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Abstract

A rationally inattentive consumer processes information about his valuation prior

to making his purchasing decision. In a monopoly pricing problem, I study the case

in which information processing constraints restrict the consumer to finite information

structures. The limiting, unconstrained case is analyzed as well.

Any finite consumer-optimal information structure satisfies three properties: It is

partitional (coarse perception), guarantees seller indifference, and induces efficient

trade. The consumer benefits from having access to information structures with more

signal realizations. Every consumer-optimal information structure yields only a coarse

perception about low values, whereas the information about high values is more precise

and may be perfectly informative. In the resulting equilibrium, trade is efficient and the

consumer is strictly better off than under fully informed monopoly pricing. Surprisingly,

even in the absence of information processing constraints and costs, the consumer does

not want to become perfectly informed.
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1 Introduction

The rapid advance of information technologies and access to large data has changed the

nature of decision making. As the gathering of information has become easier, the processing

of information has become increasingly challenging. A rational consumer, who may only have

limited cognitive capacity, can now choose which information to process and what to learn

about his valuation for a good. In this situation, how should a consumer optimally process

information? And what are the implications for optimal pricing?

In this paper, I study a rationally inattentive consumer who faces this information pro-

cessing problem in a monopoly pricing model. The consumer has to decide how much to learn

about his valuation for the good, prior to observing the price and making the purchasing

decision. The consumer faces the following trade-off: His information choice determines the

estimate of his valuation for the product, and the interim demand function that the seller

faces. The seller might be induced to charge a higher price when facing a more informed

consumer. Hence, the consumer may be better off by knowing less.

The aim of this paper is to identify the economic effects that arise as a result of this

new feature of the model. The analysis provides answers to questions such as: What are the

optimal information processing and price setting choices for the consumer and the seller?

What are the implications for the market allocation, the price, and the consumer’s and

seller’s expected surplus? Can the seller exploit the consumer’s limited capacity to process

information, or are there benefits for the consumer from being selectively, but not perfectly

informed? Is ignorance bliss?

A broadly observed phenomenon is that, when faced with a complex product, consumers

use heuristics or rules of thumb to reach a decision (Gabaix and Laibson, 2003; Gabaix

et al., 2006; Shah and Oppenheimer, 2008). Such behavior is observed in a multitude of

markets, including the market for electronics and the used car market (see Yee et al., 2007;

DellaVigna, 2009), and references therein). This may affect prices. Lacetera et al. (2012),

Busse et al. (2013), and Englmaier et al. (2013) all provide empirical evidence that links price

discontinuities to consumers being inattentive to features that influence the value of a used

car. For instance, consumers display a left-digit bias. This means that they only focus on the

left-most digits, when they evaluate the mileage or registration year of a car. Should such

behavior be interpreted as a mistake or limitation in the consumer’s information processing,

or could it be rational for the consumer to be partially inattentive? The analysis in this paper

will provide insights into how prices are influenced by the information processing structure of

the consumer. As will be shown, it can be rational for the consumer to not become perfectly

informed and only have a coarse perception of the world. Partial ignorance can be bliss.
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The paper analyzes a monopoly pricing model with one seller (she) who wants to sell a

good to a consumer (he). The consumer chooses how to process information about his valu-

ation prior to observing the price charged by the seller and making his purchasing decision.

The information processing decision of the consumer corresponds to a selection of an infor-

mation structure that provides him with an (imperfect) signal about his valuation. Capacity

constraints to process information impose a restriction on the set of accessible information

structures from which the consumer can choose. Before setting a price, the seller observes

the information structure but not the private signal realization of the consumer.

I analyze two cases. In the first case, the consumer only has access to information struc-

tures with a finite number of signal realizations. That is, he can only form a limited number

of categories of valuations, on which he can condition his purchasing decision. Hence, the

consumer has limited capacity to process information, which may be due to limited cognitive

abilities. In the second case, the consumer has no information processing constraints, and

there are no restrictions beyond standard feasibility and consistency requirements on the

consumer’s choice set of information structures.

Information structures within the accessible set are assumed to be free, while all other

information structures are infinitely costly. By working with this simple cost structure, it is

possible to identify which information is the most valuable for the consumer. These insights

can be used to make predictions for the case with cost differentiation among accessible

information structures.

In the monopoly pricing model that I study, both agents have strategic influence. This

property has two important implications. (1) When obtaining more information, the con-

sumer faces a trade-off between being able to make a more informed decision and securing

information rents. The consumer’s choice of an information structure determines his interim

valuations, and thus the interim demand curve faced by the seller. Hence, information ac-

quisition by the consumer can have adverse effects on the informational rents that he can

secure, because the seller might be induced to set a higher price when facing a more informed

consumer. (2) Even if the consumer can process enough information to make an optimal pur-

chasing decision for a given price, his information processing constraint can be “strategically

binding.”

An essential contribution of this paper is to characterize the consumer-optimal informa-

tion structure, that is, the information structure that the consumer chooses in equilibrium.

The key features of the optimal information processing structure for a capacity-constrained

consumer are as follows:

Coarse Perception: It is optimal for the consumer to obtain a coarse perception of his

valuation. The consumer-optimal information structure is a monotone partition. This means
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that the space of possible valuations is split into sub-intervals and the consumer learns which

of these intervals his true valuation falls into.

Efficiency: By choosing an information structure that induces the seller to charge a

price that yields efficient trade, the consumer ensures that all possible gains from trade are

realized. Among these information structures, the consumer adopts the one that grants him

the largest possible share of the realized surplus.

Seller-Indifference: The consumer-optimal information structure induces an interim de-

mand curve that yields the same expected revenue for the seller, for each of the potentially

optimal prices. Hence, the seller is indifferent between charging the equilibrium price and a

price equal to any of the higher value estimates that are induced by the information struc-

ture. By adopting such an information structure, the consumer induces the seller to charge a

price that yields efficient trade while – at that price – leaving her with just enough revenue

in order to guarantee that the seller does not want to deviate and charge a higher price.

The main features of the consumer-optimal information structure also persist in the

unconstrained case. The unconstrained consumer-optimal information structure induces effi-

cient trade and satisfies a form of seller-indifference. Remarkably, even without information

processing constraints or costs, the consumer does not choose to become perfectly informed.

Instead, it is optimal for the consumer to obtain only a coarse perception about an interval of

low values, whereas his perception of higher values is finer and may be perfectly informative.

This unconstrained consumer-optimal information structure induces efficient trade.

Finally, I discuss the implications of optimal information processing on the consumer’s

and the seller’s expected surplus. In the present model, the expected surplus of a rationally

inattentive consumer is always higher than in the case in which the consumer knows his

true valuation. Moreover, the consumer’s expected surplus strictly increases if he has access

to information structures with more signal realizations. If the consumer has no information

processing constraints, the seller’s expected revenue is bounded above by the monopoly

revenue. I provide examples for which the seller’s expected revenue is strictly lower than the

monopoly revenue.

In the absence of information constraints, the present problem has similarities to the

literature on Bayesian persuasion. In Kamenica and Gentzkow (2011), the sender designs

the information environment of the receiver in order to persuade the receiver to take the

sender’s preferred action. By contrast, in the present paper, the consumer designs his own

information environment in order to induce the seller to charge his preferred price. Just as

in the literature on Bayesian persuasion, I make the assumption that the sender, here the

consumer, can commit to an information structure. A discussion of the specific modeling

choices and the robustness of the results is provided in Section 7.
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A significant difference in the analyses is the following. In Kamenica and Gentzkow (2011)

it is possible to identify each posterior belief with a value for the sender. By contrast, in the

monopoly model the consumer’s value of a posterior belief depends on the price charged

by the seller, and hence the full information structure. Consequently, the concavification

approach from Aumann and Maschler (1995) that Kamenica and Gentzkow (2011) use in

order to obtain their results is not applicable in the strategic environment that I study. The

methods that are used to establish the results in this paper are mostly constructive.

Related Literature This paper contributes to the recent research on information design.

This topic is addressed by various strands of literature, such as the literature on rational

inattention, bounded rationality, and Bayesian persuasion.

A closely related paper is Gul et al. (2014), who study a model of an exchange economy.

Consumers have limited cognitive abilities and can only choose coarse consumption plans.

The authors introduce the concept of a coarse competitive equilibrium and find that the

limited cognitive abilities of consumers lead to more price variation than in the standard

competitive equilibrium. This property is a result of the new function of the market mech-

anism, which now also serves to allocate the agents’ scarce attention. The way in which

the behavioral limitations are modeled in the present paper resembles the approach in Gul

et al. (2014). In the competitive market analyzed in Gul et al. (2014), none of the agents

has strategic influence. This is precisely the opposite of what is assumed in this paper; I

consider a setting in which both agents have strategic influence. Hence, the role of rational

inattention and prices is reversed to the one identified in Gul et al. (2014). In their paper,

market prices serve to allocate attention, whereas in the present model the allocation of

attention determines the induced price.

The present paper contributes to the literature on information acquisition. Previous liter-

ature has mostly focused on how much information agents should acquire (Kessler (1998), Shi

(2012), Bergemann and Välimäki (2002)), whereas the model studied here can be considered

as one of flexible information acquisition.1 That is, I not only discuss how much information a

consumer should acquire, but also identify which pieces of information are the most valuable

to him. This interpretation links the analysis to Bergemann and Pesendorfer (2007). In an

auction setting, they identify the seller-optimal information structure and selling mechanism.

The seller has full flexibility in his choice of information structures and information is cost-

less. The results in the present paper identify the consumer-optimal information structure,

if the seller best-responds with a revenue-maximizing mechanism.

This paper analyzes how the information environment of the consumer affects prices and

1Some recent papers, such as Yang (2013, 2014), also study flexible information acquisition in other
contexts, for instance asset pricing and coordination problems.
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the market outcome. A related question is studied in Bergemann et al. (2014). In their model,

the consumers’ valuation is private information. They describe the set of market outcomes

that are achievable for different informational environments of the seller. Bergemann et al.

(2014) identify an outcome triangle and show that any pair of consumer and producer surplus

within this triangle is achievable. They find that the seller’s expected surplus is bounded

below by the monopoly profit. By contrast, I show that if the consumer can choose his

information structure, then the seller’s surplus may fall below the monopoly level.

The paper is also related to the rational inattention literature. Starting with the semi-

nal papers by Sims (1998, 2003, 2006), this literature studies the question of how an agent

should optimally divide his attention if information is fully and freely available, but informa-

tion processing is costly. Several papers analyze pricing models with rationally inattentive

consumers. The most significant paper in this context is Matejka (2012). He studies a dy-

namic model with a consumer who is rationally inattentive to prices. He finds that rational

inattention leads to rigid pricing, since such a pricing structure yields more prior knowledge

and is easier to assess for the consumer.

The cost structures that are used in the rational inattention literature and in this paper

differ strongly. Much of the rational inattention literature models information costs as a

function of entropy reduction,2 whereas I limit the number of categories that agents can

distinguish and assume that all of these information structures have zero costs. Similar

approaches to model cognitive limitations are taken by Wilson (2014) and Clippel et al.

(2014).

Outline The rest of the paper is organized as follows. The model is introduced in Section 2.

In Section 3, an illustrative example is discussed. The main results are presented in Section 4

and Section 5. Section 4 covers the case of a consumer with information processing con-

straints. The unconstrained case is discussed in Section 5. The implications of optimal in-

formation processing and capacity constraints for the consumer’s and the seller’s profits are

addressed in Section 6. Section 7 provides a discussion of the specific modeling choices of the

timing and the observability of the information processing structure, and concludes. Unless

stated otherwise, all proofs are in the appendix.

2As discussed in Gentzkow and Kamenica (2014), it is more generally possible to define an information
cost function based on a given measure of uncertainty (Ely et al. (2014)). Woodford (2012) suggests an
alternative cost function based on a different entropy-based measure.
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2 The Model

2.1 Payoffs and Information

A seller (she) wants to sell one object to a consumer (he). Both players are risk-neutral.

The consumer’s valuation for the object, v, is drawn from a distribution F with support

on the unit interval, [0, 1]. The distribution F is twice continuously differentiable, atomless,

F (0) = 0, with full support f > 0 on (0, 1), and mean µ0. The seller’s valuation for the object

is zero. The consumer’s true valuation is ex-ante unknown to both agents. The distribution

F and the seller’s valuation are common knowledge.

If a consumer with valuation v and the seller trade the object at price p, then the seller’s

payoff (revenue) is r = p, and the consumer’s net payoff (surplus) is u = v − p.

Information processing. Information processing of the consumer corresponds to him

choosing an information structure that determines how and what the consumer learns about

his valuation for the object. An information structure,

π =
(
S, {G(·|v)}v∈[0, 1]

)
,

is given by a set of signal realizations S ⊆ R and a family of conditional distributions

{G(·|v)}v∈[0, 1], where G(s|v) is the probability that the consumer observes a signal realization

less or equal to s if his true valuation is v. The corresponding density or mass functions are

denoted by g (·|v).

The consumer updates his beliefs according to Bayes’ Rule. For a given information struc-

ture, each signal realization s induces a posterior belief F (·|s) ∈ ∆([0, 1]) of the consumer,

given by

F (v|s) =

∫ v
0
g(s|v)f(v) dv∫ 1

0
g(s|v)f(v) dv

,

as well as a value estimate

Vs := E [v|s] =

∫ 1

0

v dF (v|s).

Moreover, an information structure π, induces a distribution Fπ ∈ ∆ ([0, 1]) over value

estimates of the consumer.

For an information structure, feasibility requires that for every v ∈ [0, 1], G(·|v) is well-

defined as a distribution function.

Bayesian updating implies that every information structure is Bayes consistent. That is,

the induced posterior beliefs are consistent with the prior:

ES [F (v|s)] = F (v) ∀ v ∈ [0, 1] . (1)
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A consumer, who has no capacity constraints to process information can choose every infor-

mation structure that satisfies feasibility.

Capacity constraints. In the present paper, the consumer’s information processing con-

straint is modeled as an upper bound n ∈ N on the number of signals or “categories” that he

can distinguish. A capacity constrained consumer has only access to information structures

with at most n signal realizations. This set of information structures is called the accessible

set. Information structures within this set are not differentiated by information costs. For all

information structures in the accessible set, the information processing costs are zero, the

costs for all other information structures can be considered to be infinite.

This approach to model cognitive limitations is similar to those in Gul et al. (2014) and

Wilson (2014). Of course there are alternatives to model capacity constraints of agents, for

example, by introducing information processing cost proportional to the entropy reduction

or some other measure of uncertainty.3

2.2 Strategies and Timing

Action sets. The consumer’s action sets are the set of information structures S, with

typical elements π, that he can choose from, and the decision set A = {0, 1}, where a = 1

represents the case in which the consumer buys the object, and a = 0 the case in which the

consumer makes no purchase. The action set of the seller is the set of prices R+
0 .4

Timing. The consumer moves first. He chooses an information structure π, subject to his

capacity constraint, and privately observes a signal realization s ∈ S. The seller observes the

information structure of the consumer, but not the private signal realization. She then sets

a price p, and the consumer decides whether to purchase the object at the price p or not.

The timing of the game is illustrated in Figure 1. The timing of the private signal and the

price setting decision can be interchanged, or be simultaneous.

Strategies and Solution Concept. Every information structure π induces a distribution

over value estimates of the consumer.

For the consumer, a strategy is a tuple, (π, φ(·, ·)) of an information structure π and a

mapping from value estimates and prices to a purchasing decision,

φ : [0, 1]× R+
0 → [0, 1] .

3For examples of alternative modeling choices see Gentzkow and Kamenica (2014), Ely et al. (2014), Sims
(1998, 2003) and Woodford (2012).

4One could more generally let the seller choose a selling mechanism. In the setting studied here, the result
of Riley and Zeckhauser (1983) applies and an optimal selling mechanism is a posted price mechanism. Hence,
for the sake of brevity of the exposition, I directly reduce the action set of the seller to prices. This is without
loss of generality.
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A consumer chooses
an information struc-
ture π ∈ S, subject to
a capacity constraint.

(public)

The consumer observes
signal realization s.

(private)

The seller sets a
price p.

The consumer observes
price p, and decides
whether to buy or not.

Figure 1: Timing in the monopoly model with a rationally inattentive consumer.

That is, φ(V, p) is the probability that the consumer will buy the object if his value estimate

is V and the price is p.5

A strategy for the seller is a mapping from the set of information structures that the

consumer may choose to the set of price distributions

σS : S → ∆([0, 1]).

Under strategy σS, if the seller observes that the consumer chooses information structure π,

she chooses the price distribution σS(π) ∈ ∆([0, 1]).

The solution concept is perfect Bayesian equilibrium.

The information structure π is said to induce the price p, if p is a best-response for

the seller to the information structure π. Say that the information structure π induces the

expected surplus from trade T (π), the seller’s expected revenue R(π), and the consumer’s

expected surplus U(π), if these are the resulting values, if the seller plays a best-response to

the information structure π, and the consumer best-responds to this.

3 Illustrative Example: The Uniform Prior Case

In order to illustrate the fundamental effects in the monopoly pricing model with a rationally

inattentive consumer, I start with an example. Throughout this section, the consumer’s

valuations are assumed to be uniformly distributed on the unit interval, v ∼ U [0, 1].

Benchmarks: Uninformed and fully informed consumer. The two relevant bench-

marks are the case in which the consumer has no information about his valuation, and the

case in which he privately knows his true valuation.

5In the linear setting with risk-neutral agents considered in this paper, the distribution over value estimates
captures all information about π that is relevant for the consumer’s purchasing decision and the seller’s pricing
decisions. This observation is used in order to reduce the problem, and to simplify the strategy sets that have
to be considered. Similar reductions are used, for example, by Kamenica and Gentzkow (2011) and Caplin
and Dean (2013). They reduce the problem to posterior beliefs. The model in the present paper considers
risk-neutral agents and linear utilities. Hence, a reduction of the problem to value estimates is possible.
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In the first case, the consumer is uninformed. In equilibrium the seller charges a price

equal to the expected value of the prior distribution p = µ0 = 1
2
, and the consumer always

buys the good. Trade is efficient, that is, the potential gains from trade are fully realized.

The seller extracts all surplus from trade. Her expected revenue is R(0) = 1
2
, the consumer

obtains zero surplus.

The latter case, in which the consumer is fully informed and privately knows his true

valuation, is the standard monopoly pricing problem. In equilibrium, the seller will charge

the monopoly price pM = 1
2
, and the consumer only buys the good if his true valuation is

greater (or equal) to the price.6 A consumer with a lower valuation is excluded from trade,

and hence trade is not efficient. The resulting expected surplus from trade is TM = 3
8
, the

seller’s expected revenue is RM = 1
4
, and the consumer’s expected surplus is UM = 1

8
.

The benchmark cases with an uninformed and a fully informed consumer are illustrated

in Figure 2.

Optimal partitional two-signal information structure. Suppose that information is

fully and freely available, and that the consumer has to decide how to process this informa-

tion. Consider the case in which the consumer can only distinguish two categories, one of

which he interprets as “good” and the other one as “bad”. If the consumer has full flexibility

in designing these two categories, then how should he define them?

If the consumer forms two categories, he can condition his purchasing decision only on

these two categories and the realized price. Each category induces a willingness to pay of

the consumer, that is, a region of prices for which he would buy the good. The information

processing choice of the consumer can be modeled as the consumer observing a signal re-

alization that informs him in which of the two categories his true valuation falls. The high

signal realization sh indicates that the consumer’s true valuation is in the good category,

and hence increases the consumer’s willingness to pay. This means that the induced value

estimate Vh is larger than the prior mean. By contrast, a realization of the low signal sl

yields a decrease of the consumer’s willingness to pay, Vl ≤ µ0.

The resulting interim demand function that the seller faces is a step function. For prices

smaller or equal to the willingness to pay of a consumer who observes a low signal, the

probability of trade is one. Upon passing this value, the probability of trade drops to gh,

which is the probability that the high signal realizes. The probability of trade is zero for prices

above the willingness to pay of a consumer who observes a high signal. This is illustrated in

Figure 2(c).

The seller’s objective is to maximize her expected revenue. It is straightforward, that

6It is irrelevant whether the consumer buys the good or not if he is indifferent, since the event that the
consumer’s valuation is equal to the price is a zero-probability event.

10



0 pµ0

1− Fπ(p)

R(µ0)

(a) Uninformed consumer.

0 p
pM

1− Fπ(p)

RM UM

(b) Fully informed consumer.

0 p
Vl Vhv̂

gh

1

1

1− Fπ(p)

(c) Two-signal information struc-
ture.

Figure 2: Demand function, expected seller’s revenue and consumer’s surplus for (a) an uninformed
consumer, and (b) a fully informed consumer. Demand curve induced by a two-signal information
structure (c).

the seller never charges a price on the flat, inelastic region of the interim demand curve.

Hence, the seller’s problem is to decide whether to charge the inclusive price Vl and to sell

with probability one, or to charge the exclusive price Vh and to only sell to a consumer who

receives a high signal, that is, with probability gh. An information structure, respectively

choice of categories, thus determines both, the possible price realizations Vl and Vh, as well

as the corresponding demand or probability of trade for the exclusive price, gh.

The consumer only obtains a positive surplus if the seller charges an inclusive price.7

Hence, the only way in which the consumer can secure information rents is to choose an

information structure that induces the seller to charge an inclusive price. For a given infor-

mation structure π, the seller charges the inclusive price, Vl(π), if it yields a weakly higher

revenue than the exclusive price, Vl(π) ≥ gh(π)Vh(π).

The consumer’s problem reduces to:

max
π∈S(2)

{(Vh(π)− p∗(π)) · gh(π) s.t. p∗(π) = Vl(π)}, (2)

where S(2) is the set of all feasible, two-signal information structures, and p∗(π) is the revenue-

maximizing price for the seller given information structure π.

For simplicity, assume that the consumer chooses a monotone partitional information

structure. That is, he splits the interval of true valuations into two subintervals, such that

the high signal realizes whenever the true valuation is in the upper subinterval, otherwise

the low signal realizes. Such an information structure πv̂ is determined by the threshold v̂

7Given an exclusive price, the consumer only buys the object if the high value estimate realizes. In this
case, the consumer obtains the object, but at a price that is equal to his expected valuation; his expected
surplus is zero.
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that is the boundary of the two subintervals.

For example, a used car could fall in the category “good” if its mileage is below 25000,

or if it is less than three years old. Apartments could be categorized based on the number of

rooms, or certain aspects of the location. The criteria do not need to be one dimensional as

long as they reduce to two categories.8 The induced willingnesses to pay of the consumer for a

high or low signal realization depend on the threshold that determines the categorization. For

instance, if at least five rooms are required to sort an apartment in the “good” category, then

the willingness to pay of a consumer is higher for both of the signal realizations, compared to

the case in which all apartments with at least three rooms are classified as “good”. Formally,

the high and the low value estimate, are both increasing in the threshold.

If the seller charges an exclusive price, then the consumer’s expected surplus is zero, and

the seller can extract all gains from trade.9 Hence, the seller’s expected revenue from charging

an exclusive price is high if the ”good” category is large, and this revenue is decreasing in

the threshold that determines the information structure. Moreover, the inclusive price is

increasing in the threshold. The seller’s revenue from charging the exclusive price increases

whereas her revenue from charging the inclusive price decreases. It follows that there exists

a critical threshold at which Vl(πv̂) = gl(πv̂)Vh(πv̂), and the seller charges the inclusive price

for all higher thresholds and the exclusive price otherwise. For a uniform prior, the critical

threshold is 1
2

(√
5− 1

)
. That is, the seller charges an inclusive price for any information

structure with threshold v̂ ∈
[
1
2

(√
5− 1

)
, 1
]
.

If the seller charges an inclusive price, the consumer’s expected surplus is

U (πv̂) = µ0 − p∗ (πv̂) , (3)

which is decreasing in the price. It follows that the consumer-optimal information structure

is the one that induces the lowest price among all information structures that induce the

seller to charge an inclusive price. The consumer-optimal threshold is v∗ = 1
2

(√
5− 1

)
. This

optimal monotone partitional two-signal information structure is illustrated in Figure 3.

The identification of the consumer-optimal information structure in the example was

based on the assumption that the set of accessible information structures consists of the

monotone partitional two-signal information structures. Certainly, the question arises whether

this information structure is optimal for the consumer among larger classes of accessible infor-

8For example, the category ”good” could consist of apartments in a preferred location with at least three
rooms, and all apartments with at least five rooms.

9Indeed,

R(Vh) = (1− F (v̂)) · E [v|v ≥ v̂] =

∫ 1

v̂

v dF (v).
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sl sh
0 1

v∗

Vl = 1
4

(√
5− 1

)
Vh = 1

4

(√
5 + 1

)

Figure 3: Consumer-optimal two-signal information structure, π∗(2), with threshold v∗ = 1
2

(√
5− 1

)
.

The high signal, sh, realizes if the consumer’s valuation is in the good category, otherwise the low
signal, sl, realizes.

mation structures. Is a partitional information structure optimal, or can the consumer benefit

from noise in the information? And are two signal realizations enough, or can the consumer

strictly benefit from having access to information structures with more signal realizations?

These and further question will be answered in the course of the general analysis in the

following sections.

4 Finite Information Structures

After the illustrative example, this section returns to the analysis of the general model.

Suppose that there is a limit on the maximal number, n ∈ N, of signal realizations or

categories that the consumer can distinguish. This constraint may for example represent the

limited cognitive ability of the consumer to process the available information. In this section,

the consumer-optimal information structure is identified, which determines how a capacity

constrained consumer should optimally process or categorize information. In this section, first

some preliminary observations are discussed, then properties are derived that any consumer-

optimal information structure must satisfy, if it exists. These properties are then used in

order to reduce the problem of finding a consumer-optimal information structure, and to

prove existence.

For any information structure π, with n signal realization s1, . . . , sn, these signals are

indexed such that the induced value estimates, Vi := E [V |si], are arranged in an ascending

order, V1 ≤ · · · ≤ Vn.

4.1 Basic Observations about Optimal Purchasing, Price-Setting

and Information Processing

Consumer’s purchasing decision. The information structure π together with the signal

realization s yields the value estimate Vs = E [v|s] for the consumer. It is immediate that for

any given information structure π and price p, a best-response for the consumer is to buy

the object if and only if his value estimate is greater or equal to the price,

φ∗(Vs, p) = 1 ⇔ Vs ≥ p. (4)
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Price-setting by the seller. For a given information structure π =
(
S, {G(·|v)}v∈[0, 1]

)
,

the situation for the seller is as if he faces a consumer whose valuation is drawn from distri-

bution Fπ with support

supp (Fπ) = {Vs : s ∈ S}.

The seller charges the price p that maximize her expected revenue, R(p) = p · (1− Fπ(p)).

As discussed in the example in Section 3, the induced interim demand function is a step

function, and the seller charges a price equal to one of the value estimates of the consumer.

Lemma 1 (Selling Mechanism).

For an information structure π that induces the distribution of value estimates Fπ, a best-

response of the seller is to sell the object by a posted-price mechanism with price

p∗(π) = arg max
p∈[0, 1]

{p · (1− Fπ(p))}.

This price is equal to one of the induced value estimates of the consumer, p∗(π) ∈ supp (Fπ).

The expected revenue that the seller can extract by charging the price Vi is denoted

by R(Vi). The seller sets a price equal to the value estimate that maximizes her expected

revenue.

It is useful to classify prices and distinguish between exclusive and inclusive prices. For

a given information structure π, say that price p is an exclusive price, if the consumer buys

the object only if the highest value estimate realizes. Price p is (partially) inclusive, if there

are at least two signal realizations that induce distinct value estimates, and for which the

consumer will buy the object at the price p. A price is called fully inclusive, if, under the

given information structure, the consumer always buys the good at that price, irrespective

of the signal realization. If the seller charges an exclusive price, only consumers with a high

value estimate buy the good, and demand is low. By contrast, for a fully inclusive price the

probability of trade is 1. Given that the valuation of the seller is 0, this implies that any fully

inclusive price yields efficient trade, that is, potential gains from trade are fully realized.

Information processing by the consumer. The consumer faces the following trade-off

in his choice of an optimal information structure: His information processing decision does

not only determine the distribution over his value estimates, but also the interim demand

function, and hence influences the price that the seller will charge.

In the analysis of the consumer-optimal information structure the following complication

arises. A change in the information structure that has a seemingly small effect on the dis-

tribution and values of the value estimates, may induce the seller to switch from charging

an inclusive price to charging an exclusive price. In this case, the resulting effect on the
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consumer’s expected profit is large. The strategic interaction among the consumer and the

seller results in discontinuities in the consumer’s problem.

As discussed in the example of Section 3, the consumer only obtains a positive profit

if the seller charges an inclusive price. It follows that the consumer will always choose an

information structure π that induces the seller to charge an inclusive price.

Lemma 2 (Inclusive Prices).

The consumer chooses an information structure that induces the seller to charge a (partially

or fully) inclusive price.

4.2 Seller’s Indifference

A central result in the characterization of the consumer-optimal information structure is a

property that I refer to as seller-indifference. This property requires that, if the consumer-

optimal information structure induces the seller to charge a price equal to the ith-lowest of

the induced value estimates, Vi, then the seller is indifferent between charging this price and

charging a price equal to any of the higher value estimates.10

Proposition 1 (Seller-Indifference).

Suppose that π is a consumer-optimal information structure that induces the seller to charge

the price p = Vi. Then, the seller’s revenue R(Vi), is equal to the revenue that he could

extract by charging a price equal to any of the higher value estimates in the support of Fπ:

R(Vi) = R(Vj) ∀j ≥ i. (5)

The seller is indifferent between charging any of these prices.

For any finite information structure π, the optimal price for the seller is equal to one of

the value estimates induced by π (Lemma 1). Roughly put, the seller has to choose a price-

level for his product, where the set of possibly optimal price-levels is given by the support

of Fπ. Proposition 1 establishes that the consumer-optimal information structure induces a

distribution over value estimates that is an equal revenue curve above the equilibrium price

charged by the seller. By leveling the seller to a revenue level, the consumer leaves her with

just enough surplus in order to guarantee that she does not want to deviate to a higher

price-level.

Let me now sketch the idea of the proof. The result is proven by an indirect argument.

For any information structure π that does not satisfy the seller-indifference property (5), a

new information structure, π̃, is constructed that makes the consumer better off.

10This result is reminiscent of the indifference result of Proposition 5 in Kamenica and Gentzkow (2011).
In the interpretation of their leading example, this result states that under the sender-optimal signal the
judge is certain of the innocence of the defendant if he chooses the action “acquit”, and indifferent if he
chooses “convict”.
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Suppose that π is an information structure that does not satisfy (5). Let k > i be an

index such that the seller strictly prefers charging the price Vi over charging the price Vk,

that is, R(Vi) > R(Vk). The idea is to construct a new information structure as follows:

Mass is taken from the upper part of the support of F (·|si). This will reduce the value

of Vi, and hence the seller’s expected revenue if he charges the price induced by signal si,

p = E [v|si]. Similarly, mass is taken from the supports of posterior distributions induced by

signals sj, for which the seller is initially indifferent between charging the prices Vj and Vi.

The distribution of mass among signals sj with j ≥ i is re-adjusted such that the seller is

still induced to charge a price equal to the ith-lowest value estimate E [v|si]. In particular,

mass will be added to signal sk, which increases the seller’s expected revenue from charging

a price equal to E [v|sk], the posterior estimate induced by signal sk.

Such a construction has the following properties: (1) The probability of trade and the

expected surplus from trade remain the same, since mass is only re-distributed among types

that participate in trade. (2) The price charged by the seller decreases. The consumer’s

expected surplus is given by the difference of expected total surplus and expected revenue.

U =P(trade) · E [v|trade]− P(trade) · p.

Hence, under the new information structure, the consumer’s expected surplus will be higher

than before. The formal details about the existence and the construction of such an infor-

mation structure are relegated to the appendix.

4.3 Optimal Information Processing Induces Efficient Trade

A central property of the consumer-optimal information structure is that it lies on the efficient

frontier, that is, it induces efficient trade.11

Theorem 1 (Efficient Trade).

The consumer-optimal information structure lies on the efficient frontier. Any optimal finite

information structure induces efficient trade. The exclusion region is empty.

The intuition for this result is as follows. If trade is not efficient, then some low consumer

types are excluded from trade. Hence, the potential gains from trade are not fully realized.

In the present model, the consumer has a lot of power. He can design his information envi-

ronment and thus the demand curve that the seller faces. Hence, he can influence the seller’s

pricing behavior. In particular, the consumer can switch to an information structure that

yields efficient trade and makes him better off. Under the consumer-optimal information

11Recall that, by assumption, the consumer’s valuation is always greater or equal to the seller’s cost. In
this case, efficient trade means that trade must occur with probability one.
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structure, the consumer does not pay attention to information that would separate low val-

uations. This means that he effectively commits to buy at an intermediate price that may

be higher than his true valuation. He thus offers the seller a higher probability of trade at

this intermediate price. By dividing his attention optimally, the consumer can induce the

seller to offer better conditions of trade in return for the increased probability of trade. The

seller charges a lower price and the consumer obtains a higher expected surplus. The positive

effect of the additionally realized gains from trade reverberates back to the consumer.

Let me now sketch the proof of Theorem 1. It consists of two steps, and the formal proof

is in the appendix. First, the problem is reduced by showing that any consumer-optimal

information structure is outcome-equivalent to an information structure for which at most

one value estimate lies in the exclusion region. Here, two information structures π and π̃

are said to be outcome equivalent, if the realized price, the expected surplus from trade, the

seller’s expected revenue, and the consumer’s expected surplus induced by π and π̃ coincide.

Suppose that there is more than one value estimate in the exclusion region, which means

that there are various signal realizations that will result in the consumer not buying the good.

For a given price, it would not make a difference if the consumer had a coarser perception of

these values, and would obtain only one signal that informs him that he should not buy the

good. From the seller’s perspective, such an adjustment of the information structure reduces

the dispersion in the exclusion region part of the demand curve. It creates a single mass

point on the expected value of the types in the exclusion region. This change in the demand

curve either has no effect on the seller’s pricing decision, or incentivizes the seller to switch

to charging a price equal to the expected value of the types in the former exclusion region.

In the latter case, trade is efficient and the consumer is better off.

The second step is to prove that for any information structure that induces a partially

inclusive price, there exists an information structure that induces a fully inclusive price –

and hence efficient trade – and yields a weakly higher expected surplus for the consumer.

4.4 Optimality of Coarse Perception

The previous findings have established properties (seller-indifference and efficient trade)

for the outcome induced by the consumer-optimal information structure. In this section,

the question how the consumer should optimally process information is addressed. It is

shown that any consumer-optimal finite information structure is monotone partitional. The

consumer only learns in which range of values his true valuation lies, and thus obtains only

a coarse perception of his valuation for the good.

Theorem 2 (Optimality of Coarse Perception).

For every n ∈ N, any consumer-optimal information structure, π∗(n)is monotone partitional.
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The result shows that, if the consumer is restricted to information structures with a

limited number of signal realizations, then he cannot profit from adding noise to the signals.

An optimal categorization of the value space for the consumer is to partition it into sub-

intervals and to learn in which of the sub-intervals his true valuation falls.12 That is, in

equilibrium, the consumer has a coarse perception of the value space.

4.5 Existence of a consumer-optimal information structure

Building on the necessary properties for a consumer-optimal information structure that were

identified in the previous sections, the next result establishes equilibrium existence.

Theorem 3 (Existence of Finite Consumer-Optimal Information Structures).

For every n ∈ N there exists a consumer-optimal information structure π∗(n) that maximizes

the induced expected surplus of the consumer among all information structures with at most

n signal realizations.

This result is established by first using that any consumer-optimal information structure

must induce seller-indifference, efficient trade and be monotone partitional in order to reduce

the problem of identifying a consumer-optimal information structure. Using this simplifica-

tion of the problem, existence of a consumer-optimal information structure is proven. This

result also establishes equilibrium existence.

4.6 More signals are better

As already mentioned, a straightforward question to ask is, whether two signal realizations

are enough, or the consumer can profit from having access to information structures with

more signal realizations. It is obvious that having access to more information structures in-

creases the choice set of the consumer. Hence, he will be weakly better off. But will he strictly

benefit from having access to more signal realizations? If so, is there a maximal number of

signal realizations such that the consumer cannot profit from information structures with

additional signal realizations?

For a given price, the consumer faces a binary decision – whether to buy the good or

not.13 For this decision, it suffices for the consumer to know whether his valuation is above

12This result is reminiscent of the optimality of coarse information structures in the literature on commu-
nication or strategic information transmission based on the seminal paper by Crawford and Sobel (1982).
As pointed out in Sobel (2012) complexity in communication is an alternative explanation for limited com-
munication.

13In Kamenica and Gentzkow (2011) it is shown that one can restrict attention to signals with at most
as many signal realizations as available actions. This feature is an implication of the revelation principle as
discussed in Myerson (1997). In the present model, the consumer’s action set is binary. This would suggest
that two signal realizations are enough. However, the seller can set any real-valued price, which implies that
the action set that the consumer has to consider when choosing the information processing structure is large.
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or below the price. He can obtain this information with a binary information structure.

The situation is different, if the consumer cannot condition his information processing

choice on an observed price, and has to take into account that this choice will influence the

price charged by the seller. In this case, having access to information structures with more

signal realizations allows the consumer to better react to different prices that the seller may

charge. Hence, the consumer can better influence the price setting strategy of the seller.

The following example illustrates how the consumer can use additional signal realizations

to secure a strictly higher profit.

Example 1 (Two signal realizations are not enough):

Reconsider the uniform prior example discussed in Section 3. The consumer-optimal mono-

tone partitional two-signal information structure π∗(2) was identified (illustrated in Figure 3).

By Theorem 2, this is indeed the consumer-optimal two-signal information structure.

Suppose now that the consumer has access to one more signal realization and can dis-

tinguish three categories, say “good”, “intermediate” and “bad”. Can the consumer strictly

benefit from the enlarged set of feasible information structures and improve upon the case

with only two-signal realizations?

The consumer can use the additional signal to identify an interval of intermediate values,

such that this interval covers true valuations that have previously resulted in a good signal,

as well as some that have resulted in a bad signal. Figure 4 illustrates such an information

structure, π̃(3).

sl sh
0π∗(2):

π̃(3):

1

1

v∗

v̂l v̂h

s̃hs̃is̃l

Figure 4: Illustration of the use of an additional signal.

Under this new information structure, good and bad signals both provide stronger evi-

dence that the true valuation is high, respectively low. Hence, the value estimate induced

by the good (bad) signal increases (decreases). For the price induced by the bad signal, the

demand remains the same whereas the price that the seller can charge decreases. Hence, the

seller’s expected revenue decreases. For the good signal, the price increases and the probabil-

ity of trade decreases. The expected revenue that the seller can extract by charging a price

equal to the value estimate induced by the good signal is equal to the realized surplus from

trade for values in the good category. Hence, if this category gets smaller, the corresponding

expected revenue of the seller decreases.
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What can be said about the revenue that the seller can extract by charging a price

equal to the value estimate induced by the new, intermediate signal? Compare the seller’s

revenue if she adopts a price equal to the intermediate value estimate and the seller’s revenue

under the optimal two-signal information structure. Given the seller-indifference property

(Proposition 1), for the latter, one can consider the seller’s revenue if she charges the exclusive

price, induced by the original good signal. Notice that there is a demand effect and a price

effect. From the perspective of the seller, the demand effect is positive: the probability to sell

if she charges a price equal to the intermediate value estimate is higher than for the exclusive

price, induced by the original good signal. By contrast, the price effect is negative: the price

is lower than the original exclusive price.

The demand effect only depends on the probability that the true valuation falls in the

intermediate or good category, but not on the realization of the good category. The price

effect, by contrast, depends on how the region that yields an intermediate or a good signal is

split between the intermediate and the good categories. All else equal, the larger the fraction

of the good category, the stronger is the price effect. If the good category is sufficiently large,

then the seller’s expected revenue from charging a price equal to the intermediate value

estimate is below the revenue level of the two-signal case. Hence, for appropriately chosen

categories, under the new information structure, trade is still efficient but the seller obtains

a smaller share of the total expected surplus. The consumer is strictly better off.

The feature that the consumer strictly benefits from having access to more signal real-

izations is a general property. This result is formally established in Proposition 2.

For n ∈ N, let p∗(n) be the minimal price that can be induced as a fully inclusive price

by an information structure with at most n signal realizations. Any consumer-optimal fi-

nite information structure induces efficient trade (Theorem 1). Hence, the consumer-optimal

n-signal information structure induces the minimal price p∗(n). It follows that the question

whether the consumer strictly benefits from having access to information structures with

more signal realizations is equivalent to the question whether the sequence p∗(n) is strictly

decreasing in n.

Proposition 2 (More Signals are Better).

The consumer strictly profits from having access to information structures with more signal

realizations. The sequence of equilibrium prices {p∗(n)}n∈N is strictly decreasing in n, and the

consumer’s expected surplus U∗(n) is strictly increasing in n.

Evolution of optimal information structures and thresholds with n

How should a capacity constrained consumer optimally allocate his attention? As discussed

above, the consumer will obtain a coarse perception about his valuation for the good. Still,
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n = 2 0 1
V1 = p∗[2]

n = 5 0 1
V1 = p∗[5]

n = 10 0 1
V1 = p∗[10]

Figure 5: Thresholds and induced prices for the consumer-optimal n-signal information structures.

the question remains, which pieces of information are the most valuable for the consumer.

Should the consumer obtain a finer perception about low or high valuations?

For the uniform prior example, the evolution of optimal information structures and prices

is illustrated in Figure 5.14 As can be seen, if more signal realizations are available, the

information structure gets finer around valuations close to the lowest threshold. This is the

threshold that determines the value estimate that corresponds to the induced price. The

consumer pays more attention to values closer to the threshold that is relevant for the price.

5 The Unconstrained Optimal Information Structure

In the absence of any information constraints or costs, the consumer can choose freely how to

process the available information. Which pieces of information should the consumer acquire

in this case? Should he learn his valuation perfectly, or are there benefits from remaining

partially uninformed?

The main result of this section shows that it is in the consumer’s best interest to remain

partially uninformed. Every consumer-optimal information structure pools all values below

a certain threshold.

Theorem 4 (Optimal Information Structure).

Without information constraints, there exists a threshold 0 < v < 1 such that every equilibrium

information structure is outcome-equivalent to the following information structure π∗:

The information structure π∗ pools all values below the threshold v, and the induced

distribution of value estimates, Fπ∗, is an equal revenue distribution.

Why is it optimal for the consumer not to get perfectly informed but to pool an interval

of low values into one signal? By obtaining only a coarse perception about low values,

the consumer can induce the seller to charge a lower price, which increases the consumer’s

expected surplus.

14A more detailed and formal discussion is provided in Appendix B.
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To obtain intuition for this result, consider the benchmark, in which the consumer knows

his true valuation. In this case, the seller charges the monopoly price. Hence, the seller

excludes low values from trade in order to maximize her expected revenue. This means that

potential gains from trade are not fully realized. Moreover, the consumer cannot obtain

information rents for valuations that fall in the non-trade region. An information structure

that pools low valuations creates a high mass on an intermediate value estimate. For a

sufficiently large pooling region, the seller will be induced to charge a price equal to the

value estimate of this pooling region. This information structure induces efficient trade, and

the induced price is below the monopoly price in the case with a fully informed consumer.

The consumer can secure more information rents, and hence has a higher expected surplus.

In the unconstrained case, multiplicity of optimal information structures, respectively

equilibria, arises. The optimal information structure π∗ identified in Theorem 4, is the limit of

the consumer-optimal finite information structures. In the absence of information processing

constraints, the number of signal realizations is unconstrained. Consequently, the number of

signal realizations that are used to obtain information about some interval of the valuation

space does not affect the number of the signals that are available to acquire information

about other valuations. Hence, instead of pooling types within intervals in which the prior

distribution has positive virtual valuations, the consumer can also learn his true valuation

perfectly. Such an adjustment of the information structure, which is only possible if the

consumer has no information constraints, does not affect the equilibrium outcome.

In order to illustrate the properties of the consumer-optimal information structures in

more detail, I discuss three examples. Each of these examples illustrates a typical consumer-

optimal information structure. The discussion shall provide some intuition how specific fea-

tures of optimal information structures depend on properties of the prior distribution.

Example 2: Consider the uniform prior case, v ∼ U [0, 1]. In the benchmark with a fully

informed consumer, the monopoly price is pM = 1
2
. As just discussed, in the absence of

information processing constraints or costs, there are multiple consumer-optimal information

structures. Two examples of consumer-optimal information structures are the following:

a) The information structure π∗max pools all types in the interval
[
0, 1

2

)
, and is perfectly

informative on the interval
[
1
2
, 1
]
. This information structure is illustrated in Figure 6.

b) The information structure π∗(∞) pools all types in the interval
[
0, 1

2

)
. On

[
1
2
, 1
]
, it in-

duces a distribution over value estimates with constant discrete virtual valuation equal to

zero.15 This information structure is the limit of the consumer-optimal finite information

15This information structure is characterized by a decreasing sequence of thresholds {v̂i}i∈N0
with

v̂0 := 1, v̂1 :=
1

2

√
2, v̂i+1 :=

1

2
+

1

2

(√
4v̂iv̂i−1 + 5v̂2i − 4v̂i−1 − 2v̂i + 1− v̂i

)
, and v̂∞ :=

1

2
.
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Figure 6: The consumer-optimal information structure π∗max for the uniform prior case, v ∼ U [0, 1].

structures,

π∗(∞) = lim
n→∞

π∗(n).

The information structure π∗max is the finest consumer-optimal information structure

whereas π∗(∞) is the coarsest consumer-optimal information structure. The distributions of

value estimates induced by these two information structures are illustrated in Figure 7.

1

4

1

2
1

V

1

2

1

FΠHV L

1

4

1

2
1

V

1

2

1

FΠHV L

Figure 7: Distributions over value estimates Fπ∗ that are induced by the consumer-optimal infor-
mation structures π∗max and π∗(∞), for the uniform prior case, v ∼ U [0, 1].

In the uniform prior case, E
[
v|v ≤ pM

]
= 1

4
= pM

(
1− F (pM)

)
. Hence, pooling of the

types within the region
[
0, 1

2

)
, makes the seller indifferent between charging the fully inclusive

price p∗ = 1
4

and the monopoly price, which is the price that maximizes the seller’s revenue

among all prices in supp (Fπ∗) \{p∗}. In equilibrium, the seller will charge the fully inclusive

price.

Example 3: Suppose now, that the valuation of the consumer is distributed on [0, 1] with

the linearly decreasing density f(v) = 1 − 2v. For this distribution, pooling all valuations

smaller than the monopoly price, induces the seller to charge the fully inclusive price. More-

over, she strictly prefers this price over the monopoly price, E
[
v|v ≤ pM

]
> RM . It thus

suffices to pool a smaller interval [0, v̂] of low valuations to make the seller indifferent be-

tween charging the fully inclusive price and the monopoly price. Notice, that the seller prefers
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to charge these two prices over any price in the region
(
v̂, pM

)
. Hence, there is still some

slack in this information structure.

For the given prior distribution, any consumer-optimal information structure π∗ pools

all types within an interval [0, v), with v ≤ v̂ < pM , and has a “sweeping up” region [v, v].

In this region the information structure induces a distribution over value estimates with

constant virtual valuation equal to zero. The sweeping up function H on [v, v] is given by:

H(V ) =1− v

V
(1− F (v)) .

Above v, the information structure can be perfectly informative. This consumer-optimal

information structure π∗max is illustrated in Figure 8. It induces efficient trade, T ∗ = 1
3
, and

the induced expected revenue of the seller is below the monopoly revenue R∗ < RM .

0
v v

pM
1

F (V )H(V )

s0

sweeping up
region

p∗

Figure 8: Consumer-optimal information structures π∗max for a decreasing prior density.

Example 4:

Suppose that the consumer’s valuations are distributed according to the beta-distribution

v ∼ β
(
1, 1

2

)
. For this distribution, the monopoly price is pM = 2

3
. Moreover, it holds that

E
[
v|v ≤ pM

]
< RM . Under the information structure that pools the values in the interval[

0, pM
)

and is perfectly informative otherwise, the seller still charges the monopoly price.

By moving the threshold of the pooling region up, the value estimate of the values within

this region increases. This increases the revenue that the seller can extract by charging the

fully inclusive price. Moreover, some types for which the marginal revenue is positive are now

included in the pooling region. Hence, the revenue that the seller can extract by charging the

optimal price in the separating region decreases. The critical threshold v∗ at which the seller

is indifferent between charging the partially inclusive price and charging the fully inclusive

price determines the consumer-optimal information structure. The seller’s expected revenue

induced by this information structure is smaller than the monopoly revenue. This consumer-

optimal information structure is illustrated in Figure 9.

6 Seller’s Revenue and Consumer’s Surplus

This section discusses the implications of a rationally inattentive consumer in a monopoly

pricing problem for welfare, the seller’s expected revenue and the consumer’s expected sur-
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Figure 9: The consumer-optimal information structure π∗max for, v ∼ β
(
1
2 , 1

)
.

plus. In order to analyze these effects, the equilibrium outcomes that are induced by the

consumer-optimal information structures identified in Section 4 and Section 5 are compared

to the outcome in the monopoly pricing problem, in which the consumer is privately in-

formed about his true valuation. The latter situation corresponds to the benchmark with a

fully informed consumer (cf. Section 3).

Given the discussion in the previous sections, the effect on aggregate welfare is straight-

forward. Every consumer-optimal information structure induces efficient trade. By contrast,

under monopoly pricing for a fully informed consumer, some types are excluded from trade,

and hence not all possible gains from trade are realized. Implementing the consumer-optimal

information structure for a rationally inattentive consumer thus improves welfare.

The implications of monopoly pricing for a rationally inattentive consumer for the seller’s

expected revenue and the consumer’s expected surplus are less obvious. Denote the expected

surplus of the consumer and expected revenue of the seller induced by the consumer-optimal

information structure by U∗(n) and R∗(n) for the finite case, and by U∗(∞) and R∗(∞) in the

unconstrained case. In Proposition 2 it was shown that the consumer strictly profits from

having access to more signal realizations. The following corollary generalizes this result.

Corollary 1. The expected surplus of the consumer U∗(n) is increasing in n, whereas the

expected revenue of the seller R∗(n) is decreasing in n. Both sequences approach the respective

values of the unconstrained case in the limit.

lim
n→∞

U∗(n) = U∗(∞), and lim
n→∞

R∗(n) = R∗(∞).

In the unconstrained case, a rationally inattentive consumer is always strictly better off

than a consumer who knows his true valuation a priori. The seller’s expected revenue is

bounded above by the monopoly revenue in the benchmark with a fully informed consumer.

As illustrated in Example 3 and Example 4 it may be strictly smaller.

In each of the above examples, it can be shown that the outcome induced by the consumer-

optimal two-signal information structure is a Pareto improvement compared to the bench-

mark case with a fully informed consumer. Numerical values are provided in Table 4.

It is instructive to illustrate the results on the consumer’s expected surplus and the

seller’s expected revenue in a surplus triangle. By Theorem 1, all equilibrium outcomes lie
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pM p∗(2) = R∗(2) p∗(∞) = R∗(∞) RM UM U∗(2) U∗(∞)

v ∼ U [0, 1] 1
2

1
4

(√
5− 1

)
1
4

1
4

1
8

1
4

(
3−
√

5
)

1
4

f(v) = 1− 2v 1
3

≈ 0.19808 ≈ 0.14782 4
27

8
81

≈ 0.13526 ≈ 0.18552

v ∼ β
(
1, 1

2

)
2
3

≈ 0.43593 ≈ 0.38349 2
3
1+
√
3

3+
√
3

2
9
1+
√
3

3+
√
3
≈ 0.28318 ≈ 0.23074

Table 4: Equilibrium prices, consumer’s expected surplus and seller’s revenue for the benchmark
with a fully informed consumer, the optimal two-signal information structure, and the unconstrained
optimal information structure.

on the efficient frontier. The locations of the equilibrium outcomes in the surplus triangle

are illustrated in Figure 10.
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Figure 10: Surplus Triangle

The case, in which the consumer cannot process any information and the seller extracts

all surplus from trade, corresponds to the upper extreme point of the efficient frontier. As the

number of available signal realizations n increases, the points that mark the induced outcomes

move down on the efficient frontier. The limiting case either corresponds to the intersection

of the efficient frontier with the monopoly revenue level, or may lie on the efficient frontier

below this point. In the first case, trade is efficient, the seller obtains the monopoly revenue

and the consumer obtains the remaining surplus from trade. The latter case corresponds to

the situation illustrated in Example 3 and Example 4, in which the seller’s expected revenue

is strictly below the monopoly revenue.
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7 Discussion and Conclusion

7.1 Timing and Observability

In strategic situations, the timing influences whether the information processing constraints

of the consumer are strategically binding or not. In the model studied in this paper, the

timing is such that the consumer commits to an information structure prior to observing the

price. The seller observes the information structure, but not the private signal realizations,

before he chooses which price to charge. Hence, the choice of an informational environment

of the consumer is a non-contingent choice. The analysis in this paper highlights the role

of rational inattentiveness of the consumer in such a setting. By committing to a coarse

information structure, the consumer can induce the seller to charge a lower price. This

increases the realized gains from trade, and benefits the consumer. It often even leads to a

Pareto improvement compared to the case in which the consumer knows his true valuation.

There are alternative modeling choices of timing and observability, and depending on the

application that one has in mind any of these modeling choices may be the most natural.

First, one could consider the case in which the consumer chooses his information structure

contingent on the price that he observes. This case is trivial, since even with two signal

realizations, the consumer can choose an information structure that lets him take an optimal

purchasing decision. By learning whether his valuation is above or below the price, the

consumer obtains all information that is relevant for his purchasing decision. In equilibrium,

the seller charges the standard monopoly price. Hence, the result is outcome equivalent to

the benchmark with a fully informed consumer from Section 3.

The second alternative is to assume that the seller and the consumer choose the price

and the information structure simultaneously. The consumer then observes the private signal

realization and the price, and makes his purchasing decision. This case is equivalent to the

model in which the consumer first chooses an information structure, but this is not observed

by the seller.

The idea that the consumer faces limitation to process information16 is central to the

analysis in this paper. The equilibrium characterizations for the case in which the seller

cannot observe the consumer’s information structure differs strongly from the one in the

present model. In the constrained case, if the seller cannot observe the information structure

of the consumer, there exists no equilibrium in pure strategies. However, the main effects of

a rationally inattentive consumer on monopoly pricing and the realized outcome are robust,

and do not depend on the assumption that the seller can observe the information structure

16Those may be self-imposed, due to cognitive limitations or external regulation.
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of the consumer. The effects established in this paper for the observable case also exists in

the unobservable case, even though they are weaker.

To briefly illustrate the features of a mixed-strategy equilibrium in the unobservable case,

reconsider the uniform prior example of Section 3. The consumer is restricted to monotone

partitional two-signal information structures. In this setting, the consumer will mix over two

information structures with thresholds v∗A = 1
3

and v∗B = 2
3
, respectively. These are also the

two prices over which the seller mixes. Both players mix with probability 1
2
. Notice that each

information structure of the buyer is a best-response to one of the seller’s prices and vice

versa. For instance, for the price pA = 1
3
, it is optimal for the consumer to learn whether his

valuation is above or below this threshold. If the consumer adopts the information structure

with threshold v∗A = 1
3
, then the best response of the seller would be to charge a price equal

to 2
3
. In this equilibrium, not all gains from trade are realized. However, an important insight

gained from the analysis in this paper, remains. There are again positive welfare effects of a

rationally inattentive consumer, even though they are weaker than in the observable case. In

the equilibrium with a two-signal information structure, the total surplus from trade as well

as the expected surplus of the consumer and the expected revenue of the seller are higher

than in the benchmark with a fully informed consumer.

The equilibrium values of total surplus, consumer’s expected surplus and seller’s revenue

for the three modeling choices, the benchmark with a fully informed consumer, the observable

and the unobservable case, are summarized in Table 5. It can be seen that both, the consumer

and the seller are best off in the case in which the consumer chooses the information structure

first, and this is observed by the seller.

price(s) U∗(2) R∗(2) T ∗

Full-information benchmark 1
2

1
12

1
4

1
3

Observable case 1
4
(
√

5− 1) 1
4
(3−

√
5) 1

4
(
√

5− 1) 1
2

Unobservable case (1
2
◦ 1

3
, 1

2
◦ 2

3
) 1

9
4
15

17
45

Table 5: Equilibrium prices, and consumer’s and seller’s expected profits, and total surplus, for
each of the three timings.

The relation between the results for the three modeling choices is different in the absence

of information constraints. In this case, if the seller cannot observe the information structure

of the consumer, then in equilibrium the consumer learns his true valuation and the seller

charges the monopoly price. Hence, the outcome in the unobservable case is the same as in

the benchmark with a fully informed consumer.

This relation shows that in the absence of information constraints, the effect that rational
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inattention can reduce prices and yield welfare improvements strongly depends on the as-

sumption that the seller can make his pricing decision contingent on the information choice

of the consumer. This observation suggests that it is desirable to either make the consumer’s

choice of an information structure observable for the seller or to have an intermediary or

regulator control the information structure of consumers and recommend pricing strategies

for sellers.

7.2 Concluding Remarks

The objective of this paper was to understand the implications of a rationally inattentive

consumer in a monopoly pricing model. The consumer can freely decide which pieces of

information about his valuation to process, but may face information processing constraints.

These constraints can be due to limited cognitive abilities, or other sources that restrict the

flexibility of information acquisition of the consumer.

A main contribution of this paper is to identify a “persuasion through rational inattentive-

ness” effect. By choosing his information structure, the consumer designs the information

environment of the monopoly pricing problem. Any given information structure together

with a signal realization induces a belief of the consumer, which determines his reaction to

realized prices. Moreover, this information structure also affects the demand curve that the

seller faces, and hence her pricing strategy.

The analysis identified the effects of persuasion through rational inattention on the out-

come in a monopoly pricing model. It was shown that, by committing to remaining partially

uninformed, and to only obtain a coarse perception of his true valuation, the consumer

can induce the seller to charge a lower price. The consumer unambiguously benefits from the

lower realized price, whereas the seller’s expected revenue may decrease. For every consumer-

optimal information structure all possible gains from trade are realized. Moreover, it is often

the case that pricing for a rationally inattentive consumer yields a Pareto improvement, com-

pared to the case in which the consumer is privately informed about his true valuation. A

Pareto improvement is more likely, if the consumer faces information processing constraints.

Based on the insights gained from the analysis in this paper, there are various interesting

directions for future research. Examples include the analysis of optimal design and pricing of

product lines, and the effects of competition among sellers (inter- or cross-market competi-

tion) or buyers (auction setting). Moreover, it would also be interesting to explore persuasion

through rational inattentiveness in other strategic environments such as contract theory or

collective decision making.
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Appendix

A Proofs

Proof of Lemma 1. Suppose that the consumer chooses the n-signal information structure

π, that induces the value estimates V1 < V2 < · · · < Vn, and the corresponding probability

masses g1, . . . , gn. For the seller, the situation is as if he faces a consumer whose valuation

is drawn from distribution Fπ. If the seller charges a price p ∈ (Vk, Vk+1] then by (4) the

consumer will buy the object if and only if his value estimate is at least p. Hence, the

probability of trade is
∑n

i=k gi, and the expected revenue for the seller is R(p) = p ·
∑n

i=k gi.

Among all prices p ∈ (Vk, Vk+1], the revenue maximizing price for the seller is p = Vk, and

it follows that the seller’s best-response function is given by

p∗(π) := arg max
p∈Supp (Fπ)

{p ·
n∑
i=1

gi · 1[p,1](Vi)}.

Notation: The sets of information structures with exactly n, respectively at most n, signal

realizations are denoted by

S(n) = {π ∈ S : |S| = n} ⊂ S, and S [n] ∪nk=1 S(k).

For a given information structure that induces the distribution Fπ of value estimates, let

Vi ∼S Vj denote the case in which the seller is indifferent between charging any of the prices

Vi, Vj ∈ supp (Fπ). If the seller strictly prefers to charge price Vi over Vj, write Vi � Vj.

Let S(n)
i ⊂ S(n) be the subset of information structures with n signal realizations that

induce the seller to charge a price equal to the ith-lowest value estimate, Vi = E [v|si].

Proof of Proposition 1 (Seller-Indifference). Suppose that the consumer-optimal informa-

tion structure π induces the seller to charge a price equal to the ith-lowest value estimate,

that is, p = Vi and π ∈ S(n)
i . Suppose moreover that there exists some k > i such that

R(Vi) > R(Vk). That is, the seller strictly prefers to charge the price p = Vi over charging

a price p̂ = Vk. It will be shown that in this case it is possible to construct an information

structure that makes the consumer better off.

Some technical preliminaries: For every j ∈ I, let Vj := supp (F (·|sj)) ⊆ V be the support of

the posterior distribution induced by the signal realization sj. Since Vj ⊆ [0, 1], it is bounded

above and below, and vj := supVj exists. Moreover, for every v ∈ [0, 1], {v} is a zero-

probability event.17 Hence, w.l.o.g. we can assume that vj ∈ Vj, that is, vj = supVj = maxVj.
17By assumption F is continuous and has no atoms.
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It follows that for every j ∈ I, there exists some δj > 0 such that [vj − δj, vj] ⊆ Vj, that

is, f(v|sj) > 0 for all v ∈ [vj − δj, vj]. Finally, given that f(v), g(sj) > 0 it holds that

f(v|sj) = 0 if and only if g(sj|v) = 0, which implies that g(sj|v) > 0 if and only if v ∈ Vj.
Using analogous arguments establishes that every j ∈ I, vj := minVj exists, as well as some

δj > 0 such that
[
vj, vj + δj

)
⊆ Vj.

Formal construction of an information structure that yields a higher expected surplus for the

consumer than π:

Construction 1.

Let k ∈ I be the largest index such that R(Vk) < R(Vi). For every

δ = (δi, . . . , δn) with δj > 0 ∀ j = 1, . . . , n, such that (6)[
vj, vj + δj

)
⊆
(
Vj ∪

[
vj+1, vj+1 + δj+1

])
∀ j > k, and

(vj − δj, vj] ⊆ (Vj ∪ (vj−1 − δj−1, vj−1]) ∀ i ≤ j < k,

it is possible to define a new information structure π̃ as follows. Set g(sn+1|v) := 0 and define

the family of conditional distributions that characterize π̃ by:

For every j > k : (7)

g̃(sj|v) =


g(sj|v) + g(sj+1|v) for v ∈

[
vj+1, vj+1 + δj+1

)
0 for v ∈

[
vj, vj + δj

)
g(sj|v) otherwise,

For every j, s.t. i ≤ j < k :

g̃(sj|v) =


0 for v ∈ (vj − δj, vj]

g(sj|v) + g(sj−1|v) for v ∈ (vj−1 − δj−1, vj−1]

g(sj|v) otherwise,

g̃(sk|v) =


g(sk|v) + g(sk+1|v) for v ∈

[
vk+1, vk+1 + δk+1

]
g(sk|v) + g(sk−1|v) for v ∈ (vk−1 − δk−1, vk−1]

g(sk|v) otherwise,

and

g̃(sj|v) = g(sj|v) ∀ j < i.

For every v ∈ [0, 1], this construction satisfies g̃(sj|v) ≥ 0 for all sj ∈ S, as well as∑n
j=1 g̃(sj|v) = 1. Hence, π̃ is well-defined as an information structure. This construction is

illustrated in Figure 11.

Construction 1 takes some mass off the support Vn of F (·|sn). This reduces the revenue
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Figure 11: Illustration of Construction 1.

that the seller could extract by charging a price equal to E [v|sn]. Indeed,

R(Ṽn) =Ṽn · g̃(sn)

=

(∫ 1

0

vf(v|sn) dv

)
· g̃(sn)

=

∫ 1

0

vg̃(sn|v)f(v) dv

=R(Vn)−
∫ vn+δn

vn

vg(sn|v)f(v) dv < R(Vn).

The construction then adds the mass taken from the support of of F (·|sn) to the support

of F (·|sn−1), which increases the revenue that the seller could extract by charging the price

E [v|sn−1]. The probability to sell remains the same whereas the seller can charge a higher

price. However, Construction 1 also takes mass off the lower part of the support of F (·|sn−1),
which reduces the revenue that the seller can extract by charging price E [v|sn−1].

For signal sk−1, mass is taken off some high values v ∈ (vk−1 − δk−1, vk−1] in the support

Vk−1. This reduces the revenue that the seller can extract by charging the price E [v|sk−1],
since this price reduces whereas the probability to sell remains the same. Construction 1

then adds mass to the support of F (·|sk−1), which increases the revenue that the seller can

extract by charging the price E [v|sk−1].
Moveover, for any δ that satisfies (10), the revenue that the seller can extract by charging

the price E [v|sk] increases.

For a continuous prior distribution, there exists a δ that satisfies (10), such that Con-

struction 1 yields R(Ṽj) < R(Vj) for all j ≥ i, j 6= k, and R(Ṽk) = R(Ṽj) for all j ≥ i. For

the resulting information structure π̃ there are two cases to be considered:

Case (1): Given information structure π, the seller still charges a price equal to the ith-

lowest value estimate E [v|si]. In this case, for every v ∈ [0, 1] the probability of trade is not

affected by Construction 1. Hence, the probability of trade remains the same,
∑n

j=i g̃(sj) =∑n
j=1 g(sj), as well as the expected value of types that participate in trade and hence the

expected total surplus from trade, T (π) = T (π̃). Moreover, by Construction 1 Ṽi < Vi, and

hence R(Ṽi) < R(Vi). It follows that the expected surplus of the consumer is higher than

before, U(π̃) = T (π̃)−R(π̃) < U(π).

Case (2): Under the information structure π̃, the seller wants to charge a price other than

E [v|si]. If this is the case, the seller must have an incentive to switch to a lower price Vj < Ṽi.
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But in this case the consumer is obviously better off than under information structure π.

This contradicts the assumption that there exists a finite consumer-optimal information

structure π that does not satisfy the seller-indifference property.

Proof of Theorem 1: First, two lemmas are established, which are then combined in

order to prove Theorem 1.

Lemma 3 (Small Exclusion Region).

Any consumer-optimal information structure π∗ is outcome-equivalent to an information

structure with at most one value estimate in the exclusion region. That is, there exists at

most one value estimate V ∈ supp (Fπ∗) such that V < p.

Proof of Lemma 3. Suppose that π∗ is an optimal information structure. Let V := supp (Fπ∗)

be the support of value estimates that are induced by this information structure. The seller

will charge a price equal to an element of V (Lemma 1), say p∗ = Vp. Let VE ⊆ V be the

subset of types that will be excluded from trade in equilibrium. That is, V ∈ VE if and only

if V < Vp = p∗.

Claim 1. The set VE is either empty, or is a singleton VE = {V1}.

Suppose not, that is, suppose that |VE| > 1, say V, V ′ ∈ VE. That is, V, V ′ < Vp, and

w.l.o.g. assume that V < V ′. Moreover, the seller charges a price p∗ = Vp, hence it must

hold that R(Vp) ≥ V, V ′. Let s, s′ be the signal realizations that yield V , respectively V ′.

The following construction defines a new information structure π̃ that is obtained form π by

merging the signal realizations s and s′ into one signal realization s.

Construction 2. Let π̃ :=
(
S̃, {g̃(·|v)}v∈[0, 1]

)
with

S̃ := (S ∪ {s}) \{s, s′},

g̃(s|v) :=g(s|v) + g(s′|v) ∀ v ∈ [0, 1] , and

g̃(sj|v) :=g(sj|v) ∀ v ∈ [0, 1] , sj 6= s, s′.

Construction 2 implies

V := Eπ̃ [v|s] =
g(s)V + g(s′)V ′

g(s) + g(s′)
∈ (V, V ′) .

There are two cases to be considered. (1) under π̃, the seller still wants to set a price equal

to Vp, and (2) π̃ induces the seller to charge a price equal to p = V .

Case (1): In this case, switching from π to π̃ has no effect on the expected realized surplus,

the expected revenue of the seller and the expected surplus of the consumer. Hence, π and

π̃ are outcome-equivalent.
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Case (2): Under the new information structure π̃, the seller is induced to charge a price

p = V < V ′ < Vp. That is, switching from π to π̃, reduces the price charged by the

seller. Notice that Construction 2 does not affect the value estimates induced by signal

realizations that yield information rents for the consumer under π. For these value estimates,

neither their valuation nor the probability that they arise changes under Construction 2.

However, by Construction 2 the price charged by the seller reduces and hence the expected

information rents increase. Moreover, the probability for the consumer to obtain information

rents increases, since now the type Vp is greater than the price p̃ = V that is charged by the

seller. Therefore, if the value estimate Vp realizes, the consumer obtains an information rent.

Consequently, the consumer is strictly better off under information structure π̃ than under π

– a contradiction to the assumption that π is a consumer-optimal information structure.

Lemma 4 (Implementability by Fully Inclusive Prices).

Suppose that the price p0 is inducible by the n-signal information structure π, and Uπ is the

resulting expected surplus of the consumer. Then the price p := µ0 − Uπ is inducible as a

fully inclusive price by an n-signal information structure, which yields the expected surplus

Uπ for the consumer.

Proof of Lemma 4. If the exclusion region is empty, VE = ∅, then the result follows trivially.

In this case, p0 = V1 and trade is efficient. The realized total expected surplus from trade

is T = µ0, the seller’s expected revenue is R = p0, and the consumer’s expected surplus is

Uπ = T−R = µ0−p0. In this case p = p0, which is implemented as a fully inclusive price by π.

Suppose now that the exclusion region is non-empty VE 6= ∅. By Lemma 3, one can

assume w.l.o.g. that there is only one value estimate in the exclusion region, VE = {V1}. It

follows that p0 = V2 > V1. The mass of the exclusion region is thus g1, and the mass on the

price charged by the seller, p0 = V2, is g2. In order for p0 to be a best-response of the seller,

it must hold that

R(V2) > R(V1), and R(V2) ≥ R(Vj) ∀ j > 2.

Case (1): Suppose that the first relation holds with equality, R(V2) = R(V1), then by

merging signal realizations s1 and s2 into one joint signal, say s, one obtains a merged value

estimate V ∈ (V1, V2). For the resulting information structure, charging the price V yields

an expected revenue of R(V ) = V > R(V1), and hence the seller would strictly prefer to

charge a price equal to V over any other price. This contradicts the assumption that π is a

consumer-optimal information structure.
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Case (2): Suppose that R(V2) > R(V1). For p0 = V2, expected total surplus from trade is18

T (p0) = µ0 − g1V1.

The expected revenue of the seller is:

R(p0) = (1− g1) · p0,

and the expected surplus of the consumer is:

Uπ(p0) = (1− g1) · (E [v|¬s1]− p0) .

It follows that

p =µ0 − [(1− g1)E [v|s¬s1]− (1− g1)p0]

=g1V1 + (1− g1)p0. (8)

Claim 2. The price p, given by (8), can be implemented by an n-signal information structure

as a fully inclusive price.

Construct a new information structure π̃ from π as follows: Add all of g2 and a fraction

α = g2
1−g1 to the signal realization s̃1, the resulting value estimate is Ṽ1 = p. This is well-

defined, given that Bayesian consistency requires that 1− g1 > g2. Hence, unless gs = 1− g1,
there will be some mass left on type VE. Add all of the remaining mass on VE to the signal

realization s̃, and add mass from higher value estimates, Vj, j > 2 until Ṽ1 = p. Taking mass

from higher value estimates will only reduce the expected revenue that the seller can extract

from setting a price equal to any of these types, that is, reduce the seller’s incentives to do

so. It follows that

R(Ṽ1) =p = g1V1 + (1− g1)p0 > R(V2 = p0) ≥ R(Ṽj) ∀j > 2,

which shows that the price p is implementable as a fully inclusive price by an n-signal

information structure.19

Under the new information structure the expected surplus of the consumer is the same

as before. However, under the new information structure there is at least one j > 1 such

that the seller strictly prefers to charge price p = Ṽ1 over charging a price equal Ṽj. Hence,

18Here the following property is used: For every non-zero probability event s, it holds that

F (s) · E [v|s] + (1− F (s)) · E [v|¬s] = µ0,

where ¬s is the complementary event to s.
19To be precise, it is of course only possible to reach prices pB ≤ µ0 with this construction. However, it

is never an optimal action for the consumer to induce a price greater than µ0. If the consumer chooses a
purely noisy, that is uninformative, information structure, then the seller would set a price equal to µ0. The
consumer would always buy but obtain zero surplus – any information structure that induces an inclusive
price makes the consumer better off.
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by Proposition 1, there exists another information structure that makes the consumer better

off.

Proof of Theorem 1 (Efficient Trade).

Suppose not, that is, suppose that for some n ∈ N, there exists a consumer-optimal in-

formation structure π ∈ S(n) such that VE 6= ∅. W.l.o.g. assume that VE is a singleton

(Lemma 3), that is VE = {V1}. Consequently, it must hold that the seller charges the price

p = V2 = min V\{V1}. By Lemma 4 there exists an information structure π̃ that induces

the seller to charge a fully inclusive price, induces efficient trade, and yields the same sur-

plus for the consumer as the initial information structure π. Recall that the construction in

Lemma 4 of the information structure π̃, leads to R(Ṽ1) > R(Ṽj) for all j ≥ 2. That is, for

the newly constructed information structure π̃, the seller has a strict preference to charge the

fully inclusive price, Ṽ1. But in this case, Proposition 1 implies that there exist an n-signal

information structure that yields a strictly higher surplus for the consumer than the surplus

induced by π̃, which is also higher than the surplus induced by π. A contradiction.

Proof of Theorem 2 (Optimality of Coarse Perception).

The result is established by an indirect proof that is again constructive. The argument of

the proof proceeds as follows: Suppose that there exists some n ∈ N and a consumer-optimal

information structure π∗(n) that is not partitional. I construct an n-signal information struc-

ture that induces a strictly higher surplus for the consumer, contradicting the assumption

that the initial non-partitional information structure is consumer-optimal.

Suppose that π is a non-partitional consumer-optimal information structure, and let sk

be the highest signal realization for which the partitional property fails. That is, suppose

that there exists an index k ∈ {1, . . . , n} such that g(sk|v) ∈ (0, 1) for a set V̂k ⊆ [0, 1], with

non-empty interior int(V̂k) 6= ∅. As before, let Vk denote the support of F (·|sk).

Construction 3.

Step 1: (Adding the “missing mass” to the values in V̂k.)
Let sj < sk be a signal realization such that int (suppF (·|sj) ∩ suppF (·|sk)) 6= ∅. Define a

new information structure π̂ by

ĝ(sk|v) =

g(sk|v) + g(sj|v) for v ∈ Vk
0 otherwise,

(9)

ĝ(sj|v) =

0 for v ∈ Vk
g(sj|v) otherwise,

and

ĝ(sl|v) = g(sl|v) ∀ l 6= j, k.
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This construction adds “missing mass” to the values v ∈ V̂k. 20 The information structure π̂

is obtained from π by shifting masses across signal realizations. Hence, by construction, π̂ is

well-defined as an information structure.

For the construction in (9), ĝ(sk|v) ≥ g(sk|v) for all v ∈ [0, 1]. Moreover, the probability

that signal sk realizes increases, ĝ(sk) =
∫
[0, 1]

ĝ(sk|v)f(v) dv > g(sk), and the revenue that

the seller can extract by charging a price equal to the value estimate induced by signal sk

increases, R(V̂k) > R(Vk).

Step 2: (Re-leveling the seller’s expected revenue.)

The second step of the construction induces a “re-leveling” of the seller’s revenue. That is,

mass is taken off the lower part of the support Vk of F̂ (·|sk). For every i ∈ {1, . . . , n}, let

vi := minVi, the minimum of the support of F (·|si). Again one can assume that vi exists,

given that Vi ⊂ [0, 1] is bounded below and, moreover, {v} is a zero-probability event for all

v ∈ [0, 1].

The probability mass that was added to signal realization sk in Step 1 was taken from

signal realization sj. Now, for every

δ = (δj+1, . . . , δk, 0) with δl > 0 such that (10)

[vl, vl + δl] ⊆
(
Vl ∪

[
vl+1, vl+1 + δl+1

])
∀ l ∈ {j + 1, . . . , k},

it is possible to define a new information structure π̃ by:

g̃(sk|v) =

0 for v ∈ [vk, vk + δk)

ĝ(sk|v) otherwise,
(11)

g̃(sl|v) =


ĝ(sl|v) + ĝ(sl+1|v) for v ∈

[
vl+1, vl+1 + δl+1

)
0 for v ∈ [vl, vl + δl)

ĝ(sl|v) otherwise,

∀ l ∈ {j + 1, . . . , k − 1}, and

g̃(sj|v) =

ĝ(sj|v) + ĝ(sj+1|v) for v ∈
[
vj+1 + δj+1, vj+1

)
ĝ(sj|v) otherwise,

g̃(si|v) = ĝ(si|v) ∀i /∈ {j, . . . , k}.

This construction in illustrated in Figure 12.

For every sl with l ∈ {sj+1, . . . , sk}, Construction 3 increases the probability that signal

sl realizes for some high values, which increases the revenue that the seller could extract

by charging the price E [v|sl]. Construction 3 then takes probability mass off values in the

20Notice that it may happen that the construction yields ĝ(sk|v) = 1 for all v ∈ [0, 1], which would imply
that signal realization sk occurs with probability 1.
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0 1vk vk + δk

1

g(sk|v)

B

A

Vk

(a) Conditional probability of signal realization sk

0
vk−1 vk vk

1π :
sk−1 sk

0 1π̃ :
vk−1 + δk−1 vk + δk vk

sk−1 sk

(b) Supports of signal realizations under π and π̃.

Figure 12: Illustration of Construction 3. In (a), area A is the mass that is added to signal realization
sk in Step 1, area B is the probability mass that is taken off the lower part of the support of F (·|sk).

lower part of the support Vl, which again reduces the revenue that the seller could extract

by charging the price E [v|sl].
For a continuous distribution function, it is possible to find a δ that satisfies (10) such

that:

R(Ṽl) = R (Vl) ∀l ∈ {j + 1, . . . , k}. (12)

Claim 3. For any l ∈ {j+1, . . . , k} such that g̃l ≤ gl, the distribution of values in the support

of F̃ (·|sl) first-order stochastically dominates those in F (·|sl).

Indeed,

f̃(v|sl) =


f(v|sl) = 0 ∀ v ∈ [0, vl)

0 < f(v|sl) ∀ v ∈ [vl, vl + δl)

g̃(sl|v)f(v)
g̃(sl)

≥ g(sl|v)f(v)
g(sl)

= f(v|sl) ∀ v ∈ [vl + δl, 1] .

Since F̃ (·|sl) and F (·|sl) are both distribution functions, thus monotone increasing, and

satisfy F̃ (1|sl) = F (1|sl) = 1, it must be that F̃ (v|sl) ≤ F (v|sl) for all v ∈ [0, 1]. This

is exactly the defining property for first-order stochastic dominance and it follows that

F̃ (·|sl) ≥FOSD F (·|sl).

Claim 4. Construction 3 with δ such that (12) is satisfied yields:

(i)
∑n

m=l g̃m <
∑n

m=l gm,
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(ii) Ṽl > Vl, and

(iii)
∑n

m=l g̃mṼm ≥
∑n

m=l gmVm,

for all l ∈ {j + 1, . . . , k}.

For g̃k this is easy to see. Suppose that g̃k = gk. Then, by Claim 3, F̃ (·|sk) ≥FOSD F (·|sk),
which would imply:

Ṽk = Eπ̃ [v|sk] =

∫ 1

0

v · dF̃ (v|sk) >
∫ 1

0

v · dF (v|sk) = Vk,

and

R(Ṽk) = Ṽk

(
n∑

m=k

g̃m

)
> Vk

(
n∑

m=k

gk

)
= R(Vk).

R(Ṽk) is decreasing in the lower threshold, vk+δk. That is, in order to obtain R(Ṽk) = R(Vk),

one has to increase δk. It follows that g̃k < gk and (12) implies Ṽk > Vk.

The statements of (i) and (ii) of Claim 4 for l ∈ {j + 1, . . . , k − 1} follow by induction.

They are verified by applying the same arguments as for g̃k and Ṽk to
∑n

m=l g̃m and Ṽl using

that by (12) (
n∑

m=l

g̃m

)
Ṽl =

(
n∑

m=l

gm

)
Vl.

Part (iii) of Claim 4 is still left to show. Notice that the value of
n∑

m=l

gmVm is just the

expected value of the values in the supports of F (·|sm) for signals sl, . . . , sn (cf. Figure 12).

Hence, the result of (iii) follows directly from Construction 3.

The last step of the proof is to analyze the effect of Construction 3 for the signal re-

alization sj. The probability that signal sj realizes increases to one, for all values v ∈[
vj+1, vj+1 + δj+1

)
, and decreases to zero, for all values v ∈ V̂k. Whether this re-allocation of

probability mass results in an increase or decrease of the expected revenue that the seller can

extract by charging a price equal to the value estimate induced by the signal realization sj is

in general not obvious. The next claim establishes that it is decreasing for the construction

that satisfies (12).

Claim 5. Construction 3 with δ such that (12) is satisfied implies R(Ṽj) < R(Vj).

The construction only re-distributes mass among signals sl with l ≥ j. This implies that

n∑
m=j

g̃m =
n∑

m=j

gm.

That is, the probability of trade if the seller charges the price equal to the value estimate

induced by sj remains the same under the construction. Combined with the result of Claim 4,
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it follows that g̃j > gj.

The information structure π̃ satisfies Bayes consistency by construction. Construction 3

only re-allocates mass among signals sl with l ≥ j. Hence, it must hold that:

g̃jṼj +

(
n∑

k=j+1

g̃kṼk

)
= gjVj +

(
n∑

k=j+1

gkVk

)

⇒ Ṽj =
gj
g̃j︸︷︷︸
<1

Vj +
1

g̃j

((
n∑

k=j+1

gkVk

)
−

(
n∑

k=j+1

g̃kṼk

))
︸ ︷︷ ︸

<0

< Vj.

It follows that

R(Ṽj) = Ṽj

(
n∑
l=j

g̃l

)
< Vj

(
n∑
l=j

gl

)
= R(Vj),

which verifies Claim 5.

The case j > 1:

Under information structure π̃, R(Ṽj) < R(Vj) and R(Ṽl) = R(Vl) for all l 6= j. The initial

information structure was assumed to be consumer-optimal and hence, by Theorem 1 must

induce the price p = V1. It follows directly that under information structure π̃, the seller

charges price Ṽ1 = V1. However, under information structure π̃, the seller strictly prefers to

charge price Ṽ1 over charging the price Ṽj. It follows that, π̃ does not satisfy seller-indifference

and hence, by Proposition 1, there exists another information structure that yields a strictly

higher expected surplus for the consumer. A contradiction to the assumption that π is a

non-partitional consumer-optimal information structure.

The case j = 1:

Suppose that j = 1. Then, under the constructed information structure π̃, the seller does

not charge the fully inclusive price Ṽ1 anymore but prefers to charge a higher price, which

yields a higher expected revenue for him R(Ṽl) > R(Ṽ1) for all l > 1.

In this case, one can simply add mass from signal realization s2 to s1. This re-distribution

of mass increases the revenue that the seller can extract by charging a price equal to E [v|s1]
and decreases the revenue from charging the price E [v|s2]. Adding mass to s1 until reaching

the revenue level R(V̌1) = R(Ṽl), l > 2, results in R(V̌2) < R(V̌1). Hence, the seller strictly

prefers to charge the price V̌1 over price V̌2. By Proposition 1 there exists an information

structure that yields a strictly higher expected surplus for the consumer, which contradicts

the assumption that π is consumer optimal.

Proof of Theorem 3.

Consider any n ∈ N. From Theorem 1 it follows that if a consumer-optimal information
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structure exists, then it must induce efficient trade, that is, must be an element of S
(n)
1 . For

any π ∈ S(n)
1 , the consumer’s expected surplus is:

U(π) = µ0 − p∗(π).

Consequently, within the set S
(n)
1 , the information structure that induces the minimal price

is optimal. Define P ∗(n) := {p∗(π) : π ∈ S
(n)
1 }, the set of prices that are inducible as fully

inclusive prices by an n-signal information structure. Given that P ∗(n) ⊆ [0, 1], it is bounded

below, and hence inf P ∗(n) exists.

Existence of minP ∗(n) follows from Proposition 1 and Theorem 2. p∗ = minP ∗(n).

Consider any p ∈ [0, 1]. If p is inducible as a fully inclusive price, it must hold that

V1 = p and R(V1) = p. Every consumer-optimal information structure must be partitional

(Theorem 2). Hence, the lowest threshold v̂1 is determined by:

E [v|v ≤ v̂1] = p,

which implies g1 := F (v̂1).

By Proposition 1, it must hold that R(V2) = (1 − g1)V2 = R(V1) = p, which determines

the value of V2. Using Theorem 2, the threshold v̂2 is determined by

E [v|v̂1 ≤ v ≤ v̂2] ,

and the realization probability by g2 = F (v̂2). This procedure can be used to iteratively

determine the thresholds v̂1, . . . , v̂n−1. In order to establish Bayes consistence, set Vn :=

E [v|v ≥ v̂n−1], and gn := 1− F (v̂n−1).

The above construction is well-defined for every p ∈ [0, 1], given that one stops the

construction if at some point v̂k > 1. In this case, the price is certainly not the minimal

price that is implementable as a fully inclusive price. Notice that for every i = 1, . . . , n,

Vi(p) is strictly increasing in p. Moreover, since F is twice continuously differentiable, V (p)

is continuous in p. Now for every p ∈ [0, 1] such that Vn(p) ≤ 1 there are three possibilities:

a) R(Vn(p)) > R(V1(p)). In this case, p is not inducible as a fully inclusive price.

b) R(Vn(p)) < R(V1(p)). In this case, p is not the minimal price that is inducible as a

fully inclusive price.

c) R(Vn(p)) = R(V1(p)). This is the minimal price that is inducible as a fully inclusive

price, p = minP ∗(n), and the partitional information structure that was constructed in

the above construction is the optimal n-signal information structure π∗(n).

Proof of Proposition 2 (More Signals are Better).

The proof is by induction. For n ∈ N, let π∗[n] be the consumer-optimal information structure
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if the consumer is restricted to information structures with at most n signals.

Base case: It has already been established that for n = 2 the consumer-optimal informa-

tion structure makes use of both signal realizations.

Induction hypotheses: Suppose that the result was already proven for all m ≤ n. That

is, suppose that for m ≤ n, the consumer-optimal information structure uses all signal real-

izations, the consumer strictly profits from having access to information structures with more

signal realizations, U
(
π∗[m−1]

)
> U

(
π∗[m]

)
, and the equilibrium price is strictly decreasing

in the number of signal realizations, p∗m−1 > p∗m.

Induction step: (n→ n+ 1)

Consider the consumer-optimal n-signal information structure π∗[n],and let V
(n)
1 , . . . V

(n)
n be

the value estimates induced by this structure. By the induction hypothesis, the probability

mass of each of these value estimates is strictly positive.

To show: If the consumer has access to information structures with at most n + 1 sig-

nal realizations, the consumer-optimal information structure π∗[n+1] is an element of the set

S(n+1), and yields a strictly higher expected surplus than π∗[n] for the consumer, U
(
π∗[n+1]

)
>

U
(
π∗[n]

)
.

Let π̂ be an information structure with n + 1 signal realizations {s1, . . . , sn−1, ŝn, ŝn+1}
that is constructed by splitting the mass of the value estimate Vn, respectively of the signal

realization sn, between two signal realizations ŝn and ŝn+1. That is, let g(ŝn|v) + g(ŝn+1|v) =

g(sn|v) for all v ∈ [0, 1]. The construction can be chosen, such that21

Vn−1 < V̂n < Vn < V̂n+1, (13)

and R(Vn) > R(V̂n+1). If mass from Vn is split such that (13) is satisfied, it is always the

case that R(Vn) > R(V̂n), since the probability to sell g(sn) = g(ŝn) + g(ŝn+1) is the same

and V̂n < Vn. Under this construction, the revenue that the seller can extract by charging a

price equal to Vj remains the same for all j < n. That is, R(Vj) = R(V̂j), ∀ j < n.

It follows that the information structure π̂ does not satisfy the seller-indifference property.

Hence, by Proposition 1 there exists an information structure with at most (n + 1)-signals

that yields a strictly higher surplus for the consumer. Consequently, the consumer-optimal

information structure π∗[n+1] yields a strictly higher surplus than the expected surplus that the

consumer would obtain under π∗[n]. This implies that the surplus U(π∗[n+1]) is not achievable

21Notice that π∗[n] is a consumer-optimal information structure and thus partitional. Hence, the desired
construction can be obtained by choosing v̂n+1 slightly above the highest threshold vn and let the additional

signal realize whenever v ∈ [vn, v̂n+1]. This construction implies R(Vn) > R(V̂n+1), since the revenue that
the seller can extract by charging a price equal to the hightest value estimate is decreasing in the highest
threshold.
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with an n-signal information structure, which implies that π∗[n+1] has to make use of all n+ 1

available signal realizations.

The result on equilibrium prices follows directly from the observation that the expected

surplus of the consumer is strictly greater under π∗[n+1] than under π∗[n], and the result that

any consumer-optimal information structure induces efficient trade (Theorem 1). This implies

U∗n = µ0 − p∗n, and it follows that p∗n+1 < p∗n.

The following concept will be used in the proof of the next theorem.

Definition 1: Say that the sequence of finite consumer-optimal information structures

{π∗(n)}n∈N converges to the information structure π̃, if the sequence of distributions over

value estimates {F ∗(n)}n∈N induced by π∗(n) weakly converges to the distribution F̃ induced

by π̃. Weak convergence of distribution functions, respectively convergence of information

structures is denoted by:

F ∗(n) ⇒ F̃ , and π∗(n) ⇒ π̃.

Proof of Theorem 4 (Optimal Information Structure).

Claim 6. The sequence of finite consumer-optimal information structures π∗(n) converges.

The support of true valuations is I = [0, 1] ⊆ R, which is a compact metric space. Let

B(I) be the Borel algebra on I. Then, the space P(I) of probability measures on (I, B(I))

is metrizable by the Levy-Prokhorov metric. That is, since I is separable, weak convergence

of measures is equivalent to convergence of measures in the Levy-Prokhorov metric. P(I)

is compact in the weak topology, and hence sequentially compact. It follows that for the

sequence {F ∗(n)}n∈N induced by {π∗(n)}n∈N, there exists a convergent subsequence F ∗(nk) ⇒ F̃ .

Every finite consumer-optimal information structure π∗(n) induces the seller to charge a

fully inclusive price. Hence, the sequence {π∗(n)}n∈N induces a sequence of prices {p∗(n)}n∈N.

By Proposition 2, this sequence of prices is strictly decreasing in n. Moreover, every finite

consumer-optimal information structure is partitional and satisfies the seller-indifference

property (Theorem 2 and Proposition 1). Hence, the thresholds of the interval partition

that characterizes a finite consumer-optimal information structure are already determined

by the lowest threshold through the seller-indifference condition. It follows that the weak

convergence of distributions of values estimates is not only satisfied for a subsequence but that

the sequence {F ∗(n)}n∈N converges, F ∗(n) ⇒ F̃ . This establishes convergence of the sequence

of information structures, {π∗(n)}n∈N. Define π̃∗(∞) := lim
n→∞

π∗(n).

Convergence in the Levy-Prokhorov metric implies convergence of prices, that is, p∗n
n→∞−→

p∗(∞). Every cconsumer-optimal finite information structures satisfies the seller-indifference
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condition (Proposition 1), which implies

p∗(n) = E
[
v|v ≤ v̂1, (n)

]
= E

[
v|v̂1, (n) ≤ v ≤ v̂2, (n)

] (
1− F (v̂1, (n))

)
, (14)

where v̂1, (n), and v̂2, (n) are the lowest and next to lowest threshold of the interval-partition

that characterizes the information structure π∗(n). For a given v̂1, (n), the right-hand side of

(14) is increasing in v̂2, (n). This implies that lim
n→∞

v̂2, (n) = v̂1, (n), and

lim
n→∞

E
[
v|v̂1, (n) ≤ v ≤ v̂2, (n)

] (
1− F (v̂1, (n))

)
= v̂1, (n)

(
1− F (v̂1, (n))

)
.

It follows that, for the information structure π̃∗(∞), the lowest threshold v is given by

v := min{v̂ ∈ (0, 1] : (1− F (v̂)) v̂ = E [v|v ≤ v̂]}. (15)

The property that there exist a sweeping up region, directly follows from the feature that

all finite consumer-optimal information structures satisfy seller-indifference (Proposition 1),

and that this property is preserved in the limit.

It is still left to verify that π∗(∞) is indeed an consumer-optimal information structure.

Suppose not, that is, suppose that there exists an information structure π̃∗ that makes

the consumer strictly better off U(π̃∗) > U(π∗(∞)). Let {π̃(n)}n∈N be a sequence of finite

information structures that converges to π̃∗. This also implies that U(π̃(n))
n→∞−→ U(π̃∗). It

follows that there exists some ε > 0 such that for every nε ∈ N, there exists some n > nε such

that U(π̃(n))−U(π∗(n)) > ε. A contradiction to the assumption that π∗(n) is a consumer-optimal

information structure.

Proof of Corollary 1. It was already established in Proposition 2, that the consumer’s ex-

pected equilibrium surplus U∗(n) is strictly increasing in the number of signal realizations

n. Given that every consumer-optimal information structure induces efficient trade (The-

orem 1), the induced expected total surplus from trade T ∗(n) is constant in n. The total

surplus is split between the consumer and seller. It follows that the seller’s expected revenue

R∗(n) = T ∗(n) − U∗(n) is strictly decreasing in n.

In Theorem 4, weak convergence of the sequence of consumer-optimal finite information

structures has been established. A direct implication is

lim
n→∞

U(π∗(n)) = U(π∗(∞)) and lim
n→∞

R(π∗(n)) = R(π∗(∞)).
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B Evolution of Information Structures and Thresholds

with n

Reconsider the uniform prior example. The aim of this section is to identify the thresholds of

the consumer-optimal finite information structures and analyze how the optimal information

structures evolve with the number of signals.

Any consumer-optimal finite information structure is partitional (Theorem 2). A parti-

tional information structure with n signal realizations is determined by a vector of thresholds

a = (a0, a1, . . . , an) ∈ Rn+1, with 0 = a0 < a1 < · · · < an = 1. In the uniform prior case, the

value estimates and realization probabilities are given by:

Vi =
ai + ai−1

2
, and gi := ai − ai−1, ∀ i = 1, . . . , n.

Bayes consistency and feasibility are satisfied by construction.

The consumer-optimal information structure satisfies two more properties. It induces

efficient trade and yields seller-indifference. These two properties are satisfied, if and only if

V1 =

(
n∑
i=k

gi

)
Vk ∀ k = 2, . . . , n.

It follows that the threshold vector a ∈ Rn+1 defines the consumer-optimal n-signal infor-

mation structure π∗(n), if the thresholds satisfy the following system of equations:

ak =
a1

(1− ak−1)
− ak−1, for k = 1, . . . , n (16)

a0 =0 and an = 1.

The thresholds of the consumer-optimal information structure for n ∈ {2, 5, 10} are illus-

trated in Figure 5.

Observe that highest threshold an increases in n. This threshold is determined by

R∗(n) =
1− a2n

2
.

In the limit, the lowest threshold approaches 1
2
, yielding a value estimate and induced price

of 1
4
. The seller’s revenue also approaches this value from above, lim

n→∞
R∗(n) = 1

4
. For the

highest threshold an, it follows that it is bounded above by 1
2

√
2 and approaches this value

from below, lim
n→∞

an = 1
2

√
2.

C Special classes of information structures

In order to fix ideas, I briefly discuss three examples of special classes of information struc-

tures, partitional, noisy, and finite information structures.
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Example 5 (Partitional Information Structures):

A class of information structures that will be important in our analysis is the class of parti-

tional information structures. An information structure π =
(
S, {G(·|v)}v∈[0, 1]

)
is partitional

if there exists a function s : [0, 1]→ S such that for all s ∈ S and v ∈ [0, 1]

G(s|v) =

0 if s < s(v)

1 if s ≥ s(v).
(17)

An information structure is monotone partitional if Equation 17 is satisfied for an increasing

function s : V → S.

Examples:

1. For every v̂ ∈ (0, 1), the information structure πv̂ for which signal s1 realizes if v ∈ [0, v̂]

and s2 realizes if v ∈ [v̂, 1], is a monotone partitional information structure.

2. Given 0 < v̂1 < v̂2 < 1, the information structure for which signal s1 realizes if

v ∈ [0, v̂1] or v ∈ [v̂2, 1], and s2 realizes if v ∈ [v̂1, v̂2], is partitional but not monotone.

Partitional information structures only provide a coarse perception of the true state.

Example 6 (Noisy Information Structures):

A noisy information structure provides only a noisy signal of the true state. That is, for

a noisy information structure, the random variable that represents the signal is equal to

the state variable plus a random noise term, S = V + ε. A standard example is normally

distributed noise, ε ∼ N (0, σ2).

Example 7 (Finite Information Structures):

An information structure is finite, if it only has a finite number of signal realizations. That

is, π = (S, {G(·|v)}v∈V) is finite if |S| = n <∞.
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