i increases monotonically in ρ. Note that when the unknowns θ1, θ2 are negatively

correlated (ρ < 0), the two signals about these unknowns are complements for estimating

their sum: This can be formalized by computing the cross-partial derivative ∂2V (q1,q2)
∂q1∂q2

and

checking that it has the same sign as ρ.20 Complementarity between the signals implies

a stronger incentive to observe them together, and so phase 1 is shorter when ρ is more

negative.

From a social welfare perspective, these comparative statics tell us that more information

is released into society (and hence society learns faster) when information providers are less

forward-looking, and when the information they provide is more similar. In the appendix, we

generalize these insights to a game where K > 2 information providers compete, and where

society seeks to predict θ1+· · ·+θK . Observe that the transformed prior covariance matrix Σ̃

does not in general satisfy Assumption 2; this can occur if ρ is large or if the providers choose

very different signal precision levels. Nonetheless, we directly compute the uniformly optimal

strategy (as defined in the proof sketch) and show that the characterization in Theorem 1

20Since the firm seeks to minimize V , having a negative cross-partial means the marginal reduction of

uncertainty by the signal about θ2 becomes bigger after having observed the signal about θ1.
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extends to this setting. We find σ∗ =
√

1−ρ
Kr

to be the equilibrium precision in the unique

symmetric pure strategy equilibrium. Thus the findings in this section are robust to the

presence of many data sources.

5 Application: Binary Choice

The framework we study relates to a large body of work regarding “binary choice tasks,”

in which an agent has a choice between two goods with payoffs θ1 and −θ2 (we introduce

the negative here for expositional simplicity), and can devote effort towards learning about

these payoffs before making his decision. The leading model in this domain, the drift-diffusion

model (Ratcliff and McKoon, 2008), supposes that the agent observes a Brownian motion

whose drift depends on which good yields the higher payoff. In our framework, this model

corresponds to a case in which the agent’s prior belief is supported on two points—either

(θ1,−θ2) = (θ′, θ′′) or (θ1,−θ2) = (θ′′, θ′) where θ′ > θ′′ are known quantities.21 Thus

the agent has uncertainty over which good is better, but not over how much better it is.

Fudenberg et al. (2018) recently generalized this model to allow additionally for the latter

kind of uncertainty. In their uncertain drift-diffusion model, the agent has a jointly normal

prior over (θ1,−θ2), and has access to two Brownian motions with drifts corresponding to

these unknown payoffs.

Both the classic DDM model and also Fudenberg et al. (2018) focus on the optimal

stopping rule given exogenous information. But Fudenberg et al. (2018) additionally proposes

a version of their model in which the agent endogenously acquires information by choosing

attention levels (subject to an budget constraint) that scale the drifts of the Brownian

motions. Indeed, this corresponds exactly to our framework with K = 2 and equal weights

(since the payoff difference θ1 + θ2 is a sufficient statistic for the agent’s decision). They

impose further that the agent’s prior is independent—that is, Σ = I—and find that the

agent optimally devotes equal attention to both information sources at all times.

Applying Theorem 1 with α1 = α2 = 1, we obtain the following immediate generalization

of this result on optimal information acquisition.22

21Although in our setting the agent observes two Brownian motions with drifts θ1 and θ2, his decision is

only a function of their sum, which is a single Brownian motion with drift θ1 + θ2. The classic DDM thus

assumes that the magnitude of θ1 + θ2 is known to the agent.
22Note that Fudenberg et al. (2018) additionally provide results about the optimal stopping time, which

we do not pursue here.
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Corollary 1. Suppose K = 2, α1 = α2 = 1 and Σii ≥ Σjj. The agent’s optimal information

acquisition strategy (βt1, β
t
2) consists of two stages:

• Phase 1: At all times

t ≤ t∗i =
Σii − Σjj

det(Σ)
,

the agent optimally allocates all attention to source i.

• Phase 2: At times t > t∗i , the agent allocates attention in the constant fraction (1
2
, 1
2
).

This result improves upon Theorem 5 in Fudenberg et al. (2018) by allowing for possible

correlation as well as asymmetry between the two unknown payoffs. Fudenberg et al. (2018)

point out that their result does not characterize “off-equilibrium” attention allocation, since

it no longer applies if the agent has paid unequal attention to the two sources in the past.

In contrast, our result applies to all prior beliefs and thus allows for characterization of the

optimal information acquisition strategy at any history, including those in which the agent

has previously behaved sub-optimally.

When Σ = I, the thresholds are t∗1 = t∗2 = 0, so that the agent splits his attention

evenly from the beginning. This returns the solution in Fudenberg et al. (2018). For general

prior covariance matrices Σ, the agent also eventually acquires information according to the

stationary fraction of (1
2
, 1
2
). However, the agent begins by learning about the good over

which he has greater initial uncertainty, until some time t∗ at which his posterior variances

about the two unknown payoffs equalize, and his attention choice jumps discontinuously to

(1
2
, 1
2
).

From Corollary 1 we see additionally that the prior belief impacts the agent’s attention

strategy only by determining which source is observed in phase 1, and for how long that phase

lasts. Thus, changes in the prior result in the agent paying uniformly more or less attention

to either source. In particular if we consider the impact of changes in initial uncertainty

about the attribute values, we have the following comparative static:

Corollary 2. Suppose K = 2, α1 = α2 = 1 and Σii ≥ Σjj. Then, if Σjj ≥ |Σij|, an increase

in Σii results in uniformly higher attention towards source i (βti is weakly larger at every t).

Otherwise, an increase in Σii results in uniformly lower attention towards source i.

The case in which larger Σii results in uniformly higher attention towards source i is

intuitive, since the agent wants to make up for greater initial uncertainty about θi. But the

comparative static is reversed when the covariance Σij is large in magnitude than Σjj. To

interpret this finding, note that whenever the two payoffs are correlated, any information
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acquired about θi also gives information about θj. So in general, an increase in Σii has

two opposing effects on t∗i . On the one hand, greater asymmetry in the prior belief means

it should take longer time to “balance out” the beliefs (the intuition given above). On the

other hand, larger Σii (for fixed Σij and Σjj) decreases the correlation between the unknowns,

so that each unit of attention devoted to θi now reveals less about the other payoff θj. It

should then be faster for the posterior variance about θi to “catch up” with the posterior

variance about θj. Therefore, whether attention is uniformly increased or decreased depends

on which of these two effects dominates. As stated in the corollary, the effect of (decreased)

correlation is dominant when Σij is large in magnitude; that is, when correlation is high to

begin with.
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Appendix

A Preliminaries

We first introduce a definition that captures the objective of minimizing the posterior vari-

ance about ω at some given time t.

Definition 2. Say a cumulated attention vector n(t) is t-optimal if

n(t) ∈ argmin
q1,...,qK≥0,

∑
i qi=t

V (q1, . . . , qK).

In this way, we can rephrase the requirement of uniform optimality as follows: A strategy

is uniformly optimal if and only if its cumulated attention vector q(t) is t-optimal for each t.

Lemma 3. The posterior variance about ω can be written in two ways:

V (q1, . . . , qK) = α′
[
(Σ−1 + diag(q))−1

]
α = α′

[
Σ− Σ(Σ + diag(1/q))−1Σ

]
α

where diag(q) denotes the diagonal matrix with entries q1, . . . , qK and diag(1/q) has entries

1/q1, . . . , 1/qk. This function V extends to a rational function (quotient of polynomials) over

all of RK (even if some qi are negative).

Lemma 4. Given a cumulated attention vector q ≥ 0, define

γ := γ(q) = (Σ−1 + diag(q))−1α

which is a vector in RK. Then the first and second derivatives of V are given by

∂iV = −γ2i ∂ijV = 2γiγj ·
[
(Σ−1 + diag(q))−1

]
ij
.

As a corollary, the Hessian matrix is 2 · diag(γ)(Σ−1 + diag(q))−1 · diag(γ) is positive semi-

definite, and so V is decreasing and convex in q1, . . . , qK whenever qi ≥ 0.

Proof. From Lemma 3 and the formula for matrix derivatives, we have

∂iV = −α′(Σ−1 + diag(q))−1∆ii(Σ
−1 + diag(q))−1α = −

[
e′i(Σ

−1 + diag(q))−1α
]2

= −γ2i

where ∆ii is the matrix with “1” in the (i, i)-th entry and “0” elsewhere, and ei is the i-th

coordinate vector in RK . For the second derivative, we compute that

∂ijV = −2γi·
∂γi
∂qj

= 2γi·e′i(Σ−1+diag(q))−1∆jj(Σ
−1+diag(q))−1α = 2γiγj·

[
(Σ−1 + diag(q))−1

]
ij

as we desire to show.
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These technical properties are used to show that for each t, the t-optimal vector n(t) is

unique.

Lemma 5. For each t ≥ 0, there is a unique t-optimal vector n(t).

Proof. Suppose for contradiction that two vectors (r1, . . . , rK) and (s1, . . . , sK) both mini-

mize the posterior variance at time t. Relabeling the sources if necessary, we can assume

ri − si is positive for 1 ≤ i ≤ k, negative for k + 1 ≤ i ≤ l and zero for l + 1 ≤ i ≤ K. Since∑
i ri =

∑
i si = t, the cutoff indices k, l satisfy 1 ≤ k < l ≤ K.

For λ ∈ [0, 1], consider the vector qλ = λ · r + (1 − λ) · s which lies on the line segment

between r and s. Then by assumption we have V (r) = V (s) ≤ V (qλ). Since V is convex,

equality must hold. This means V (qλ) is a constant for λ ∈ [0, 1]. But V (qλ) is a rational

function in λ, so its value remains the same constant even for λ > 1 or λ < 0. In particular,

consider the limit as λ→ +∞. Then the i-th coordinate of qλ approaches +∞ for 1 ≤ i ≤ k,

approaches −∞ for k + 1 ≤ i ≤ l and equals ri for i > l.

For each qλ, let us also consider the vector |qλ| which takes the absolute value of each

coordinate in qλ. Note that as λ→ +∞, diag(1/|qλ|) has the same limit as diag(1/qλ). Thus

by the second expression for V (see Lemma 3), limλ→∞ V (|qλ|) = limλ→∞ V (qλ) = V (r). For

large λ, the first l coordinates of |qλ| are strictly larger than the corresponding coordinates of

r, and the remaining coordinates coincide. So the fact that V is decreasing and V (q∗) = V (r)

implies ∂iV (r) = 0 for 1 ≤ i ≤ l.

Consider the vector γ = (Σ−1 + diag(r))−1α. By Lemma 4, ∂iV (r) = −γ2i for 1 ≤ i ≤ K.

Thus γ1 = · · · = γl = 0. Since γ is not the zero vector,23 there exists j > l s.t. γj 6= 0.

It follows that ∂1V (r) = 0 > ∂jV (r). But then the posterior variance V would be reduced

if we slightly decreased the first coordinate of r (which is strictly positive as r1 > s1) and

increased the j-th coordinate by the same amount. This contradicts the assumption that r

is t-optimal. Hence the lemma holds.

Given Lemma 5, a uniformly optimal strategy must have cumulated attention vector n(t)

at each time t. Thus a necessary condition for such a strategy to exist is that n(t) weakly

increases (in each coordinate) over time. Conversely, when n(t) is monotonic, we can define

instantaneous attention levels βt to be the time-derivative of n(t). Then this strategy indeed

achieves uniform optimality. To summarize, we have

Lemma 6. A uniformly optimal strategy exists if and only if the t-optimal attention vector

n(t) weakly increases over time.

23This follows because α is not the zero vector, by assumption.
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The following result ensures that a strategy that minimizes the posterior variance uni-

formly at all times is a dynamically optimal strategy in any decision problem. It is a

continuous-time version of Greenshtein (1996).

Lemma 7. A uniformly optimal strategy is dynamically optimal regardless of the payoff

function u(·) or the waiting cost function c(·).

We also have a simple converse result:

Lemma 8. Fixing Σ, α and the payoff function u(·). Suppose an information acquisition

strategy is optimal for all cost functions c(·), then it is uniformly optimal.

Proof. Take an arbitrary time t and consider the cost function with c(τ) = 0 for τ ≤ t and

c(τ) very large for τ > t. Then the agent’s optimal stopping rule is to stop exactly at time

t. Since his information acquisition strategy is optimal for this cost function, the induced

cumulated attention vector must achieve t-optimality. Varying t yields the result.

B Proof of Theorem 1

By Lemma 4 and direct computation, we have

∂1V (q1, q2) =
−(x1q2 + y1)

2

det2(ΣQ+ I)

∂2V (q1, q2) =
−(x2q1 + y2)

2

det2(ΣQ+ I)

(1)

where x1, x2, y1, y2 are as defined in Theorem 1:

xi = αi det(Σ), yi = α1Σi1 + α2Σi2,

Q is the diagonal matrix with entries q1, q2 and I is the identity matrix.

Note that Assumption 1 translates into y1 + y2 ≥ 0. Under this assumption, we will

characterize the t-optimal attention vector (n1(t), n2(t)) and show it is increasing. Without

loss assume y1 ≥ y2, then y1 is non-negative. Let t∗1 = y1−y2
x2

. Then when q1 + q2 ≤ t∗1 we

always have x1q2 + y1 ≥ x2q1 + y2 as well as x1q2 + y1 ≥ −(x2q1 + y2). Thus (1) implies

that ∂1V (q1, q2) ≤ ∂2V (q1, q2) at such attention vectors q. So for any budget of attention

t ≤ t∗1, putting all attention to source 1 minimizes the posterior variance function V . That

is, n(t) = (t, 0) for t ≤ t∗1.

For t > t∗1, observe that ∂1V (0, t) < ∂2V (0, t) as well as ∂1V (t, 0) > ∂2V (t, 0). These

imply that n(t) is interior, and the first-order condition ∂1V = ∂2V yields the solution
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n(t) = (x1t+y1−y2
x1+x2

, x2t−y1+y2
x1+x2

). Thus n(t) is indeed increasing in t, and the instantaneous

attention levels are as described by Theorem 1. This completes the proof.

We mention that the assumption y1 + y2 ≥ 0 is also necessary for a uniformly optimal

strategy to exist.

Lemma 9. Suppose the prior covariance matrix fails Assumption 1. Then a uniformly

optimal strategy does not exist.

Proof. Suppose that y1+y2 < 0. First note that one of y1, y2 is positive, because α1y1+α2y2 =

α′Σα > 0. So without loss we can assume y1 > 0 > −y1 > y2. Moreover, from α1y1+α2y2 > 0

we obtain α1 > α2 and hence x1 > x2. We now characterize the t-optimal attention vector

n(t):

1. If t ≤ −(y1+y2)
x1

, then x2q1 + y2 is negative and has larger magnitude than x1q2 + y1

whenever q1 + q2 = t. By (1), this means ∂1V ≥ ∂2V and so n(t) = (0, t) devotes all

attention to source 2.

2. If −(y1+y2)
x1

< t < −(y1+y2)
x2

, then ∂1V (0, t) < ∂2(0, t) and ∂1V (t, 0) > ∂2(t, 0). These im-

ply that n(t) is interior, and the first-order condition yields x1n2(t)+y1 = −(x2n1(t)+

y2) (for t in this range, x2q1 + y2 is always negative). Together with n1(t) + n2(t) = t,

we can solve that n(t) = (x1t+y1+y2
x1−x2 , −x2t−y1−y2

x1−x2 ).

3. If −(y1+y2)
x2

≤ t ≤ y1−y2
x2

, then (x1q2 + y1)
2− (x2q1 + y2)

2 = (y1− y2− x2q1 + x1q2) · (y1 +

y2 + x1q2 + x2q1) ≥ 0 whenever q1 + q2 = t. Thus ∂1V (q1, q2) ≤ ∂2V (q1, q2), implying

that the t-optimal attention vector should be n(t) = (t, 0).

4. Finally, if t > y1−y2
x2

, then as in the second case ∂1V (0, t) < ∂2(0, t) and ∂1V (t, 0) >

∂2(t, 0). So n(t) is interior and satisfies the first-order condition x1n2(t)+y1 = x2n1(t)+

y2. This yields the solution n(t) = (x1t+y1−y2
x1+x2

, x2t−y1+y2
x1+x2

) and completes the analysis.

Note that in Case 2 above, as t increases in the range, n2(t) actually decreases. This proves

that a uniformly optimal strategy does not exist.

C Proof of Theorem 2

C.1 Weaker Assumption

Given Lemma 7, it is sufficient to show that the t-optimal vector n(t) is weakly increasing

in t, and that its time derivative is locally constant as described in the theorem. We will in
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fact prove the same result under the following weaker assumption:

Assumption 3. The inverse of the prior covariance matrix Σ−1 is diagonally-dominant.

That is,

[Σ−1]ii ≥
∑
j 6=i

|[Σ−1]ij| ∀1 ≤ i ≤ K.

This is implied by Assumption 2 via the following lemma.

Lemma 10. Suppose the prior covariance matrix Σ satisfies Assumption 2, then its inverse

matrix satisfies [Σ−1]ii ≥ (K − 1) · |[Σ−1]ij| ∀i 6= j and is thus diagonally-dominant.

Proof. We focus on the first row of Σ−1, as the other rows can be symmetrically handled.

Let xi = [Σ−1]1i for 1 ≤ i ≤ K, and without loss assume x2 has the greatest absolute value

among x2, . . . , xK . It suffices to show x1 ≥ (K − 1)|x2|.
From Σ−1 · Σ = I we have

∑K
i=1[Σ

−1]1i · Σi2 = 0. Thus by symmetry,
∑K

i=1 xi · Σ2i = 0.

Rearranging yields

|x1 · Σ21| = |x2 · Σ22 +
∑
i>2

xi · Σ2i| ≥ |x2 · Σ22| −
∑
i>2

|xi · Σ2i| ≥ |x2 · Σ22| −
∑
i>2

|x2 · Σ22|
2K − 3

,

where the last inequality uses |xi| ≤ |x2| and |Σ2i| ≤ 1
2K−3 |Σ22| for i > 2. The above

inequality simplifies to

|x1 · Σ21| ≥
K − 1

2K − 3
· |x2 · Σ22|.

And since Σ21 ≤ 1
2K−3 |Σ22|, we conclude that |x1| ≥ (K − 1)|x2| as desired. Note that

x1 = [Σ−1]11 is necessarily positive.

C.2 Technical Property of γ

The following technical lemma will be repeatedly used.

Lemma 11. Suppose Σ−1 is diagonally-dominant. Given an arbitrary attention vector q,

define γ as in Lemma 4 and denote by B the set of indices i such that |γi| is maximized.

Then γi is the same positive number for every i ∈ B.

Proof. We use Q to denote diag(q). Since (Σ−1 +Q)−1α = γ, we equivalently have

α = (Σ−1 +Q)γ.
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Suppose for contradiction that γi ≤ 0 for some i ∈ B. Using the above vector equality for

the i-th coordinate, we have

0 < αi =
K∑
j=1

[Σ−1 +Q]ij · γj.

Rearranging, we then have

[Σ−1 +Q]ii · (−γi) <
∑
j 6=i

[Σ−1 +Q]ij · γj ≤
∑
j 6=i

|[Σ−1 +Q]ij| · |γj|,

which is impossible because −γi ≥ |γj| for each j 6= i and [Σ−1 + Q]ii ≥
∑

j 6=i |[Σ−1 + Q]ij|.
Thus γi is positive for i ∈ B. The result that these γi are the same follows from the definition

that their absolute values are maximal.

C.3 The Last Stage

To prove Theorem 2 under Assumption 3, we first consider those times t when each of the

K sources has been sampled. The following lemma shows that it is optimal to maintain a

constant attention level proportional to α ever after.

Lemma 12. Suppose Σ−1 is diagonally-dominant. If at some time t, the t-optimal vector

satisfies ∂1V (n(t)) = · · · = ∂KV (n(t)), then the t-optimal vector at each time t ≥ t is given

by

n(t) = n(t) +
t

α1 + · · ·+ αK
· α.24

Proof. Consider increasing n(t) by a vector proportional to α. If we can show the equalities

∂1V = · · · = ∂KV are preserved, then the resulting vector must be t-optimal. This is because

for the convex function V , a vector q minimizes V (q) subject to qi ≥ 0 and
∑

i qi = t if and

only if it satisfies the KKT first-order conditions.

We check the equalities ∂1V = · · · = ∂KV by computing the marginal changes of each

∂iV when the attention vector q = n(t) increases in the direction of α. Denoting diag(q) by

Q to save notation, this marginal change equals

δi :=
K∑
j=1

∂ijV · αj = 2
K∑
j=1

γiγj
[
(Σ−1 +Q)−1

]
ij
· αj

24That is, ni(t) = ni(t) + t
α1+···+αK

· αi for each i.
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by Lemma 4. If we can show that γ1 = · · · = γK , then the above simplifies to

δi = 2γ21

K∑
j=1

[
(Σ−1 +Q)−1

]
ij
· αj = 2γ21γi,

where the second equality follows from (Σ−1 +Q)−1 ·α = γ. Thus, assuming that γ1 = · · · =
γK , the marginal change of ∂iV is the same for all i. Hence ∂1V = · · · = ∂KV continues to

hold.

Because ∂1V = · · · = ∂KV holds at the attention vector q, Lemma 4 implies that all γi

have the same absolute value. They are thus equal by Lemma 11.

C.4 Earlier Stages

In general, we need to show that even when the agent is choosing from a subset of the

sources, the t-optimal vector n(t) is still increasing over time. This is guaranteed by the

following lemma, which says that the agent optimally attends to those sources that maximize

the marginal reduction of V , until a new source becomes another maximizer. For ease of

exposition we state the lemma under a slightly stronger assumption that Σ−1 is strictly

diagonally-dominant. Later we will discuss how the lemma should be modified without this

strictness.

Lemma 13. Suppose Σ−1 is strictly diagonally-dominant. Choose any time t and denote

B = argmin
i

∂iV (n(t)) = argmax
i
|γi|.

Then there exists β ∈ ∆K−1 supported on B and t > t such that n(t) = n(t) + (t− t) · β at

times t ∈ [t, t].

The vector β depends only on Σ, α and B. The time t is the earliest time after t at which

point argmini ∂iV (n(t)) is a strict superset of B. When |B| = K, it holds that t =∞ and β

is proportional to α, as given by Lemma 12.

Proof. Without loss we assume B = {1, . . . , k} with 1 ≤ k < K. First we let q = n(t)

and define γ as before. By Lemma 11, γi is the same positive number for i ≤ k. Next, the

first-order condition for t-optimality implies that qj = 0 whenever j > k. Otherwise V could

be reduced by decreasing qj and increasing q1.

We now use a trick to deduce the current lemma from the previous Lemma 12. Specif-

ically, given the prior covariance matrix Σ, we can choose another basis of the attributes

θ1, . . . , θk, θ̂k+1, . . . , θ̂K with two properties:
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1. each θ̂j (j > k) is a linear combination of the original attributes θ1, θ2, . . . , θK ;

2. Cov[θi, θ̂j] = 0 for all i ≤ k < j, where the covariance is computed according to the

prior belief.

Denote by θ̃ the vector (θ1, . . . , θk)
′, and by θ̂ the vector (θ̂k+1, . . . , θ̂K)′. The payoff-relevant

state ω = α′ · θ can thus be rewritten as α̃′ · θ̃ + α̂′ · θ̂ for some constant coefficient vectors

α̃ ∈ Rk and α̂ ∈ RK−k. Using property 2 above, we can solve for α̃ from Σ, α and B:

α̃ = (ΣTL)−1 · (ΣTL, ΣTR) · α (2)

where ΣTL represents the k×k top-left submatrix of Σ and ΣTR k× (K−k) top-right block.

With this transformation, we have reduced the original problem with K sources to a

smaller problem with only the first k sources. To see why this reduction is valid, recall that

sampling sources 1 ∼ k only provides information about θ̃, which is orthogonal to θ̂ according

to the prior. So as long as the agent has only looked at the first k sources, the transformed

attributes continue to satisfy property 2 above (zero covariances) under any posterior belief.

It follows that the posterior variance about ω is simply the variance about α̃′ · θ̃ plus the

variance about α̂′ · θ̂. Since the latter uncertainty cannot be reduced, the agent’s objective

(at those times when only the first k sources are attended to) is equivalent to minimizing

the posterior variance about α̃′ · θ̃.
Thus, in this smaller problem, the prior covariance matrix is ΣTL and the payoff weights

are α̃. Assuming that α̃ has positive coordinates, we can then apply Lemma 12: As long

as the agent attends to the first k sources proportional to α̃, ∂1V = · · · = ∂kV continues

to hold.25 Moreover, at q = n(t), the definition of the set B implies that these k partial

derivatives are smaller (more negative) than the rest. By continuity, the same comparison

holds until some time t > t. Thus, when t ∈ [t, t], the cumulated attention vector (under this

strategy) still satisfies the first-order condition B = argmin1≤i≤K ∂iV and qj = 0 for j /∈ A.

Since V is convex, this must be the t-optimal vector as desired.

It remains to prove that βi = α̃i is positive for 1 ≤ i ≤ k. To this end, define Q̃ =

diag(q1, . . . , qk) to be the k × k top-left submatrix of Q, and

γ̃ = ((ΣTL)−1 + Q̃)−1α̃. (3)

We will show that γ̃ is just the first k coordinates of γ. Indeed, observe that (Σ−1TL + Q̃)−1 is

25To be rigorous, the conclusion should be about the function Ṽ (q1, . . . , qk), which is the posterior variance

about α̃′θ̃ in the smaller problem. But as discussed, this differs from V (q1, . . . , qk, 0, . . . , 0) by a constant.
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also the k × k top-left submatrix of (Σ−1 +Q)−1.26 Using (2) and (3), we have

γ̃ = [(Σ−1 +Q)−1]TL · (ΣTL)−1 · (ΣTL, ΣTR) · α

= [(Σ−1 +Q)−1]TL · (α1, . . . , αk)
′ + [(Σ−1 +Q)−1]TL · (ΣTL)−1 · ΣTR · (αk+1, . . . , αK)′.

On the other hand, from γ = (Σ−1 +Q)−1α we have

(γ1, . . . , γk)
′ =
(
[(Σ−1 +Q)−1]TL, [(Σ−1 +Q)−1]TR

)
· α

= [(Σ−1 +Q)−1]TL · (α1, . . . , αk)
′ + [(Σ−1 +Q)−1]TR · (αk+1, . . . , αK)′.

Comparing the above two formulas, γ̃ is the first k coordinates of γ so long as

[(Σ−1 +Q)−1]TL · (ΣTL)−1 · ΣTR = [(Σ−1 +Q)−1]TR,

which indeed holds.27

Hence γ̃i = γi for 1 ≤ i ≤ k, and it is the same positive number by Lemma 11. Finally,

we rewrite (3) as α̃ = ((ΣTL)−1 + Q̃)γ̃. Thus α̃i is (proportional to) the i-th row sum of the

matrix (ΣTL)−1 + Q̃, which is just the row sum of (ΣTL)−1 plus qi. A theorem of Carlson

and Markham (1979) says that if Σ−1 is (strictly) diagonally-dominant, then so is (ΣTL)−1

for any principal submatrix ΣTL. Consequently the row sums of (ΣTL)−1 are all positive,

implying that α̃i > 0.

C.5 Completing the Proof

We now apply Lemma 13 repeatedly to prove Theorem 2. Continuing to assume strict

diagonal dominance, we can apply Lemma 13 with t = 0 and deduce that up to some

time t1 = t > 0, t-optimality can be achieved by a constant attention strategy supported

26This holds because (Σ−1 + Q)−1 = Q−1 − Q−1(Q−1 + Σ)−1Q−1. Note that Q−1 is a block matrix:

its k × k top-left block is Q̃−1, and its k × (K − k) top-right block is zeros (its bottom-right block can be

seen as the diagonal matrix with infinities). So the top-left block of Q−1 − Q−1(Q−1 + Σ)Q−1 is simply

Q̃−1−Q̃−1[(Q−1+Σ)−1]TLQ̃
−1, which in turn is equal to Q̃−1−Q̃−1(Q̃−1+ΣTL)−1Q̃−1 = ((ΣTL)−1+Q̃)−1.

27Consider the identity (Σ−1 +Q)−1 · (Σ−1 +Q) = IK . The top-right block of the product is zeros, so by

block matrix multiplication we have

[(Σ−1 +Q)−1]TL · (Σ−1 +Q)TR = −[(Σ−1 +Q)−1]TR · (Σ−1 +Q)BR.

Next consider the identity Σ · (Σ−1 +Q) = IK + Σ(Q). The top-right block is again zeros, and we similarly

deduce

ΣTL · (Σ−1 +Q)TR = −ΣTR · (Σ−1 +Q)BR.

These two equalities together yield the desired result.
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on B1 = argmin1≤i≤K ∂iV (0). Applying Lemma 13 again with t = t1, we know that the

agent can maintain t-optimality from time t1 to some time t2 with a constant attention

strategy supported on B2 = argmin1≤i≤K ∂iV (n(t1)). So on and so forth. Since the sets

∅ = B0, B1, B2, . . . are nested by construction, we eventually have Bm = {1, . . . , K} for

some m, and consequently tm =∞.

Note that Bl+1 − Bl need not be a singleton for each l (i.e. two sources can simulta-

neously become new minimizers of ∂iV ). Thus m can be smaller than K, and the nested

sets B1, . . . , Bm and increasing times t1, . . . , tm do not necessarily satisfy the conclusion of

Theorem 2. However, this is easy to resolve by including “redundant” times. Formally, we

set tk = tl for any k satisfying |Bl| ≤ k < |Bl+1|. We also choose B1, . . . , BK such that

Bk+1 − Bk is a singleton for each k, and Bk = Bl whenever k = |Bl|. The nested sets

B1, . . . , BK and weakly increasing times t1, . . . , tK then lead to Theorem 2.

Finally, suppose Σ−1 is only weakly diagonally-dominant. The proof of Lemma 13 is still

applicable, except that we can no longer conclude βi = α̃i is strictly positive. Thus the

attention vector β is non-negative and potentially supported on a subset of B. Nonetheless,

recall that α̃i is proportional to the i-th row sum of (ΣTL)−1 plus qi. So we have βi > 0

whenever qi > 0. This implies that any source that has received attention in the past will

receive positive attention at every future moment.

Using this property, we can redo the above proof of Theorem 2. First, the agent can

achieve t-optimality up to time t1 with a constant attention strategy supported on some

set B1, which is now a potential subset of argmin1≤i≤K ∂iV (0). He can then maintain t-

optimality from t1 to t2 with another constant attention level supported on some set B2 ⊂
argmin1≤i≤K ∂iV (n(t1)). So on and so forth, until argmin1≤i≤K ∂iV (n(tm−1)) = {1, . . . , K},
at which point Bm = {1, . . . , K} as well by Lemma 12. This process must end, because

by construction the set of minimizers argmin1≤i≤K ∂iV (n(t0)), argmin1≤i≤K ∂iV (n(t1)), . . .

strictly expands.

By the earlier analysis, we have the crucial observation that the sets B1, B2, . . . are

weakly increasing. From the perspective of information acquisition, we can in fact assume

these sets are strictly nested because the attention level is unchanged at time tl whenever

Bl+1 = Bl.28 Theorem 2 then follows from the same argument as before, after including

28To see this, define B∗ = argmini ∂iV (n(tl−1)) and B∗∗ = argmini ∂iV (n(tl)). Then the constant at-

tention level between times tl and tl+1 is proportional to the vector α∗∗, which has the property that the

payoff-relevant state ω can be written as α∗∗ times (inner-product) the states in B∗∗ plus a residual term

orthogonal to these states. If Bl+1 = Bl, then α∗∗ which is supported on Bl+1 is also supported on Bl ⊂ B∗.
Since the aforementioned residual term is orthogonal to the smaller set of states in B∗, we deduce that α∗∗
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some redundant times.

C.6 Tightness of 1
2K−3

Here we provide an example to show that the constant 1
2K−3 in Assumption 2 is tight for the

existence of a uniformly optimal strategy. In other words, for any ρ > 1
2K−3 we demonstrate

a prior covariance matrix Σ satisfying |Σij| ≤ ρ · Σii for all i 6= j, as well as some weight

vector α, such that uniform optimality cannot be achieved given the primitives Σ and α.

Let Σ have diagonal entries 1 and off-diagonal entries −ρ, with ρ > 1
2K−3 . This means

the agent’s prior belief over the attributes is symmetric. We also choose α2 = · · · = αK = 1

and α1 equal to a small positive number.

For this problem, we will show that the t-optimal attention vector n(t) is not monotonic

over time. Note that the last K − 1 sources have symmetric prior and symmetric payoff

weights. Thus, the posterior variance function V (q1, q2, . . . , qK) is symmetric in its last K−1

arguments. This implies that the t-optimal vector n(t) must satisfy n2(t) = · · · = nK(t);

otherwise it would not be unique.

Minimizing the posterior variance at time t thus simplifies to the following problem:

(n1, n2) ∈ argmin
q1,q2≥0, q1+(K−1)q2=t

V (q1, q2, . . . , q2).

That is, the agent optimally divides attention between signal 1 and the remaining signals

(which always receive equal attention).

The posterior belief of such a agent can be derived by Bayesian updating on the following

K normal signals: θ1 +N
(

0, 1
q1

)
and θi +N

(
0, 1

q2

)
for 2 ≤ i ≤ K. We now show that in

terms of predicting the payoff-relevant state α1θ1 +
∑

i>1 θi, the agent’s belief is the same as

if he had observed just two signals: θ1+N
(

0, 1
q1

)
and 1

K−1
∑

i>1 θi+N
(

0, 1
(K−1)q2

)
, which is

the average of the last K− 1 signals previously. Clearly, those K− 1 signals provide at least

as much information as their average, so we focus on the converse. Indeed, by symmetry we

know that the agent’s posterior belief about
∑

i>1 θi is unchanged whether he observes the

K − 1 signals or their average. Moreover, conditional on
∑

i>1 θi, the K − 1 signals only

provide information about the differences θi− θj (with i, j > 1). Since θi− θj is independent

from θ1 conditional on
∑

i>1 θi (it is in fact independent from both), the extra information

does not change the conditional belief about θ1. As such, the K − 1 signals θi +N
(

0, 1
q2

)
for i > 1 are equally informative about the payoff-relevant state as their average.29

coincides with the constant attention level α∗ between times tl−1 and tl.
29This can also be proved by directly computing the posterior covariance matrix. We omit the details.
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Given this equivalence, we can relate t-optimality in the original information environment

with K sources to a smaller problem with just two sources. Specifically, define θ∗1 = θ1,

θ∗2 = 1
K−1

∑
i>1 θi, α

∗
1 = α1, α

∗
2 = K − 1. Then the payoff-relevant state ω is rewritten as

α∗1 · θ∗1 +α∗2 · θ∗2. The discussion in the preceding paragraph shows that the posterior variance

function V ∗ in this two-by-two problem satisfies

V ∗(q∗1, q
∗
2) = V

(
q∗1,

q∗2
K − 1

, . . . ,
q∗2

K − 1

)
,

because on both sides the posterior variance is derived assuming that the agent had observed

the two signals θ1 +N
(

0, 1
q∗1

)
and 1

K−1
∑

i>1 θi +N
(

0, 1
(K−1)q∗2

)
. Hence, t-optimality in this

smaller problem is equivalent to t-optimality in the original problem.

We compute the prior covariance matrix Σ∗ to be

Σ∗ =

(
1 −ρ
−ρ 1−(K−2)ρ

K−1

)
.

In particular, since ρ > 1
2K−3 , Σ∗21 + Σ∗22 is negative. Thus if α∗1 = α1 is sufficiently small,

this matrix violates Assumption 1. By Lemma 9, we conclude that the t-optimal attention

vectors in this smaller problem are not monotonic. The same holds for the original problem,

completing the proof.

D Proof of Proposition 1

D.1 Proof Outline

As discussed in the main text, we only need to prove that each source receives infinite

attention (Lemma 1) and that Theorem 2 applies at any posterior belief after each source is

sufficiently sampled. The latter is easy: Observe that the agent’s posterior precision matrix

is given by Σ−1 + Q, where Q is the diagonal matrix with entries q1, . . . , qK . As qi →∞ to

each i, clearly the matrix Σ−1 +Q is diagonally-dominant. So the conclusion of Theorem 2

holds.30

It remains to prove Lemma 1. This is in turn implied by the following lemma:

Lemma 14. Fix Σ and α. Given any q ∈ R+, there exists q ∈ R+ such that the cumulated

attention vectors q(t) under the optimal strategy have the following property: Whenever

qi(t) < q for some source i, it holds that qj(t) ≤ q for every source i.

30This argument shows that Assumption 3 is satisfied when each qi is large. It can be shown that in fact,

the stronger Assumption 2 is also satisfied if we take qi even larger (i.e. Lemma 2 holds).
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Taking the contrapositive, this result says that whenever a source j has received attention

more than q, then each source i has received attention at least q. Since there necessarily

exists such a source j as t→∞, the consequence is that all sources must eventually receive

cumulated attention ≥ q. This lemma thus implies Lemma 1.

We now sketch how we prove the above lemma. First it is clear that the result for any q

follows from the result for any larger q. So we will assume q is large (to be formalized later).

We will then prove the result by choosing q even larger (also determined later). Suppose for

contradiction that after some history, the cumulated attention vector satisfies qi(t0) < q and

qj(t0) > q. By relabeling the signals, we can assume that

q1(t0), . . . , qk(t0) < q ≤ qk+1(t0), . . . , qK−1(t0); qK(t0) > q.

That is, the cumulated attention devoted to each of the first k sources is “deficient,” whereas

source K has received “excessive” attention. We can further assume that source K continues

to receive positive attention in some interval (t0, t0 + ε]; otherwise we can replace t0 by an

earlier time without changing these conditions.

Our proof method will be to construct a profitable deviation strategy (of how to allocation

attention) following this history, so that optimality is violated. Thanks to the main theorem

of Greenshtein (1996), any deviation strategy is profitable so long as it decreases the posterior

variance of ω at all future times. Given a deviation strategy, let q̃(t) denote the induced

cumulated attention vector, which is distinguished from q(t). Then the deviation is profitable

whenever the following inequality holds:31

V (q̃(t)) ≤ V (q(t)), ∀t ≥ t0.

D.2 The Deviation

We now construct such a deviation. Take any time T ≥ t0, there are three cases:

(a) Suppose that the original strategy S devotes positive attention to source K at time

T . Then under the deviation strategy, the agent diverts this attention (evenly) toward

those sources i with q̃i(T ) < q.32 If no such source exists, the deviation strategy devotes

the same amount of attention to source K.

31Such a deviation is strictly profitable if in addition V (q̃(t)) < V (q(t)) holds strictly for t ∈ (t0, t0 + ε],

which is verified below.
32Formally, when the time derivative of qK(T ) is positive, we set the time derivative of q̃K(T ) to be zero,

and compensate it by increasing the time derivatives of q̃i(T ) for those signals i insufficiently observed.
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(b) Suppose that the original strategy devotes attention to some source in k+1, . . . , K−1.

Then the deviation strategy devotes the same attention to this source.

(c) Suppose that the original strategy devotes attention to source i ≤ k. If q̃i(T ) < q

or q̃i(T ) = qi(t), then the deviation strategy also observes source i. Otherwise we

have q̃i(T ) = q > qi(T ), and in this case the deviation strategy diverts this amount of

attention to source K instead.

To interpret, the deviation strategy starts to deviate at time t0, when some source K has

been observed too often compared to some other sources 1, . . . , k. Following that history, the

deviation refrains from observing source K and instead devotes attention to sources 1, . . . , k,

until all of these “deficient” sources are no longer deficient, after which the deviation strategy

agrees with the original strategy in the amount of attention allocated to source i.

D.3 Four Kinds of Sources

Our end goal is to show that at any time T ≥ t0, either q̃(T ) = q(T ), or V (q̃(T )) <

V (q(T )). This will show that the deviation is profitable. But to do that, we first provide

a categorization of the different sources and their cumulated attention vectors (under the

deviation strategy versus the original strategy).

1. For sources i ∈ I1 ⊂ {1, . . . , k}, we have qi < q̃i < q (henceforth we fix T and use qi to

denote qi(T )). By construction, these sources have received equal attention diverted

from source K, under the deviation strategy. So for some x > 0 it holds that

q̃i = qi + x, ∀i ∈ I1.

2. For sources i ∈ I2 ⊂ {1, . . . , k}, we have qi < q̃i = q. These are the sources that

have reached the target level q under the deviation strategy, but not under the original

strategy. Let xi denote the difference q̃i − qi, then by construction we have xi ≤ x,

which is defined above.

3. For sources i ∈ I3, we have qi = q̃i ≥ q. These include the sources k+1, . . . , K−1, which

the deviation strategy does not affect. Also included are those sources in 1, . . . , k that

have reached cumulated attention q under both the original and deviation strategies.

4. Finally source K is the only source with qi > q̃i. In fact we have

qK − q̃K =
∑
i<K

(q̃i − qi) = |I1| · x+
∑
i∈I2

xi.
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Suppose q̃ 6= q, then either I1 or I2 is non-empty. We will use this characterization to

show V (q̃) < V (q).

D.4 Comparison of Posterior Variances

The following technical lemma is needed, and we prove it at the end:

Lemma 15. There exists a positive constant CH depending only on Σ and α, such that for

all q1, . . . , qK ≥ 0,

∂iV (q) ≥ −CH
q2i

, ∀1 ≤ i ≤ K.

Moreover, there exists another positive constant CL such that the following holds when q is

large:

If q1, . . . , qK ≥ q, then

∂iV (q) ≤ −CL
q2i

, ∀1 ≤ i ≤ K.

And if some qi < q, then there exists j such that

qj < q and ∂jV (q) ≤ −CL
q2

.

To prove V (q̃) < V (q), first consider the case that I1 (defined in the previous subsection)

is the empty set. Let j ∈ I2 be the source that maximizes xj = q̃j − qj. We then have

V (q̃) = V (q̃j, q̃−j) ≤ V (qj, q̃−j)+(q̃j−qj)·∂jV (q̃) ≤ V (qj, q̃−j)−
xj · CL
q2

≤ V (q1, . . . , qK−1, q̃K)−xj · CL
q2

.

(4)

The first inequality uses the convexity of V . The second inequality uses the second part of

Lemma 15 (which applies because q̃i ≥ q for all i when I1 is empty), as well as q̃j = q (since

j ∈ I2). The last inequality uses the monotonicity of V and q̃i ≥ qi for all but the last source.

On the other hand, we also have

V (q) ≥ V (q1, . . . , qK−1, q̃K)+(qK−q̃K)·∂KV (q1, . . . , qK−1, q̃K) ≥ V (q1, . . . , qK−1, q̃K)−(K − 1)xj · CH
(q̃K)2

,

(5)

where the first inequality is by convexity, and the second uses the first part of Lemma 15

and qK − q̃K =
∑

i∈I2 xi ≤ (K − 1)xj by our choice of j.

Recall that q̃K ≥ q. Thus whenever q is much larger compared to q, the above inequalities

(4) and (5) imply that V (q̃) < V (q), as we desire to show.
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Next we consider the case where I1 is non-empty. By the third part of Lemma 15, we

can choose j ∈ I1 such that ∂jV (q̃) ≤ −CL
q2

. Then, similar to (4) we have

V (q̃) ≤ V (q1, . . . , qK−1, q̃K)− x · CL
q2

,

with x replacing the role of xj. Likewise, we have the following analogue of (5):

V (q) ≥ V (q1, . . . , qK−1, q̃K)− (K − 1)x · CH
(q̃K)2

,

where we used qK − q̃K = |I1| · x+
∑

i∈I2 xi ≤ (K − 1)x.

Hence we are once again able to deduce V (q̃) < V (q) so long as q̃K ≥ q is much larger

than q. This completes the proof of Proposition 1 modulo Lemma 15.

D.5 Proof of Lemma 15

In light of Lemma 4, the key will be to estimate the size of the different coordinates of

γ = (Σ−1 +Q)−1 · α.

For the first part, note that the matrix norm of the posterior covariance matrix (Σ−1 +

Q)−1 is bounded above (by the norm of the prior covariance matrix Σ). Thus for any possible

q, the vector γ is bounded. We now write

α = (Σ−1 +Q) · γ.

Comparing the i-th coordinate on both sides, we have αi = e′i · Σ−1 · γ + qiγi. This then

implies that the product qiγi is bounded across different possible q. Since ∂iV (q) = −γ2i , the

first part of Lemma 15 is proved.

For the second part, we use the matrix identity

(Σ−1 +Q)−1 = Q−1 −Q−1 · (Σ +Q−1)−1 ·Q−1.

So γi = e′i · (Σ−1 + Q)−1 · α = αi
qi
− 1

qi
· e′i · (Σ + Q−1)−1 · Q−1 · α. If q1, . . . , qK are all large,

then the term being subtracted is at most αi
2qi

, because the matrix norm of (Σ + Q−1)−1 is

bounded above and the norm of Q−1 is small. Thus γi ≥ αi
2qi

, implying that ∂iV ≤ −α2
i

4q2i
. The

second part of the lemma holds for CL = mini
α2
i

4
.

For the third part, let q1, . . . , qm < q ≤ qm+1, . . . , qK . Suppose for the sake of contradic-

tion that ∂iV (q) > −CL
q2

for each 1 ≤ i ≤ m, with CL defined above. Then |γi| < αi
2q
< αi

2qi
for

1 ≤ i ≤ m. Thus, αi − qiγi > αi
2

. We now rewrite α = (Σ−1 +Q) · γ as

Σ · (α−Qγ) = γ.
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Since the i-th coordinate of α − Qγ is simply αi − qiγi, we deduce that the vector norm of

α−Qγ is bounded away from zero. So the above identity suggests that the norm of γ is also

bounded away from zero. However, for 1 ≤ i ≤ m we have |γi| < αi
2q

by hypothesis, and for

i > m we know from the first part that |γi| ≤
√
CH
qi
≤
√
CH
q

. Hence the norm of γ is in fact

close to zero when q is large. This leads to a contradiction and completes the proof.

E Proof of Proposition 2

We first consider pure strategy equilibria, and then use the constant-sum feature of the

game to argue there are no mixed equilibria. Fix arbitrary σ1, σ2 > 0. From the agent’s

perspective, the informational environment is equivalent to one in which he seeks to predict

σ1θ̃1 + σ2θ̃2 and holds the prior belief(
θ̃1

θ̃2

)
∼ N

((
µ1
σ1
µ2
σ2

)
,

(
1
σ2
1

ρ
σ1σ2

ρ
σ1σ2

1
σ2
2

))
.

Since Assumption 1 is satisfied, we can apply Theorem 1 to this transformed environment.

Without loss of generality we assume σ1 ≤ σ2 in equilibrium. Then the agent puts all

attention on source 1 until time t∗1 = (σ2−σ1)σ1
1−ρ . At all times after t∗1, he allocates attention

in the constant fraction
(

σ1
σ1+σ2

, σ2
σ1+σ2

)
. Source 1’s payoff function is thus

U1(σ1, σ2) =

∫ t∗1

0

e−rtdt+

∫ ∞
t∗1

e−rt
σ1

σ1 + σ2
dt =

1

r

(
1− σ2

σ1 + σ2
e−rt

∗
1

)
.

The derivative with respect to the source’s action σ1 is

∂U1

∂σ1

∣∣∣∣
(σ1,σ2)

=
σ2

r(σ1 + σ2)2
e−rt

∗
1

(
1− r(σ1 + σ2)(2σ1 − σ2)

1− ρ

)
. (6)

Equilibrium requires

r(σ1 + σ2)(2σ1 − σ2) ≤ 1− ρ with equality if σ1 < σ2. (7)

On the other hand, since βt1 + βt2 = 1 at every t, the game has constant sum 1
r
. So source

2’s payoff is simply

U2(σ1, σ2) =
1

r
− U1(σ1, σ2) =

σ2
r(σ1 + σ2)

e−rt
∗
1 .

The derivative with respect to its action σ2 is

∂U2

∂σ2

∣∣∣∣
(σ1,σ2)

=
σ1

r(σ1 + σ2)2
e−rt

∗
1

(
1− r(σ1 + σ2)σ2

1− ρ

)
. (8)
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Equilibrium requires

r(σ1 + σ2)σ2 ≥ 1− ρ with equality if σ1 < σ2 (9)

Combining (7) and (9), it is immediate that any pure strategy equilibrium must have

σ1 = σ2.
33 Then the two inequalities (7) and (9) together give σ1 = σ2 =

√
1−ρ
2r

= σ∗ as

desired. Moreover, this is an equilibrium because (6) and (8) show that any deviation (not

just local deviations) is not profitable. In fact, given σj = σ∗, the unique best response of

source i is to choose the same σi. Since the game has a constant sum, this proves that the

pure strategy equilibrium we have found is the unique equilibrium, pure or mixed.

F Many Competing Providers

Here we demonstrate how the game in Section 4 generalizes to the case of K > 2 competing

data sources. We maintain essentially the same setup, except that the agent seeks to predict

θ1 + · · · + θK where the precision of information about each θi is controlled by a separate

data provider. Using the transformation θ̃i = θi
σi

, we can reduce the agent’s information

acquisition problem to our main model with prior covariance matrix

Σ̃ =


1
σ2
1

ρ
σ1σ2

. . . ρ
σ1σK

ρ
σ1σ2

1
σ2
2

. . . ρ
σ2σK

. . . . . . . . . . . .
ρ

σ1σK

ρ
σ2σK

. . . 1
σ2
K

 .

and weight vector α̃ = (σ1, . . . , σK)′.

Although Σ̃ does not in general satisfy Assumption 2, it turns out that the optimal

attention levels can still be characterized in the same way as Theorem 2, thanks to the

symmetry in this problem. Specifically, we have:

Lemma 16. Suppose σ1 ≤ σ2 ≤ · · · ≤ σK. For 1 ≤ k ≤ K − 1, define

tk =
1

1− ρ

k∑
i=1

σi(σk+1 − σi)

and define tK = +∞. Then for any k, the optimal attention level is constant at all times

t ∈ [tk−1, tk) and supported on the first k sources, where each source i ≤ k receives attention

proportional to its weight σi.

33Otherwise both inequalities hold equal, which yields 2σ1 − σ2 = σ2 and again σ1 = σ2.
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Using this result, it is straightforward to solve for the symmetric pure strategy equilibrium

of the game. Indeed, suppose the other sources all choose σ2; then, source 1’s payoff when

choosing σ1 ≤ σ is given by

1

r

(
1− (K − 1)σ

σ1 + (K − 1)σ
· e

−rσ1(σ−σ1)
(1−ρ)

)
.

Differentiating this w.r.t. σ1 yields the first-order condition r·(σ1+(K−1)σ)·(2σ1−σ) ≤ 1−ρ
at σ1 = σ, so that σ ≤

√
1−ρ
Kr

.

On the other hand, by choosing σ1 > σ, source 1 gets

σ1
σ1 + (K − 1)σ

· e
−r(K−1)σ(σ1−σ)

1−ρ .

Differentiating w.r.t. σ1 yields another first-order condition r · σ1 · (σ1 + (K − 1)σ) ≥ 1− ρ
at σ1 = σ. Thus σ ≥

√
1−ρ
Kr

, showing such an equilibrium is unique.

Proof of Lemma 16. Fix any stage k and any time t ∈ [tk−1, tk) with tk defined in the lemma.

Then, according to the lemma, the t-optimal attention vector n(t) satisfies

ni(t) =
σi(σk − σi)

1− ρ
+

σi
σ1 + · · ·+ σk

· (t− tk−1), ∀1 ≤ i ≤ k (10)

and ni(t) = 0 for i > k. Conversely, if we can show this vector n(t) is indeed t-optimal, then

the lemma would follow.

Let q denote this attention vector for ease of exposition. To prove q minimizes the

posterior variance function, it is equivalent to check the first-order condition (noting that q

is supported on the first k sources):

∂1V (q) = · · · = ∂kV (q) < min
i>k

∂iV (q).

Using Lemma 4, it suffices to show

γ1 = · · · = γk ≥ γk+1 ≥ · · · ≥ γK > 0,

where as usual γ = (Σ̃+diag(q))−1·α̃. Observe that the prior covariance Σ̃ in the transformed

problem can be written as

Σ̃ = diag(σ)−1 · Σ · diag(σ)−1,

with Σ being the matrix having “1”s on the diagonal and “ρ” everywhere off the diagonal,

and σ denoting the vector (σ1, . . . , σK)′ (with a slight abuse of notation). From the above

discussion, σ is also the weight vector α̃.
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Thus, we can compute the key γ vector as follows:

γ = (Σ̃−1 + diag(q))−1 · α̃

= (diag(σ) · Σ−1 · diag(σ) + diag(q))−1 · σ

= (Σ−1 · diag(σ) + diag(q/σ))−1 · diag(σ)−1 · σ

= (Σ−1 · diag(σ) + diag(q/σ))−1 · 1,

where we use diag(q/σ) to denote the diagonal matrix with entries q1/σ1, . . . , qK/σK .

We let M denote the matrix Σ−1 · diag(σ) + diag(q/σ). Then M · γ = 1, so that

K∑
j=1

Mij · γj = 1, ∀i. (11)

We will use these identities to show that each γj is positive and γ1 = · · · = γk are the largest

coordinates of γ.

In fact, observe that Σ−1 is the matrix with diagonal entries equal to a = 1+(K−2)ρ
(1−ρ)(1+(K−1)ρ)

and off-diagonal entries equal to b = −ρ
(1−ρ)(1+(K−1)ρ) . Thus from M = Σ−1·diag(σ)+diag(q/σ)

we deduce

Mij = bσj + ((a− b)σi +
qi
σi

) · δj=i,

with δj=i representing the indicator function for the event j = i. Plugging this into 11, we

then obtain (
(a− b)σi +

qi
σi

)
· γi = 1−

K∑
j=1

bσjγj, ∀i.

Since the RHS is independent of i, we conclude that γ1, . . . , γK have the same sign and each

γi is inversely proportional to (a− b)σi + qi
σi

.

Now recall that γ = (Σ̃−1 + diag(q))−1 · α̃. So α̃′ · γ = α̃′ · (Σ̃−1 + diag(q))−1 · α̃, which is

positive since (Σ̃−1 + diag(q))−1 is a positive-definite matrix. It follows that the coordinates

of γ cannot all be less than or equal to zero. By the preceding analysis, they must all be

positive. Finally, to show γ1, . . . , γk are equal and larger than the remaining coordinates, it

suffices to consider their inverses, which are proportional to (a − b)σi + qi
σi

. From (10) and

a− b = 1
1−ρ we indeed have

(a− b)σi +
qi
σi

=
1

1− ρ
· σk +

t− tk−1
σ1 + · · ·+ σk

, ∀1 ≤ i ≤ k.

The RHS is the same for i ≤ k and smaller than (a − b)σk+1 when t < tk. This completes

the proof that γ1 = · · · = γk ≥ γk+1 ≥ · · · ≥ γK . Lemma 16 follows.
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