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Abstract. We provide a simple condition that is both necessary and su¢ cient for aggre-

gation of private information in large elections where all voters have the same preference.

In some states of the world, all voters prefer alternative A; and in other states, all voters

prefer alternative B; and A wins if the corresponding vote share is higher than a threshold

q 2 (0; 1). Each voter draws a private signal independently from a distribution conditional

on the state. According to our condition, there should be a hyperplane in the simplex over

signals that separates the conditional distributions in states where A is preferred from those

in states where B is preferred. If this condition is satis�ed, information is aggregated in

an equilibrium sequence: even under incomplete information, the preferred outcome obtains

with a very high ex-ante likelihood. If the hyperplane condition is violated, there exists

no feasible strategy pro�le that aggregates information. While the hyperplane condition is

satis�ed only in special environments, it holds generically if the state space is discrete and

the number of available signals is more than or equal to the number of states.

1. Introduction

In large elections, the decision relevant information is often dispersed throughout the elec-

torate. This poses the classic problem of information aggregation in voting: even if voters

potentially agree on who the right candidate is, each individual�s vote contains only his own

private information. It is therefore not guaranteed whether the election outcome obtained

by aggregating everyone�s vote leads to the right outcome, i.e., the outcome that any voter

would have preferred if he knew all the information dispersed within the electorate. In this

paper, we are interested in the question of information aggregation in large elections: when

does voting lead to the same outcome that would have prevailed if all the private information

were publicly known? We provide a simple condition on the diversity of information in the

electorate that is both necessary and su¢ cient for information aggregation in equilibrium.

In our model, there are two alternatives (A and B), and preferences are represented by

states: in some states of the world, all voters prefer A while in others, all voters prefer B.

Alternative A wins if it obtains more than a threshold q 2 (0; 1) share of votes. The dispersion
of information is captured by the probability distribution over signals conditional on the state.

Our central result (Theorem 1) is that there exists some strategy pro�le that aggregates

Date : November 30, 2014.
This paper is partly based on an earlier version with the same title, co-authored with Tim Feddersen and

Wolfgang Pesendorfer. We are deeply indebted to both of them for their inputs. We are also thankful to Hari

Govindan, Bard Harstad and Roee Teper for helpful suggestions. All errors that remain are our own.
1



2 PAULO BARELLI, SOURAV BHATTACHARYA AND LUCAS SIGA

information e¢ ciently in large voting populations if and only if there is a hyperplane that

separates the probability distributions arising from states where A is preferred from those

arising from states where B is preferred. This result suggests that information aggregation

happens only in special environments. If the hyperplane condition is not satis�ed, then there

is no feasible voting strategy that aggregates information. In such an environment, even if

voters could commit to playing any strategy, information would not be aggregated. On the

other hand, if the hyperplane condition is satis�ed, then full information aggregation obtains

as an equilibrium phenomenon (Theorem 2). The set of information aggregating strategies

is identi�ed by the hyperplane condition.

To see what our result implies in a very simple setting, suppose that voters�private infor-

mation is categorized two signals a and b; and voter rankings depend only on the proportion

of a-signals in the population. To capture this more formally, suppose the state � is a num-

ber in [0; 1]; and in state �; each voter obtains signal a with probability �: The state then

is the same as the expected proportion of a-signals in the electorate, which is also, almost

surely, the actual proportion if the population is large. According to our result, information

is aggregated for the following type of voter preference: alternative A is preferred for high

states (say, larger than ��) and alternative B is preferred for low states (i.e., lower than ��):

On the other hand, information aggregation fails if the voters prefer to elect A for moderate

states (say, between �1 and �2) and B for extreme states (i.e., lower than �1 or higher than

�2). Since a strategy maps individual signals into votes, any strategy that leads lower vote

shares for A at low proportions of a-signals and higher vote shares for A at moderate propor-

tions of a-signals must also produce high vote shares for A when the proportion of a-signals

is high. Thus, it is impossible to �nd a strategy that guarantees a win for B both in the

very high and very low states, but a win for A in the moderate states. The above example

suggests that the possibility of aggregation depends on what information the signals convey:

if a higher proportion of signal a (resp. b) indicates higher quality of candidate A (resp. B),

then information aggregation holds. On the other hand, if a very high or very low proportion

of a-signals conveys than candidate A has a very extreme position on a policy issue, then

information aggregation fails.

There is a large literature going back to Condorcet (1786) that argues that information is

aggregated in common value environments. In the canonical Condorcet Jury model, there

are two states (A and B) and two signals (a and b). State A (resp. B) is simply interpreted

as all situations where candidate A (resp. B) is the commonly preferred candidate. In each

state, voters draw their signals independently from a distribution: Pr(ajA) = pA >
1
2 and

Pr(bjB) = pB > 1
2 : Thus, the signal a (resp. b) can be interpreted as an assessment that A

(resp. B) is the right candidate: however, the assessment may be mistaken. In this setting, if

all voters vote according to their private signal, the majority votes for the correct alternative

almost surely by the Law of Large Numbers. In this sense, individual uncertainty does not

matter for the aggregate outcome in a large electorate, and information is always aggregated.

This result is popularly known as the Condorcet Jury Theorem (CJT).



INFORMATION AGGREGATION IN ELECTIONS 3

The earlier statistical work on the theorem have always equated (implicitly or explicitly)

the state of the world with a ranking over the two alternatives (see Ladha (1992) and Berg

(1993) among others). This strand has also assumed �sincere voting�, i.e., that voters vote

their signals. The game theoretic literature started with the insight in Austen-Smith and

Banks (1996) that the sincere voting pro�le may not be a Nash equilibrium. Since then,

there have been other proofs of CJT showing that information can be aggregated in Nash

equilibrium for majority and supermajority rules and for more varied information structure

(e.g. Wit (1998), Feddersen and Pesendorfer (1997), Myerson (1998), Duggan and Martinelli

(2005)). However, all the papers dealing with common value environments (except Feddersen

and Pesendorfer (1997)) have retained the two-state structure, e¤ectively assuming that all

situations where one alternative is better for all voters can be lumped into a single state.

Our starting point is that electorates often have a far richer informational diversity than

is supposed by the canonical two-state model. Electability of a candidate depends on myriad

factors like his policy positions on di¤erent issues, his past history, party a¢ liation, the state

of the economy, the geopolitical situation and so forth. We use the state variable to capture

all the di¤erent factors that a¤ect the preference of the voters. It is also likely that di¤erent

individuals hold information on di¤erent factors, and the overall preference of the electorate

is based on the distribution of this dispersed information. Thus, reducing every individual�s

private signal to a probability assessment of which candidate is better seems to be too narrow

a way to describe the dispersion of private information in the society. Our main contribution

is to demonstrate how the property of information aggregation depends on the relationship

between (common) preference and distribution of information in the electorate.

In the current paper, there is a compact state space �; and a compact set of signals X:

We allow for both discrete and continuous signals. In each state �; each voter receives a

signal x 2 X that is an independent and random draw from the distribution �(�j�). The state
space is partitioned into two sets A and B : in states lying in the set A; all voters prefer
alternative A and in the states lying in the set B; all voters prefer alternative B: Notice that,
in a formal sense, voter rankings are simply de�ned over the space of probability distributions

over signals, henceforth denoted by �(X). In large electorates, given a state, the frequency

distribution over signals approximates the probability distribution. Therefore, our setup is

approximately equivalent to one where there are a large number of voters whose ranking

depends on the entire pro�le of private signals in the electorate (with the added restriction

that identity of individuals does not matter for preference).

Formally stated, we have two sets of results. First, we show that there exists some feasible

strategy pro�le that aggregates information if and only if the conditional probability distri-

butions arising from states in A can be separated from those arising from states in B by a
hyperplane on �(X) (Theorem 1). Our result extends to both symmetric and asymmetric

strategies (Corollary 1). The proof of this result simply follows from the fact that the vote

share for A is a linear functional of the vectors in �(X). This condition also allows us to
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identify the class of strategies that do aggregate information for a given voting rule. More-

over, the particular voting threshold is not important - if information aggregation is feasible

for a given threshold, it is feasible for every other non-unanimous threshold rule (Corollary

2).

The second result says that if the hyperplane condition is satis�ed, then there exists a pro-

�le of information-aggregating strategy that is also a Nash equilibrium (Theorem 2). This

result borrows the insight from McLennan (1998) that in any voting game, a symmetric strat-

egy pro�le that maximizes the ex-ante payo¤ must also be a Nash equilibrium. Combining

these two results, the hyperplane condition is both necessary and su¢ cient for information

aggregation in the limit.

At this stage, it is important to point out the relationship of our work with McLennan

(1998). McLennan points out that if there is some feasible symmetric strategy that fully

aggregates information, then there exists an equilibrium that aggregates information too.

The implication of this result is that aggregation failure is not an equilibrium phenomenon

at all. We identify necessary and su¢ cient conditions for existence of a feasible symmetric

strategy that aggregates information, and then use the insight from McLennan to show that

in environments where information aggregation is feasible, it is also an equilibrium property.

As implications to our main theorem, we provide certain su¢ cient conditions for informa-

tion aggregation in elections which are new to the literature. In a setting where there are r

states and k signals, we show that information is always aggregated if (i) there are at least

as many signals as states, i.e., r � k; and (ii) the conditional probability distribution over

signals in any given state cannot be obtained as a convex combination of the conditional dis-

tributions in the other states (Corollary 4). This result implies that information is aggregated

if the signals are rich enough for the electorate to distinguish between all states. A simple

corollary of this result is that whenever there are just two states, information is aggregated

as long as the probability distribution over signals is di¤erent in the two states. When both

states and signals have a natural order, a commonly studied informativeness condition on

signals is Monotone Likelihood Ratio Property (MLRP) (Milgrom 1981). We show that the

su¢ cient condition for information aggregation boils down to a weaker version of MLRP in

this environment. In fact, these su¢ cient conditions for information aggregation in large

elections have a strong parallel in Siga (2013), which obtains similar results in the context of

auctions with multidimensional signals and discrete states.

There is a recent literature showing that information aggregation can fail to obtain in

elections, but these papers rely either on preference diversity (Bhattacharya (2013), Acharya

(2013) or residual uncertainty, i.e., uncertainty about probability distributions over pref-

erences (Feddersen and Pesendorfer (1997) or information (Mandler 2012). Our paper is

the �rst to show that aggregation can fail in an environment where voters have the same

preferences, and there is no residual uncertainty. Mandler (2012) shows that, in a common

preference environment, uncertainty over the probability distribution over signals may lead to

�wrong�equilibrium assessments about the state due the peculiar logic of pivotality. On the
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other hand, the logic for aggregation failure that we unveil is not based on any equilibrium

reasoning at all.

Feddersen and Pesendorfer (1997) consider a setting with diverse preference along with the

restriction that, for every voter, the utility di¤erence between A and B is increasing in the

state. In this setting, they show that every sequence of equilibrium aggregates information

(provided there is no residual uncertainty over the distribution of preferences). On the other

hand, Bhattacharya (2013) shows that if we relax the monotonicity assumption on utility

di¤erences, there generically exist equilibrium sequences that do not aggregate information.

However, Bhattacharya (2013) is silent about whether information aggregating equilibria do

exist in such settings.

In a separate section, we allow voters to have diverse preferences in addition to diverse

information. The feasibility result (Theorem 1) generalizes to a case with diverse prefer-

ences, with the only modi�cation that A (resp. B) is de�ned as the set of states in which
the alternative A (resp. B) would win under full information. Our environment allows both

Feddersen and Pesendorfer (1997) and Bhattacharya (2013) as special cases. We can show

that in each of these cases, there exist strategies that do aggregate information. However, our

proof of Theorem 2 does not directly extend to a setting with diverse preferences. Therefore,

the existence of an information aggregating strategy does not automatically imply informa-

tion aggregation in equilibrium. We are currently working on conditions that guarantee the

existence of some equilibrium sequence that aggregates information in the diverse preference

case.

The rest of the paper is organized as follows. Section 2 lays out the model with common

voter preferences. Section 3 provides the main theorem that establishes conditions under

which an environment allows full information aggregation, and discusses the implications

for some speci�c environments. Section 4 shows that existence of a feasible strategy pro�le

that fully aggregates information implies the existence of an equilibrium sequence of pro�les

that does the same. Section 5 discusses two extensions: one of these shows that our main

results do not change if we consider continuous signal spaces, and the other one derives the

conditions for existence of information-aggregating strategy pro�le in the case where voters

may have preference heterogeneity. Section 6 concludes.

2. Model

In the model, there are n voters choosing between two alternatives A and B: Alternative

A wins if it receives more than q 2 (0; 1) share of votes and loses if it receives less than q
share If A receives exactly nq votes, then we assume that tie is broken randomly.

In this section, we treat every voter as having the same preferences. In a later section, we

show that our feasibility result can be extended to a setting where voters in an electorate

may have di¤erent preferences. The utility of a voter from an alternative depends on an

unobserved state variable � 2 �; where � is a compact, separable metric space. The utility
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of each voter is given by a bounded and measurable function u : � � fA;Bg ! R. Let the
three sets A; B and I denote the respective regions in � where A is preferred to B, B is

preferred to A and the voters are indi¤erent.

A = f� 2 � : u(�;A) > u(�;B)g

B = f� 2 � : u(�;A) < u(�;B)g

I = f� 2 � : u(�;A) = u(�;B)g

Each voter i receives a private signal x 2 X, where X is a compact, separable, metric

space. Pro�les of signals are denoted by xn 2 Xn. The information structure is captured by

a probability measure � on ��X, as follows. When a voter gets a signal x 2 X, he makes
inferences about the true state � using the conditional �(� jx) 2 �(�), where �(�) denotes the
space of probability measures over ���, endowed with the weak star topology. Likewise, for a
given �, �(� j�) 2 �(X) is the conditional on the signal received by an individual voter. Hence
we assume that voters�signals are independent and identically distributed conditional on �.

We assume of � 7! �(�j�) is surjective and strongly continuous: for each Borel measurable
E � X, �(Ej�k)! �(Ej�) as �k ! �. Let m 2 �(�) denote the marginal of � on �. That is,
m is the prior on �. We assume that the support of m is �, and that the m-measure of the

interior of � is one. We also assume that while both sets A and B have positive probability
ex-ante, indi¤erence occurs with zero probability, i.e. m(A) > 0; m(B) > 0 and m(I) = 0:
In particular, we allow for the case where all rankings are strict, i.e. I is empty.
A tuple fu;�; X; �; qg is de�ned as an environment. An environment in addition to an

electorate size n de�nes a game. In a game, a strategy for voter i is a measurable function

si : X ! f0; 1g, with si(x) = 1 meaning that i votes for A at signal x. A behavioral strategy
is a measurable function �i : X ! [0; 1] with �i(x) being the probability of a vote for A at

signal x. Unless mentioned otherwise, we consider only symmetric strategies, i.e. voters with

the same signal play the same strategy. Hence we can drop the index i and use s(�), �(�) to
denote individual strategies. We sometimes abuse terminology and refer to s or � as a pro�le

of strategies, with the understanding that every player uses the same s or �; as the case may

be.

In the main body of the paper, we shall consider the case where the space of signals X is

countable (possibly �nite). However, all our results holds in the case were X is an in�nite.

We deal with the in�nite case in a separate section.

In what follows, we de�ne the standard for information aggregation for a given strategy

pro�le.

2.1. Full Information Equivalence. Given a state �, strategy �, electorate size n, and
signal pro�le xn; we say that the election leads to a wrong outcome if, for � 2 A; the
alternative A fails to win, or for � 2 B; the alternative B fails to win. For a given strategy,

a wrong outcome may occur due to two reasons: (i) randomness in the signal pro�le and (ii)

randomness in the vote tally due to mixing between actions. We take an ex-ante perspective
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and consider the probability of a wrong outcome in a given state due to either of these two

sources of randomness. For a given environment, we then take the ex-ante likelihood of error

by integrating the probability of error at each state with respect to the prior distribution

over states. We say that in an environment fu;�; X; �; qg; the strategy �(�) aggregates
information asymptotically if for any � > 0; there exists some n large enough such that the

ex-ante likelihood of a wrong outcome is less than �:

Suppose that the actual proportion of votes for A in state � given a strategy pro�le � in an

electorate of size n is denoted by the random variable z�n(�). Denote the expected likelihood

of a wrong outcome by

(1) W �
n =

Z
A
1f� : z�n(�) � qgm(d�) +

Z
B
1f� : z�n(�) � qgm(d�) +

Z
I
1f� : z�n(�) = qgm(d�)

We say that a strategy pro�le � aggregates information if for every � > 0; there exists

some n such that W �
n < �: More formally, we say that such a strategy pro�le achieves Full

Information Equivalence.

De�ne the expected share of votes for A in state � under symmetric strategy � as

z�(�) �
X
x2X

�(x)�(xj�)

For an asymmetric strategy pro�le � = (�i)i�1 is made of not necessarily equal behavioral

strategies, we de�ne

z�(�) = lim
n!1

1

n

nX
i=1

��i ;

where ��i =
P
x2X �i(x)�(xj�). Observe that z�(�) is a linear function of the conditional

probability vection �(�j�) and is continuous in �.
By the Strong Law of Large numbers,

z�n(�)! z�(�)

�(�j�)-almost surely as n ! 1. In other words, as n becomes large, the realized share of
votes for A is very close to the expected share z�(�) with a high probability.

Given �, let

A� = f� 2 � : z�(�) > qg

B� = f� 2 � : z�(�) < qg

I� = f� 2 � : z�(�) = qg

denote the regions in � where the expected share of votes for A is higher than, lower than,

or equal to q respectively. From continuity arguments, it is easy to see that if the electorate

is su¢ ciently large and every voter uses the same strategy �, alternative A (resp. B) wins

with an arbitrarily high probability in states in A� (resp. B�). The outcome can go either
way in the set I�:
We say that � achieves Full Information Equivalence (FIE) if the set of states where an

alternative is preferred but fails to almost surely win is of measure zero.
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De�nition 1 (Full Information Equivalence). In a given environment (u;�; X; �; q); a strat-
egy � achieves Full Information Equivalence (FIE) if

m(AnA�) = m(BnB�) = 0:

We say that an environment (u;�; X; �; q) allows FIE when there exists a pro�le � that

achieves FIE.

It is easy to check that this de�nition is equivalent to the expected probability of error

W �
n ! 0: For somewhat technical purposes, we also need another de�nition. For some � > 0;

we say that a strategy � achieves "-FIE if

m(AnA�) = m(BnB�) < ":

If all voters follow a strategy that achieves "-FIE, for a large enough electorate, the probability

of error is arbitrarily close to ": Clearly, a strategy that achieves FIE also achieves "-FIE for

any " > 0:

The next section discusses properties of the environment that allows FIE. Notice that

an environment allowing FIE is necessary but not su¢ cient for information aggregation in

equilibrium.

3. Feasibility of Information Aggregation

To demonstrate the condition that determines whether an environment allows FIE or not,

we start with a pair of examples.

Example 1. Suppose there are two candidates A and B and the election follows majority

rule, i.e., q = 1
2 : The quality of each candidate is given by a number between 0 and 1: Voters

prefer the higher quality candidate. Candidate B is known to have a quality of t 2 (0; 1):
The quality of candidate A is a random variable � following a non-atomic distribution F over

[0; 1]: In this case, A is preferred in the �high� states � > t, B is preferred in �low� states

� < t; and the voters are indi¤erent in ftg: The signal space is X = fa; bg; and Pr(aj�) = �:
The environment allows FIE.

Example 2. Suppose there are two candidates A and B and the election follows majority

rule, i.e., q = 1
2 : Each candidate has a location on the policy space [0; 1]. Voters prefer the

candidate with location closest to 1
2 : Candidate B is known to have a location of t 2

�
0; 12

�
:

The location of candidate A is a random variable � following a non-atomic distribution F

over [0; 1]: In this case, A is preferred in �moderate� states � 2
�
1
2 � t;

1
2 + t

�
; while B is

preferred in �extreme� states � < 1
2 � t and � >

1
2 + t. Voters are indi¤erent at states

1
2 � t

and 1
2 + t. The signal space is X = fa; bg; and Pr(aj�) = �: The environment does not allow

FIE.

In each of these cases, any symmetric strategy is given by a pair � = (�a; �b); where �x
is the probability of voting A at signal x 2 fa; bg: The expected vote share at state � is
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z�(�) = ��a + (1� �)�b: The actual vote share is very close to the expected vote share with
a high probability in a large electorate.

In example 1, a strategy � allows FIE if (i) z�(t) = 1
2 and (ii) �a > �b: Su¢ ciency is obvious

to check. Condition (ii) is necessary to ensure that the vote share is higher in high states

than in low states. To check necessity of (i), �rst suppose that (ii) holds but z�(t) = 1
2 � �:

Now, by continuity of z�(�); for small �; z�(t+ �) < 1
2 ; i.e., for a large enough electorate, in

states between t and t � �; A loses with large probability. Notice that the feature of state t
that drives this equality is not that voters are indi¤erent at t; but that t is the �border�of

the set of states where A is preferred and those where B is preferred. We are going to call

such states �pivotal states�.

In example 2, there are two such pivotal states: 1
2 � t and

1
2 + t: By the same logic as

example 1, we must have z�
�
1
2 � t

�
= z�

�
1
2 + t

�
= 1

2 for � to achieve FIE. Since z
�(�) is

linear in �; the only way this can be achieved is if �a = �b; but then z�(�) = 1
2 for all states,

leading to large probabilities of errors in almost all states. Thus, there is no symmetric

strategy pro�le that achieves FIE in this case.

These two examples show us that it is the convexity of the sets A and B that ensures that
we can �nd a strategy that allows FIE. The strategy that achieves FIE has the property that

the vote share at the pivotal state is exactly equal to the threshold voting rule q. The failure

of FIE occurs in example 2 because there are two such pivotal states because of the non-

convexity of B: In the next section, we generalize the idea contained in these two examples
to a multidimensional state and signal space.

3.1. Main Result. To see the main result in the multidimensional setting, �rst notice that
for each state, the conditional probability distribution is simply a vector on the simplex

�(X) over the signal space, and the expected vote share for a given strategy is simply a

linear function of that vector. Therefore, the level sets of the expected vote share function

are hyperplanes in the simplex. An FIE strategy produces vote shares higher than q at states

in A (where A is preferred) and lower than q at states in A (where B is preferred). Therefore
an FIE strategy must produce a hyperplane that separates the conditional probability vectors

arising from states in A from those arising from states in B: By continuity, all vectors arising
from the pivotal states must lie on the hyperplane corresponding to the level set for q: Thus,

the main result states that the conditional probability vectors arising from states in A (resp.
B) must belong to a convex set for an FIE strategy to exist. On the other hand, if indeed
these two sets of conditional probability vectors are both convex, we can �nd an FIE strategy

that produces a hyperplane that separates the two sets.

Before stating the main result, we need some more de�nitions.

3.1.1. De�nitions: Pivotal states and hyperplanes. Let M denote the interior of �. By our

assumptions on m, we have m(M) = 1. We say that a state � 2 � is pivotal if, for each

" > 0, m(A \ B"(�)) and m(B \ B"(�)) are positive, where B"(�) is the " open ball around
�. Let Mpiv � � denote the set of pivotal states. Likewise, let MA (resp. MB) denote the
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set of states for which there exists a " > 0 with m(B"(�) \ B) = 0 (resp. m(B"(�) \A) = 0.)
Observe that (MA;Mpiv;MB) forms a partition of M .

A hyperplane in �(X) is denoted by

H = f� 2 �(X) :
X
x2X

h(x)�(x) = `g;

for a given measurable function h : X ! R, and a number ` 2 R. Given a hyperplane H, we
use

H+ = f� 2 �(X) :
X
x2X

h(x)�(x) > `g and

H� = f� 2 �(X) :
X
x2X

h(x)�(x) < `g

to denote the two associated half-spaces.

The following theorem states that information is aggregated by some strategy if and only

if there is a hyperplane on the simplex over signals that separates the conditional probability

vectors arising from states in the interior of A from those arising from states in the interior

of B; and contains all such vectors arising from pivotal states. The proof relies heavily on

the linearity of the vote share function in the conditional probabilities of signals.

Theorem 1. An environment (u;�; X; �; q) allows FIE if and only if there exists a hyperplane
H in �(X) such that �(�j�) 2 H+ for � 2 MA, �(�j�) 2 H� for � 2 MB, and, if Mpiv 6= ;,
�(�j�) 2 H for � 2Mpiv.

Proof. Let � be a pro�le that achieves FIE. We �rst show that, if Mpiv 6= ;, then Mpiv � I�.
Assume to the contrary and pick � 2 Mpiv \ A�. As z�(�) is continuous, there is " > 0

with B"(�) � A�. Because � is pivotal, we have m(B"(�) \ B) > 0. Hence m(B \ A�) �
m((B"(�) \ B) \ A�) = m(B"(�) \ B) > 0. But this means that m(BnB�) > 0, contradicting
FIE.

Next, we claim that MA � A�. Again, by contradiction, pick � 2 MA and � =2 A�.
Observe that because � achieves FIE, there must exist at least one pair x; x0 with �(x) < q and

�(x0) > q. For each integer k, let �k 2 �(X) be given by �k(E) = (1�1=k)�(Ej�)+(1=k)�(E),
for each measurable E � X, where � satis�es

P
x2X �(x)�(x) < q. Then �k ! �(�j�) strongly

as k !1, and
P
x2X �(x)�k(x) < q for every k. Let " > 0 satisfy m(B"(�) \ B) = 0, which

must exist because � 2 MA. Because the range of � 7! �(�j�) is �(X) and � 7! �(�j�) is
strongly continuous, there exists �0 2 B"(�) and k large such that �(�j�0) = �k(�). Observe
that z�(�0) < q. By continuity of z�, we can �nd "0 > 0 with B"0(�

0) � B"(�) and z�(�00) < q
for all �00 2 B"0(�

0). Hence m(B"(�) \ B) = 0 while m(B"(�) \ B�) > 0, meaning that

m(AnA�) > 0, contradicting FIE.
Similarly, we obtain MB � B�. Setting H = f� 2 �(X) :

P
x2X �(x)�(x) = qg, the �only

if" direction is veri�ed.

For the �if" part, let H = f� 2 �(X) :
P
x2X h(x)�(x) = `g denote the required hyper-

plane. Let � be a behavioral strategy such that �(x) = q + "(h(x)� `), where " > 0 ensures
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that �(x) 2 [0; 1] (observe that, by re-scaling, it is without loss to have jh(x)j � 1 for every
x 2 X, and hence jh(x)� `j � 2 for every x 2 X.) IfMpiv 6= ;, pick � 2Mpiv. As �(�j�) 2 H,
we have z�(�) =

P
x2X(q + "(h(x) � `)�(xj�) = q, so Mpiv � I�. Likewise, for � 2 MA

(resp. � 2 MB) we have �(�j�) 2 H+ (resp. �(�j�) 2 H�), readily showing that MA � A�

and MB � B�. As (A� \M;B� \M; I� \M) is a partition of M as well, we must have

MA = A� \M , MB = B� \M and Mpiv = I� \M . As A \M � MA and B \M � MB,

we have A � A� and B � B� for m-almost all � (whether Mpiv is empty or not), and FIE is

veri�ed. �

While the analysis above was restricted to symmetric strategies, The exact same results

hold true when we consider FIE under asymmetric strategies. If there exist an asymmetric

pro�le that achieves FIE in an environment (u; �;X; �; q), then exactly as in the symmetric

case there will exist a hyperplane H in �(X) as in the statement of Theorem 1. Again setting

�(x) = q+"(h(x)�`) and following the steps of the �if" part above shows that the symmetric
pro�le � achieves FIE. Hence we have the following corollary, which says that it is without

loss of generality to restrict our attention to symmetric strategies.

Corollary 1. If an environment (u; �;X; �; q) allows FIE with an asymmetric pro�le �̂ =
(�̂i)i�1 then there exists a strategy � such that the symmetric strategy pro�le where every

voters uses � also achieves FIE.

Next, we show that the existence of an information aggregating strategy depends only on

how preference interacts with distribution of information and not on the voting rule in use.

If there is a strategy that achieves FIE for a given voting rule, then, for each non-unanimous

threshold voting rule, there exists some strategy that achieves FIE.

Corollary 2. If an environment (u; �;X; �; q) allows FIE then for any q̂ 2 (0; 1), (u; �;X; �; q̂)
allows FIE.

Proof. Let H be the hyperplane in �(X) associated with the environment (u; �;X; �; q), and

pick q̂ 2 (0; 1). As in the �if" part above, set �̂(x) = q̂ + "(h(x) � `), where " > 0 again

ensures that �̂(x) 2 [0; 1], and follow the same steps to establish that �̂ achieves FIE. �

It must be noted that while we cannot uniquely identify the strategies that aggregate

information, all strategy pro�les that aggregate information are characterized by a speci�c

property: in pivotal states, they lead to a vote share exactly equal to the threshold necessary

for the alternative A to win. If there are multiple pivotal states, the conditional distributions

arising in such states must lie on a hyperplane on the simplex. As one moves in the simplex

along the normal to that hyperplane, the vote share for A produced by any information-

aggregating strategy changes monotonically. Later, we show that in environments that allow

FIE, there also exists an equilibrium strategy pro�le with the same properties. McMurray

(2014) �nds a result with a similar �avor and interprets it as the endogenous emergence of a

single dimension of political con�ict in a multidimensional world..
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3.2. Some Special Environments. In the previous section we have shown that in general
environments, FIE can obtain only in rather special cases. Now, we turn to some speci�c

environments that are of interest to us.

3.2.1. State space isomorphic to the simplex over signals. Suppose that the state space is

convex and the conditional probability distribution is a linear function of the state. In

other words, �(�j�� + (1 � �)�0) = ��(�j�) + (1 � �)�(�j�0) for all pairs �; �0 and � 2 [0; 1]:
Additionally, assume that there exist some pivotal state(s). In this setting, the condition for

existence of FIE strategies simply boils down to all probability distributions corresponding to

pivotal states lying on the same hyperplane in the simplex. By the linearity assumption, this

condition is equivalent to there being a hyperplane in the state space such that all pivotal

states lie on that hyperplane.

A special case of the above is when X is �nite, � is continuous and � = �(X): Additionally,

for any �; �(�j�) = �: The situation considered in examples 1 and 2 are special instances of
this case. In this situation, the voter preferences are simply de�ned over the probability

distribution over signals rather than a di¤erent state variable. In other words, in a large

electorate, the preferences depends only on the pro�le of signals, i.e., the distribution of

information in the electorate. In this case, the condition for information aggregation is

simply that the set of states in which a particular alternative is preferred is convex.

Corollary 3. If � is a convex subset of a vector space, �(�j�� + (1� �)�0) = ��(�j�) + (1�
�)�(�j�0) for all pairs �; �0 and � 2 [0; 1], and Mpiv 6= ;, then an environment allows FIE if
and only if there exists a hyperplane H 2 �(X) such that �(�j�) 2 H for � 2Mpiv.

Proof. There are two steps to this proof. First, we show that under the conditions, an

environment allows FIE if and only if there exists a hyperplane H in �(X) such that �(�j�) 2
H for � 2Mpiv.

As in the proof above, we haveMpiv � I� for the pro�le � de�ned by �(x) = q+"(h(x)�`)
for all x. Say that there are �A 2 MA and �B 2 MB with �A; �B in A�. There must exist
� 2 (0; 1) and �� 2 Mpiv with �� = ��A + (1 � �)�B. By linearity of � 7! �(�j�), we would
have z�(��) > q, contradicting Mpiv � I�. Hence the sets MA and MB are each mapped

to one of the halfspaces determined by the hyperplane associated with I�. Changing signs
if necessary, we have MA � A� and MB � B�, and the rest follows as in the proof above.
Observe that the existence of a hyperplane H in �(X) necessarily implies the existence of a

hyperplane H 0 in � satisfying: � 2 H 0 for � 2 Mpiv. Indeed, by linearity of �, the mapping

� 7!
P
x2X h(x)�(xj�) de�nes the required hyperplane in �. �

3.2.2. Finite state and signal space. Another case that is of interest to us is when both

the state and signals are �nite. Suppose that there are r states and k signals. By our

assumption that m(I) = 0; the ranking over alternatives is strict in every state. In this

setting, any environment allows FIE if the signal space is su¢ ciently rich vis-a-vis the state

space. As long as there are at least as many signals as there are states, and none of the
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conditional probability vectors on the simplex can be expressed as a convex combination of

the conditional probability distributions in the other states, there is a strategy that achieves

FIE. As a particular case, when there are only two states, as long as the conditional probability

distributions are not the same in the two states, there exists some strategy that achieves FIE.

Notice that under this richness condition on signals, the utility function assigning states to

rankings is immaterial for FIE.

Corollary 4. Suppose there are r states and k signals, i.e., � = f�1; :::; �rg and X =

fx1; :::; xkg with r � k: Moreover, assume that there exists no state �t 2 � that satis�es the

following: for some set of non-negative real numbers �1; :::; �r with �t = 0 and
Pr
j=1 �j = 1;

�(�j�t) =
rX
j=1

�j�(�j�j):

In such an environment, there exists a strategy that achieves FIE.

Proof. Consider any partition of � into two nonempty sets A and B. Denote by A� the set
f� 2 �(X) : � 2 A and �(�j�) = �g; i.e., the set of conditional probability vectors arising in
states in A: Similarly, denote by B� the set f� 2 �(X) : � 2 B and �(�j�) = �g: Denote the
respective convex hulls by co(A�) and co(B�): If co(A�) and co (B�) are disjoint, there exists

some hyperplane H in �(X) that separates A� and B�; which is su¢ cient for the existence of

a strategy that achieves FIE. Suppose now that co(A�) and co (B�) are not disjoint. By the

linear independence assumption, each � 2 A� is a vertex of co(A�) and each vertex of co(A�)
belongs to A�. If co(A�) and co (B�) intersect, there must be some vertex of co(A�) that is

contained in co(B�): Hence, there must be some � 2 A� that is contained in co(B�): But then,
such a vector � is a convex combination of the vectors in B�; which is a contradiction. �

We interpret corollary 4 to mean that if the signal space is su¢ ciently rich compared to

the state space, then, generically information aggregation is obtained. More precisely, in

such settings, full information aggregation is possible in some equilibrium sequence provided

a full-rank condition is satis�ed on the conditional probability vectors. This condition is

essentially the Cremer-Mclean condition on bidder types su¢ cient for full extraction of rents

in auctions (Cremer and Mclean 1998).

3.2.3. Monotone Likelihood Ratio Property. Suppose that both signals and states have a nat-

ural order. A standard informativeness assumption on signals in this setting is the Monotone

Likelihood Ratio Property (MLRP), which ensures that a signal is a �su¢ cient statistic�of

the state (Milgrom 1981) in the sense that higher signals indicate higher states. Feddersen

and Pesendorfer (1997) assumes strict MLRP condition on signals and shows (albeit in a

model of diverse preferences) that information is aggregated in equilibrium. We obtain a

su¢ cient condition for an environment to allow FIE which entertains MLRP as a speci�c

case.
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De�nition 2 (Monotone Likelihood Ratio Property). Suppose � = [0; 1] and X = fx1; :::; xkg 2
[0; 1]k, with x1 < x2 < � � � < xk: The signals are said to satisfy strict MLRP if, for any two
signals x < x0; the likelihood ratio �(xj�)

�(x0j�) is a decreasing function of �.

We obtain a su¢ cient condition for the existence of a strategy that achieves FIE in this

environment that is weaker than MLRP. Assume that the prior m is non-atomic and has full

support over [0; 1]: Moreover, suppose that for some �� 2 (0; 1), A is preferred for � > �� and
B is preferred for � < ��: In other words, MA = (��; 1] and MB = [0; ��):

Let F (xj�) =
P
xj�x �j(xj�) denote the cumulative distribution function of �(�j�). Strict

MLRP implies that for every x; the cumulative distribution F (xj�) is a decreasing function.
Now consider the following property: For each �a 2 MA and each �b 2 MB; we have for all

x 2 X

(2) F (xj�a) < F (xj�piv) < F (xj�b)

As long as the property (2) is satis�ed, there exists a strategy that achieves FIE. To see that,

let x� be the smallest x 2 X such that 1 � F (xj��) � q. Now, set �(x) = 0 for x � x� and
�(x) = 1 for x > x�: It is easy to verify that the strategy pro�le � achieves FIE.1

Note that the property (2) is weaker than strict MLRP. While strict MLRP implies that

F (xj�) is decreasing over the entire interval [0; 1]; property (2) does not require F (xj�) to be
decreasing within MA or within MB:

4. Equilibrium analysis

From the previous section, it is clear that only special environments allow full information

equivalence in the sense that there exist strategies that achieve FIE. However, it is not clear

whether, even in such environments, voters have an incentive to use such strategies. In order

to check whether voters �nd it in their interest to use such strategies, we consider voting

as a game played in such environments. A game is de�ned as an environment (u; �;X; �; q)

along with a number of players n: We �x an environment and consider a sequence of games

by letting the number of voters grow. Following the logic in McLennan (1998), we show that

under common preferences, any environment that allows FIE also has a sequence of Nash

equilibrium pro�les that achieves FIE.

First, we de�ne the game derived from the environment (u; �;X; �; q) along with a number

of players n more formally. We provide the analysis for the case where � is a continuous

random variable, the case where � is discrete is exactly analogous.

It will be necessary to distinguish �nite electorates, so let us use the notation xn =

(x1; :::; xn), sn = (s1; :::; sn), and �n = (�1; :::; �n) for pro�les of signals and strategies in a �-

nite electorate f1; :::; ng. Given � on ��X, construct � on ��Xn as d� = dm
(
ni=1d�(�j�))

1When the state space is not [0; 1]; a su¢ cient condition for obtaining an FIE strategy with signals x1 <

::: < xk is that (1) each �piv 2 Mpiv leads to the same cumulative distribution F (xj�piv) for all x 2 X; and
(2) for any �a 2MA and �b 2MB ; we obtain F (xj�a) < F (xj�piv) < F (xj�b) for all x 2 X
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and let �x be the marginal of � on X
n. Denote by �(�jxn) the conditional of � on � given a

pro�le xn.2 For a given xn, let

un(a; xn) =

Z
�
u(a; �)�(d�jxn);

for a 2 fA;Bg. Given a pro�le of pure strategies sn, let u(sn(xn); xn) denote the utility at
pro�le xn at the outcome induced by sn(xn) (it will be A (resp. B) if 1

n

Pn
1=1 si(xi) > q

(resp. 1
n

Pn
1=1 si(xi) < q) with ties broken by a coin �ip.) The multilinear extension at a

pro�le of behavioral strategies is denoted u(�n(xn); xn). Finally, the ex ante expected utility

for a given pro�le �n is

un(�n) =
X

xn2Xn

u(�n(xn); xn)�x(x
n):

The Bayesian game Gn played by the n voters is the game where each voter has the same

space of behavioral strategies, �i = f�i : X ! [0; 1]g, endowed with the narrow topology

that makes it a compact, convex LCTVS, and the payo¤s are the ones we just derived.

Suppose that ��n is a maximizer of u
n(�n): The existence of such a maximizer follows from

compactness of the domain and continuity of u on �n.3 Following McLennan (1998), ��n is

a Bayesian Nash equilibrium of the game Gn: It is straightforward to restrict to pro�les of

symmetric strategies and ensure existence of a symmetric BNE. The next theorem tells us

that the sequence ��n achieves FIE as long as the environment (u; �;X; �; q) allows FIE.

Theorem 2. If the environment (u; �;X; �; q) allows FIE, there exists a sequence �n of Nash
equilibria of the game Gn that achieves FIE., i.e., W �n

n ! 0:

Proof. Observe that u(�n) can be written asZ
�

X
a

u(a; �)
X

xn2Xn

'�
n

a (x
n)�(xnj�)m(d�)

where a 2 fA;B;Dg, �D" standing for a draw (and the associated coin �ip to decide the

winner), and '�
n

a (x
n) is the probability that a is the outcome of the election at the pro�le

xn. For each size n of electorate, consider a symmetric pro�le of strategies �n = (�; :::; �), so

that �1 = (�; �; :::). For each � 2 �, the proportion of votes for A converges to z�(�) �(�j�)-
almost surely as n!1. Hence

P
xn2Xn '�

n

a (x
n)�(xnj�) converges, so Lebesgue Dominated

Convergence implies that u(�1) = limn!1 u(�n) is well de�ned.

Observe that if the symmetric pro�le �̂1 achieves FIE, then u(�̂1) is the maximum at-

tainable value: for m-almost every � 2 A, A wins, and for m-almost every � 2 B, B wins.

States in I are irrelevant for the evaluation above because they are of m-measure zero. So,
given that u(�n) is linear in u(a; �), the claim is veri�ed.

2The construction is presented in general form so that it also covers the case of uncountable X that we will

deal later.
3By construction, for each given �, the probability measure on pro�les is the product 
ni=1�(�j�); hence the

integral of the utility function is a continuous function of the pro�le �n; integrating out � then recovers the

ex ante utility, which must then be a continuous function of �n.
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For each �nite electorate f1; :::; ng, choose �n as a maximizer of u(�n). We know such

pro�le is an equilibrium of the corresponding game Gn. We also know that u(�̂1) is the

maximum feasible value of the ex ante utility. Hence

u(�̂1) � u(�1) = lim
n
u(�n) � lim

n
u(�̂n) = u(�̂1);

establishing the result. In fact, if W �n
n were not to converge to zero, then we would have to

have, say, m(AnA�1) > 0. That is, a set of positive measure in A where B wins under �1,

whereas we know that no such set exists for �̂1. But then u(�̂1) > u(�1), contradicting

what we just established. �

5. Extensions

In this section, we study two extensions to the setup in which the main results are pre-

sented. First, we show that all our results go through if we consider a signal space X that is

uncountable rather than �nite or uncountable. Then, we study a relaxation of the common

preference assumption. In this setting, we obtain a generalization of Theorem 1.

5.1. Uncountable signal space. The analysis above focused on the case that X was either

�nite or countable. In other words, voters have discrete pieces of information. On the other

hand, we may also be interested in situations where the signal space is continuous, i.e., it is

very unlikely that any two voters have the same private information. We show that while

we have to use a di¤erent set of tools for this case, all our results in the previous section go

through.

The setting where the signal space is uncountable has some technical disadvantages. In

particular, we can no longer use the useful property that, for a given behavioral strategy

� : X ! [0; 1] and distribution �(�j�) 2 �(X), the asymptotic relative frequency of votes for
A is equal to the expectation of � with respect to �(�j�), for almost all sample paths. In the
uncountable case, the property certainly goes through with pure strategies. Therefore, we use

puri�cation ideas to tackle this case. To distinguish between pure and behavioral strategy

pro�les, we will use notations �(�) and s(�) respectively. Unless otherwise stated, when we
refer to a pure strategy pro�le s(�); we will imply that all voters use the pure strategy s(�).
Also, a hyperplane in �(X) now is de�ned as H = f� 2 �(X) :

R
h(x)�(dx) = `g.

We make the following regularity assumption in addition to the maintained assumptions

above.

A1. The conditional distribution �(�j�) is absolutely continuous with respect to a �xed
non-atomic measure � 2 �(X), with strictly positive density, for every � 2 �.

Next, we de�ne an approximate measure of FIE. Recall that the expected likelihood of

a wrong outcome is denoted by W �
n ; given by equation (1). We say that a strategy pro�le
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� achieves "-FIE if there is some " > 0 such that W �
n < " for all n su¢ ciently large. This

de�nition is equivalent to

m(AnA�) = m(BnB�) < ":
We show that if there is some behavioral strategy � that satis�es the hyperplane condition,

then, for any " > 0; there is some pro�le of pure strategies that achieves "-FIE: The following

proposition extends Theorem 1 in the context of the in�nite signal space.

Proposition 1. Consider an environment (u;�; X; �; q) where the signal space X is uncount-

able, and suppose that assumption A1 holds. For each " > 0; there exists a pro�le of pure

strategies s" that achieves "-FIE if there is a hyperplane H in �(X) such that �(�j�) 2 H+

for � 2 MA, �(�j�) 2 H� for � 2 MB, and, if Mpiv 6= ;, �(�j�) 2 H for � 2 Mpiv. If in

addition � is a �nite set, then there exists a pro�le of pure strategies s that achieves FIE

if the above condition is satis�ed. If the above condition fails, then there exists no strategy

pro�le that achieves FIE.

Proof. A straightforward adaptation of Theorem 1 shows that the existence of a hyperplane

H satisfying the conditions listed in the statement of the Proposition are equivalent to the

existence of a behavioral strategy � such that m(AnA�) = m(BnB�) = 0. Consider �rst

the case of � �nite. Applying Lyapunov�s theorem establishes the existence of a function

g : X ! f0; 1g such that Z
�(x)�(dxj�) =

Z
g(x)�(dxj�)

for every � 2 �. Hence, setting s(x) = g(x), we are able to replace � with a pure strategy
s with the property that zs(�) = z�(�) for every � 2 �. By the SLLN, 1n

Pn
i=1 s ! zs(�),

�(�j�)-a.e. Hence m(AnAs) = m(BnBs) = 0 establishes that s achieves FIE.
The case that � is in�nite is complicated by the failure of Lyapunov�s theorem in in�nite

dimensions. We will resort to an approximation result to bypass this issue. First, let �

denote the sigma-algebra of �-measurable sets of X. Let Y = f�(Ej�)gE2�, a subset of the
separable Banach space space C(�; [0; 1]) of continuous functions endowed with the sup norm.

Realizing � as a complete metric space on its own as a subspace of L1(�) (Aliprantis and

Border (2006), Lemma 13.13), Y is also complete: a Cauchy sequence (�(Enj�))n in Y induces
a Cauchy sequence (En)n in �, which must converge. In fact, for each " > 0 and all �, we have

j�(Enj�) � �(Emj�)j < " for n;m large, so j�(En) � �(Em)j < " as well, as the densities are
positive. This means that there exist E such that En ! E. Now take a convergent sequence

in Y , so that �(Enj�) is converges uniformly. As it also converges pointwise to �(Ej�), it must
be that �(Enj�) converges to �(Ej�) uniformly. That is, Y is closed subset of C(�; [0; 1]), and
hence a separable Banach space with the subspace metric.

Now, by the extension of Lyapunov�s theorem to the in�nite dimensional case (Aubin and

Frankowska (1989), Theorem 8.7.4), the closure of the set f�(�j�)g�2� is convex and compact.
Hence, for a given FIE �, there exists a sequence gn : X ! f0; 1g such that

sup
�2�

����Z gn(x)�(dxj�)�
Z
�(x)�(dxj�)

����! 0:
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For a given � > 0, let V� = f� : z�(�) 2 [q � �; q + �]g, a closed neighborhood of I� that
converges to I� as � ! 0. It follows thatm(V�)! 0 as well. That is, there exists "(�) > 0 such

thatm(V�) < "(�) and "(�)! as � ! 0. For a given " > 0, let � > 0 be such that "(�) � ". Let
g" be an element of the sequence gn such that sup�2�

��R g"(x)�(dxj�)� R �(x)�(dxj�)�� < �.
Set s"(�) = g"(�) as the common strategy for all voters, and conclude that outside of a set �"

with m(�") < ",
R
s"(x)�(dxj�) > q (resp.

R
s"(x)�(dxj�) < q) whenever

R
�(x)�(dxj�) > q

(resp.
R
�(x)�(dxj�) < q).

Hence, for each " > 0, outside a set �" with m(�") < ", As" = A� and Bs" = B�, so s"

achieves "-FIE. �

Next, we turn to equilibrium analysis for this case. First note that the game with an

uncountable X is de�ned in the same way as above, using integrals over Xn rather than

summations. While proposition 1 is slightly weaker than theorem 1 in the sense that we only

obtain "-FIE, that is enough to guarantee a sequence of strategies that achieve FIE in the

limit.

Proposition 2. If an environment allows "-FIE for all " > 0; then there exists a sequence
�n of Nash equilibria of the game Gn that achieves FIE, i.e., W �n

n ! 0:

Proof. For each " > 0 there exists an "-FIE, s", which achieves the maximum feasible ex ante

utility outside a set �" with m(�") < ". Let u� be the maximum feasible ex ante utility. As

in the arguments establishing Theorem 2 above, let �n maximize u(�) in the �nite electorate
game. Then u� � limn!1 u(�n) � u(s") � u� � ". As " > 0 is arbitrary, limn u(�n) = u�, so
the same argument as in Theorem 2 establishes that �1 achieves FIE. �

5.2. Diverse Preferences. So far we have assumed that all voters have the same prefer-
ences. In this section we extend our results to a case where the voters in the electorate may

have di¤erent preferences. We maintain the assumption that all voters are ex ante identical,

and draw their information and preferences from some distribution conditional on the state.

To do so, we retain the elements of the set-up in the main section and assume in addition

that the private signal x is also payo¤ relevant. Thus, the private draw of an individual serves

two functions: it is a view about the outcomes and it provides information about how others

view the outcomes. We may think of xi = (si; ti); where si is the common value component

and ti is the private value component of the preference. Notice that this is a general setting

that can encompass many di¤erent environments. In particular, it admits the environments

studied in Feddersen and Pesendorfer (1997) with continuous state space and Bhattacharya

(2013) with just two states.

Consider, therefore, that voters preferences are given by u : ��X�fA;Bg ! R. We deal
only with the case that X is at most countable.

We now normalize u(�; x) = 1 if u(�; x;A) > u(�; x;B), u(�; x) = 0 if u(�;A) < u(�; x;B),

u(�; x) = 1
2 if u(�; x;A) = u(�; x;B). This normalization is innocuous for the feasibility

result.
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Since there is no commonly preferred candidate under diverse preferences, we have to be

careful while de�ning the standard for information aggregation. We say that a strategy pro�le

aggregates information if, for a large electorate, the outcome is the same as the outcome when

the state is commonly known. Notice that in a large electorate with �nite signals, knowing

the state can be interpreted as knowing the entire pro�le of private signals.

By the SLLN, asymptotically the proportion of voters that prefer A to B, given a state �,

is

u(�) =
X
x2X

u(�; x)�(xj�):

In a large electorate, A would get a vote share very close to u(�) if the state were known to

be �: Therefore, under full information A wins depending on whether u(�) is greater or less

than the threshold q: Now �x q 2 (0; 1) and rede�ne the sets A, B, and I as

Aq = f� 2 � : u(�) > qg

Bq = f� 2 � : u(�) < qg

Iq = f� 2 � : u(�) = q:g

In states Aq (resp.Bq); alternative A (resp. B) wins under full information and large elec-

torates. We then say that an environment (u;�; X; �; q) allows FIE if there exists a strategy

� such that

m(AqnA�) = m(BqnB�) = 0:

De�ne MA
q and M

B
q as the respective interiors of Aq and Bq:

It is simple to verify now that the argument in the proof of Theorem 1 follows through

line-by-line, so FIE is again characterized by the hyperplane condition. More formally, we

have the following result,

Proposition 3. An environment (u;�; X; �; q) and diverse preference allows FIE if and only
if there exists a hyperplane H in �(X) such that �(�j�) 2 H+ for � 2 MA

q , �(�j�) 2 H� for

� 2MB
q , and, if M

piv 6= ;, �(�j�) 2 H for � 2Mpiv
q .

It is also simple to verify that the arguments for Corollaries 1 and 3 remain valid. Corol-

laries 2 and 4 on the other hand, do not go through any longer: changing q changes the sets

Aq, Bq, and Iq, so the arguments given above do not show that FIE is obtained for the new
level q̂.

Notice that since Feddersen and Pesendorfer (1997) result already tells us that information

is aggregated in equilibrium, the existence of FIE strategies is trivial in their setting. More

interestingly, while Bhattacharya (2013) concentrates on showing that, for any consequential

rule, there exists an equilibrium that fails to aggregate information, it can be checked that

in Bhattacharya�s two-state setting, there always exists some feasible strategy that achieves

FIE. It would therefore be very interesting to examine the conditions under which, in a gen-

eral setting with diverse preferences, there exists some equilibrium sequence that aggregates

information.
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However, the proof of Theorem 2 explicitly utilizes the common value setting, and therefore

does not automatically generalize to an environment with diverse preferences. In particular,

we do not know yet whether, given preference diversity in the electorate, the existence of a

feasible strategy pro�le guaranteeing FIE also implies that FIE is achieved in equilibrium. Our

e¤orts are currently focussed on analyzing conditions under which the hyperplane result also

implies that information is aggregated in equilibrium in presence of preference heterogeneity.

6. Conclusion

The existing literature on information aggregation in large elections has largely focussed

on speci�c preference and information environments. In this paper, we consider general envi-

ronments in order to analyze conditions under which information is aggregated. Preferences

depend on the state of the world, and each state of the world is synonymous with a probability

distribution over private signals. Therefore, preferences are simply mappings from allowable

probability distributions over private information to rankings over the two alternatives A and

B. In a large electorate, the frequency distribution over signals is approximately the same as

the probability distribution. Thus, our question is whether the election achieves the outcome

that would obtain if the entire pro�le of private signals were publicly known. If an environ-

ment permits a feasible strategy pro�le that can induce the full information outcome with

a high probability in almost all states, we say that the environment allows Full Information

Equivalence (FIE). Moreover, we are interested in whether such a strategy pro�le is incentive

compatible, i.e., it constitutes a Nash equilibrium in the underlying game.

We study both environments with and without preference heterogeneity. In both cases,

we �nd that an environment allows FIE if and only if a hyperplane on the simplex over

signals separates the probability distributions arising in states where A is preferred from

those arising in states where B is preferred. Therefore, if the information environment is

su¢ ciently complex, there is no strategy pro�le that aggregates information. We like to

stress here that the failure of FIE has nothing to do with equilibrium assessments over the

states based on the criterion of one�s vote being pivotal in deciding the election.

We obtain sharper positive results in the common preference case where all voters would

have agreed on their rankings if they had known the pro�le of signals. In this case, voting

aggregates information alone (and not preference). We �nd that as long as an environment

allows FIE, there is a sequence of equilibria that achieves FIE. We must mention here that

there may be other equilibrium sequences that do not aggregate information - but ours is only

a possibility result. As implications of this result, we provide several examples of common

preference environments where information will be aggregated. We show that if there are only

a �nite number of states and signals, FIE holds in equilibrium for any preference mapping

from states to alternatives as long as the signal space is su¢ ciently rich compared to the space

of states. As a special case, we show that whenever there are two states, FIE is generically

achieved in equilibrium. We also show that in the common preference environment, the
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voting rule does not matter for information aggregation: as long as FIE is achieved under

some voting rule, FIE is achieved under every other non-unanimous voting rule.

Feasibility of FIE does not automatically imply FIE in equilibrium when voting has the

burden of aggregating information and preferences simultaneously, i.e., in the diverse pref-

erence case. However, we conjecture that under some conditions, feasibility of FIE indeed

implies the existence of an equilibrium sequence that also achieves FIE in the case with

diverse preferences. Our current research e¤orts are focussed on unveiling these conditions.
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