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Abstract

In this paper I present a new method to identify and estimate the strength of social spillovers

in the classroom and the distribution of teacher and student e�ects. The identi�cation depends on

the assumptions of double randomization of teacher and students to classrooms and the linear in

means equation of test scores. The linear independent factor representation of test scores allows

one to obtain more e�cient estimates of the social multiplier by combining all the joint moments of

di�erent orders. I also present a theoretical model of social interactions in the classroom that yields

the linear in means equation for test scores. In this model, the teacher and students play a game in

which they choose how much e�ort to exert. The method I provide allows the estimation of more

features of the distribution of teacher and student e�ects than the mean and variance. Moreover, it

becomes straightforward to accomodate class size heteroskedastic teacher and student e�ects. For the

estimation, I use a minimum distance procedure that combines the information coming from di�erent

moments. Using the Tennessee Project STAR dataset, I �nd sizeable spillovers in the classroom.

Moreover, the distributions of teacher and student abilities seem to depart from the usual normality

assumption, and the student distribution exhibits a high degree of heteroskedasticity in class size.

Based on these estimates, I perform several counterfactual social planning experiments, comparing

who are the losers and winners under di�erent assignment rules. Assignment of good teachers to

large classrooms increases the average test scores, with students in the left tail of the distribution

bene�ting more than the rest. Assignment of good students to small classrooms increases the test

scores of students in the right tail of the distribution, while decreasing test scores of students in

the left tail of the distribution, with an overall increase in mean test scores. Mixing good and bad

students together results in a small e�ect on mean test scores, but reduces inequality.
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1 Introduction

This paper discusses the problem of identi�cation and estimation of spillovers in the context of the

classroom. This is a somewhat unique framework as it examines the interactions among students, and

between students and the teacher. The social interactions between all these agents determine the test

scores obtained by the students at the end of the year. It is an empirical fact that there are persistent

di�erences in mean test scores accross classes (Hanushek (1971), Rivkin et al. (2005)). A possible

explanation for this fact is that there is variation in teacher quality to the bene�t or detriment of all

students in the classroom. Another possibility is the presence of spillovers at the student level, which

lead to a virtuous circle by which having high-achieving peers increases one's own achievement.

Manski's (1993) seminal work described the potential estimation problems in this setting. He made

the distinction between endogenous e�ects (the behavior of the individual depends on the behavior

of the group), contextual e�ects (the behavior of the individual depends on the characteristics of the

group) and correlated e�ects (the behavior of the individual is similar to that of his peers because they

have similar unobserved characteristics). He also coined the term re�ection problem, which means that

we do not know whether the behavior of an individual changes because of a change in the behavior of

the group, or the other way around.

In this paper I provide some microfoundations to social interactions inside the classroom. In the

model I present, the teacher and students play a game in which they decide how much e�ort to exert, and

students' test scores are jointly determined by these e�ort choices. Students test scores are determined

by the ability of the student, the quality of the teacher, and the student and teacher levels of e�ort.

Students care about their own test scores, whereas teachers care about the test scores of all their

students. Both students and teachers �nd it costly to exert e�ort. The optimal choice of the teacher

and students' e�ort creates the existence of endogenous spillovers in the classroom. In this game, both

the teacher and students are heterogeneous. Students have di�erent levels of ability, which a�ects their

e�ort productivity. Quality of the teacher also a�ects their students' productivity, and di�erent teachers

have di�erent quality levels. Moreover, the teacher's quality and the students' abilities are allowed to

be di�erent in classrooms of di�erent size. If teachers or students behave di�erently in small or large

classrooms, then it is possible that class size has an impact on test scores.

The solution of the model leads to the linear in means equation. The test score of a student has a

linear factor representation that depends on the teacher's quality and the abilities of both himself and the

other students. The equation in levels, however, is not enough to identify the magnitude of the spillovers.

Because of the interactions among the students and with their teacher, the test scores of students in the

same classroom are not independent of each other. Rather, their test scores have a correlation structure

that is exploited for the identi�cation of the social spillovers. Thus, their covariances and joint higher

order moments allow us to get some restrictions on the strength of the spillovers.

In order to identify the social spillovers, conditional double randomization is required. This assumption

implies that teachers and students are randomly assigned into classes, conditional on class size. In other
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words, for a given level of enrollment in a school, the principal would �rst decide the size of each classroom

and then teachers would be randomly matched to these classrooms and students would be randomly

sorted into them. This double randomization, together with the linear in means equation of test scores,

allows us to write individual test scores as the sum of independent factors. Using this independence

assumption, I am able to identify the social multiplier by exploiting the covariance structure among

students' test scores and other higher order moments. Moreover, teacher's quality and student's ability

can vary if they are in classrooms of di�erent sizes. To address this issue, I propose three di�erent models

for the distributions of teacher and student e�ects: homoskedastic e�ects, heteroskedastic e�ects in class

type (small and large classrooms), and a random coe�cients model in class size.

By using moments of di�erent order, I am able to recover more features of the distributions of

teacher and student e�ects than the mean and the variance1. These features provide a more informative

description of these distributions. In the literature of economics of education, teacher e�ects are often

assumed to be normally distributed. A departure from this assumption is likely to have �rst order

implications on any policy analysis. Moreover, higher order moments can also provide overidentifying

restrictions for the social multiplier, resulting in an increase in the e�ciency of the estimation of this

parameter.

Combining all the joint moments of di�erent orders, I use a minimum distance estimator that gives

us estimates of the strength of the student interactions, as well as several moments of the distributions

of teacher and student's e�ects. By allowing for heteroskedastic e�ects at the class size level, I am able

to better assess the e�ect of class size on test scores. Moreover, the estimator accomodates missing

test scores in a simple way that maintains the covariance and higher order moment restrictions among

observed test scores. This avoids the necessity of adding correction terms to increase the observed

variances of the observed test scores.

The dataset used in this paper is the Tennessee project STAR. This dataset satis�es the assumptions

made in the identi�cation section that allow me to estimate the strength of social spillovers in kindergarten.

The results show the existence of strong spillovers. The estimate of the social multiplier is around 1.5,

which means that increasing the average ability of the students in a classroom would increase the average

test scores by 50% more than the compositional increase. Moreover, teachers also have a large e�ect,

and being assigned a teacher one standard deviation above the previous one would result in an increase

of test scores between 0.11 and 0.15 standard deviations. Finally, increasing the average ability of the

classmates of a student by one standard deviation results in a mean increase of test scores of around

0.45 standard deviations.

The results indicate that the distributions of teacher quality and student ability depart from the

usual normal assumption. The distribution of teacher e�ects is slightly skewed and platykurtic, i.e. its

tails are thinner than the normal distribution. The distribution of student e�ects is skewed to the left

and leptokurtic. Moreover, it exhibits a high degree of heteroskedasticity, with classrooms of smaller

1Notice that since the comonotonicity assumption does not hold in this framework, quantile regression would not yield
consistent estimates.
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sizes having a larger variance of student e�ects. This departure from normality casts some doubts on

the usual methods to correct for the estimation error in the teacher value-added literature. Moreover,

it would also have an impact on the distribution of test scores whenever there is sorting of students and

matching of teachers.

Using these estimates I conduct several counterfactual social planning experiments. Some of these

counterfactuals consist in changing the assignment rule of students and teachers to classrooms of di�erent

size. The teacher and student e�ects are drawn from a Skewed Exponential Power distribution2, whose

parameters are �tted to match the estimated moments of student and teacher e�ects. When good

teachers are assigned to large classrooms, the average test scores increase. Moreover, it reduces inequality

in the distribution of test scores, reducing the gap between the 90th percentile and the 10th percentile.

Positive assortative matching of students increases the test scores of students in the right tail of the

distribution, but at the cost of reducing the test scores of those in the left tail. Assigning good students

to small classrooms increases the mean test scores, suggesting that this policy has an e�ciency-equality

tradeo�. Negative assortative matching, i.e. perfectly mixing good and bad students has a small e�ect

on mean test scores, while at the same time decreasing the level of inequality. Finally, I also consider the

problem of choosing the optimal class size distribution under the assumption that the principal knows

the quality of the teachers in his school but has no information on the abilities of the students. Given

that class size has a negative impact on test scores but teacher's quality is a public good for all the

students in the classroom, there is a tradeo� between assigning the same number of students to each

teacher and assigning many students to the best teachers. As a result, the optimal class size distribution

depends on the distribution of teacher's quality.

1.1 Literature review

This paper is related to the literature of social spillovers inside groups, which focuses on the identi�cation

and estimation of the e�ect that an individual has on other individuals in the same group. In this

literature, groups are assumed to be independent units of analysis, and it is assumed that agents that

belong to di�erent groups do not interact among them. One way to approach the identi�cation of

these spillovers is by using excess variance analysis. Nye et al. (2004) and Graham (2008) used di�erent

variance analyses to identify spillovers in the classroom using the Tennessee STAR dataset. These papers

di�er from the work I present here in several dimensions. First, instead of using an estimator based on

the variances at di�erent levels3, the estimator presented here takes advantage of the independent factor

structure that uses information coming from all of the covariances. Second, it considers identi�cation

and estimation using higher order moments, which gives several overidentifying restrictions for the social

multiplier. Third, the framework presented here allows the moments of the distributions of both teacher

2This is a univariate distribution that depends on four parameters and �exibly accomodates moments of order 1 to 4.
A particular case of this distribution is the normal distribution.

3Nye et al. (2004) used the between school, between teacher-within school and within teacher variances, whereas
Graham (2008) based his estimator on the between and within class variances.
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and student e�ects to vary with class size at the same time. Fourth, it addresses the social planner

problem and has explicit policy implications on the e�ects that sorting and determining the distribution

of class sizes a�ects the distribution of test scores.

Another way to identify spillovers in the classroom is by having heterogeneous reference groups4.

Calvó-Armengol et al. (2006), Bramoullé et al. (2009), De Giorgi and Pellizzari (2010, 2012), Arcidiacono

et al. (2012), and Boucher et al. (2012), all took advantage of this to avoid the re�ection problem. The

source of identi�cation here is not the usage of variances and higher order moments, but the partial

overlap between the reference groups of each individual, which allows us to identify the strength of the

interactions by using only the equation in levels. Lee (2007) formalized this in econometric terms for

the case in which peer e�ects come from the exclusive mean for peers5. This method has the potential

drawbacks that the identi�cation requires variation in group size and it is weak if group sizes are large.

Bramoullé et al. (2009) extend this framework and consider general networks that have some overlap,

indicating which types of networks allow the identi�cation of the social spillovers6. The identi�cation

results here do not require the latter, and instead the inclusive mean can be used, i.e. the mean of peer

characteristics includes the self characteristic of the individual. Moreover, since I consider kindergarten

students, it is reasonable to assume that students interact only with their classmates.

This paper is not the �rst one that presents a model for the existnce of peer e�ects. Lazear (2001),

Calvó-Armengol et al. (2006), Cabrales (2011) et al., and Todd and Wolpin (2012) are examples of

papers that propose di�erent models that incorporate peer e�ects. Todd and Wolpin's (2012) model is

similar to the one I present in this paper. They consider that test scores are determined by a coordination

game in the classroom. In their model, the e�ort cost function is nonlinear, which leads to a multiplicity

of equilibria in which agents decide whether to exert a positive (optimal) amount of e�ort or none at all.

This model is much richer than the one I consider in this paper, and it also requires more data in order

to be able to estimate the model's parameters. Without such data it becomes impossible to estimate.

Their estimation is based on maximum likelihood, which also requires knowledge of the distribution of

the di�erent unobservables. The requirements to identify and estimate the spillovers presented here are

less than those of Todd and Wolpin (2012), since the only data needed are test scores and class sizes,

and it is only required that the latent variables have a �nite number of moments without imposing any

parametric assumption. This is done at the cost of having a more simpli�ed model that is not as rich

in terms of coordination outcomes. In my model, the emphasis is the role of the teacher as the channel

of peer e�ects, instead of the coordination role.

This paper also addresses the estimation of teacher e�ects. There is a very extensive literature on the

estimation of value-added models7. This literature focuses on estimating individual teacher e�ects on

4Reference groups are said to be heterogeneous if the set of peers who in�uence a student varies for students.
5The mean of a variable is said to be exclusive if it includes the value of that variable of all the peers in a group, but

it does not include the value of that variable of the individual.
6In all cases the requirements are that the social network is known to the econometrician and that there is some degree

of overlap between the networks of di�erent individuals.
7See, for example, Hanushek and Rivkin (2010).
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the students' gain in test scores from one year to the next. This setting requires multiple observations

of the same teacher, which is the case if the teacher is observed teaching over several years or if he

teaches several classes during a year. Such estimates su�er an estimation bias because of the incidental

parameter problem, and some authors (Kane and Staiger (2008), Chetty et al. (2011) have used Morris

(1983) method to correct for this bias. This method shrinks the estimates of the teacher e�ects, which

yields the Best Linear Unbiased Predictor of the teacher's impact on test scores. Moreover, if the

distribution of teacher e�ects is normal, then it can also be interpreted as the Bayesian posterior mean

of the teacher e�ect, but this may not be the case if we depart from this assumption. Rocko� (2004) also

assumes normality of teacher e�ects to estimate its actual distribution. This paper's framework does

not exactly �t this kind of model, because I use cross sectional data instead of a panel, which means

that there is only a measurement of students' performance at the end of the year without any previous

test scores. Moreover, the goal here is to estimate the distribution of teacher e�ects, not the individual

e�ect of each teacher. Consistent estimation of di�erent moments of the distribution of teacher e�ects

does not require several observations of each teacher's performance, and if the third and higher order

moments reject the normality assumption of teacher e�ects, they provide an argument against applying

the aforementioned shrinkage to the teacher e�ects estimates.

Value-added models are likely to yield biased estimates of teacher e�ects under certain conditions.

As Rothstein (2008) points out, �... each of the VAM's exclusion restrictions is dramatically violated.

In particular, these models indicate large "e�ects" of �fth grade teachers on fourth grade test score

gains.� Rothstein (2009) also pointed out that if assignment of students and teachers is not random,

then the estimates are prone to su�er from substantive bias. Despite this issue, Staiger and Rocko�

(2010) suggest that the information that can be learned from teacher's performance, if used to determine

which teachers to hire and which teachers to �re by principals, can increase test scores of students by

a magnitude comparable to a reduction of class size. There is also recent literature on the long term

impact of teachers, mostly regarding future labor market outcomes, like earnings or employment. Chetty

et al. (2011a, 2011b) and Chamberlain (2013) are three prominent examples in the estimation of long

term e�ects of teachers.

The identi�cation and estimation strategies used in this paper are similar to those of Bonhomme

and Robin (2009, 2010). They consider a framework in which a vector of variables observed by the

econometrician depends linearly on a �nite number of factors. Using variance and higher order cumulants

restriction they are able to identify several moments of the distribution of the latent factors. Moreover,

they also consider the identi�cation through characteristic functions, which does not require imposing

the existence of high order moments. The data I present here slightly departs from the assumptions they

make. In particular, in our framework groups have di�erent sizes, instead of having groups of a constant

size L. Moreover, some of the observations are missing. These two problems can be overcome because

the fact that several of the components are equally distributed, reducing the number of moments that

need to be identi�ed.
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2 A model of social interactions in the classroom

The model is a simultaneous game of complete information in which both the teacher and the students

observe the number of students in class, their individual ability and teacher's quality. Agents are rational,

in the sense that they maximize their utility function. Students utility function depends positively on

their own test scores and negatively on their cost function. Teachers utility function depends positively

on the test scores of all the students in their classroom and negatively on their cost function. The cost

function is di�erent for students and teachers, but it is homogeneous for each type, and it depends on

individual e�ort. The economic rationale for these assumptions is that teachers and students interact

during the whole year, so they get to know each other. Moreover, all agents put e�ort continuously,

since teachers have to prepare for every lecture and students have to work during the whole term.

Assume that individual test scores are determined according to the following Cobb-Douglas production

function

yic = exp (ζtc + ξic) e
φ
tce

β
ic (1)

That is, student i in class c's test score is a function that depends positively on teacher quality, ζtc,

their own student ability, ξic, teacher e�ort and their own student e�ort. The returns to scale in e�ort

do not depend on class size, but there are not necessarily constant returns to scale, i.e. φ + β 6= 1

in general. However, I assume that φ < 1 and β < 1. The implications of this assumption are that

teacher and student e�ort are complements in the production function but their marginal returns are

decreasing8.

The �rst component of the production function, exp (ζtc + ξic) represents teacher's quality and

student's ability. It is the way heterogeneity is introduced in this model9. In this model teacher's

e�ort and teacher's quality are public goods, as the teacher a�ects all students equally. Teacher's

quality and student's ability are allowed to depend on class size. Intuitively, both teachers and students

can have a di�erent level of productivity for di�erent levels of class size. For example, some teachers can

be more e�ective at teaching small classrooms than large classrooms, as the larger the classroom, the

more opportunities for disruptions there are. Similarly, students can perform di�erently in classrooms

of di�erent sizes. In the most general formulation, there would be potential outcomes for each di�erent

class size, which are drawn from an unknown distribution, ζtc ≡ ζtc (Nc) and ξic ≡ ξic (Nc), i.e. it would

be a random coe�cients model with multiple dummy variables, one for each class size. It is possible that

the distribution of potential outcomes varies for di�erent values of class size. This would fundamentally

a�ect the distribution of test scores, so it is important to know these distributions for the teacher and

8Mathematically, we have that ∂yic
∂eic

> 0, ∂yic
∂etc

> 0, ∂yic
∂ejc

= 0, ∂
2yic
∂e2ic

< 0, ∂
2yic
∂e2tc

< 0 and ∂2yic
∂eic∂etc

> 0.
9Another similar way to introduce heterogeneity would be to have a homogeneous production function for all students

and heterogeneous cost functions for teachers and students. The solution of the game would be very similar, although the
interpretation would be di�erent, since the parameters ζtc and ξic would have to be interpreted as teacher and students'
cost of exerting e�ort.
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student assigment problem. Moreover, this heterogeneity in teacher and student e�ects implies that the

variance and higher order moments of test scores are a function of test scores. This fact needs to be

taken into account to identify and consistently estimate the strength of the social spillovers, as well as

the conditional distributions of teacher and student e�ects.

Let students' utility function be linear in their test score. Students incur into some cost by exerting

e�ort. This cost is homogeneous for all individuals and is increasing in e�ort.

ui (yic, eic) = yic − eδic (2)

where yic is the test score of individual i and eδic is their cost function. In order to have a convex

maximization problem that yields a solution I impose δ > β
1−φ . Therefore, the marginal cost in e�ort

increases faster than its marginal product. Now assume that teachers have the following utility function

uc (yc
g, etc) = yc

g − etc (3)

That is, teachers utility is linear in the geometric mean of students' grades, and they incur a cost

that is also homogeneous for all teachers. Moreover, marginal cost is constant in e�ort. The use of

the geometric mean of students' grades is not the most common choice for a utility function. However,

since the model is solved in logarithms, and the logarithm of the geometric mean of the test scores is

the arithmetic mean of the logarithm of the test scores, using the geometric mean is convenient. This

particular utility function allows to obtain closed form solutions for the best response functions and the

optimal level of output.

The baseline model equations rule out the direct spillovers among students in the same classroom.

The channel for the spillovers in this model is teacher's e�ort. Given that agents behave rationally,

teachers are going to put e�ort according to the e�ort choices and ability of all the students in their

classroom. Since students optimal e�ort level is going to depend on teacher's e�ort, it follows that

students' e�ort and test scores are going to be indirectly in�uenced by their peers' e�ort and abilities.

Therefore, teachers ful�lls two roles in this model: they directly a�ect students test scores through their

quality and e�ort, and they allow for the existence of peer e�ects through the e�ort they optimally

exert. It is also relatively simple to generalize the production function such that it incorporates direct

peer e�ects, although it requires a slight modi�cation of the game. This is shown as an extension in

section 8.1.

2.1 Solution of the Model

This model is solved using standard game theoretic arguments. Start by obtaining students' optimal

e�ort level, given their individual ability, teacher's quality and conditioning on teacher's e�ort level
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e∗ic (ec) = arg max
e
exp (ζtc + ξic) e

φ
tce

β − eδ

Taking the derivative with respect to e, one gets the �rst order conditions for this problem. Notice

that we are facing a coordination game, since there exist two possible Nash equilibria. In the �rst one,

every student exerts no e�ort. To solve for the second Nash equilibrium, it is convenient to work with

the logarithm of these foc. After some algebra, we get

log (eic) =
1

δ − β
log

(
β

δ

)
+

1

δ − β
(ζtc + ξic) +

φ

δ − β
log (etc) (4)

The best response function indicates that the optimal e�ort level of a student depends positively

on teacher's quality, student's ability and teacher's e�ort, which follows from the fact that teacher

and student e�ort are complements in the test score production function. Notice, however, that other

students' e�ort level and ability do not a�ect the best response function of the student. This is because

there are no direct spillovers among students. The best response function for the teacher is obtained

after solving for the maximum in the following problem:

e∗tc

(
{ejc}Ncj=1

)
= arg max

e
exp

(
ζtc + ξc

)
eφΠNc

j=1e
β
Nc
jc − e

Again, we take logs of the foc and solve for teacher's log e�ort, obtaining

log (etc) =
1

1− φ
log (φ) +

1

1− φ
(
ζtc + ξc

)
+

β

1− φ
log (ec) (5)

The best response function of teacher's e�ort shows that they exert more e�ort the higher their

quality, the higher the average ability of their students and the higher their e�ort. This best response

function is the channel for the spillovers. Since the teacher cares for all their students, he exerts e�ort

according to ability of all of them. Moreover, the teacher exerts more e�ort the more e�ort their students

put, which implies that teacher's e�ort is a public good from which all students bene�t. Now combine

the best response function of the teacher and all the students to obtain the optimal e�ort level for each

individual, which are the actions taken in this Nash equilibrium

log (e∗c) =
δ − β

δ (1− φ)− β
log (φ) +

β

δ (1− φ)− β
log

(
β

δ

)
+

δ

δ (1− φ)− β
(
ζtc + ξc

)
(6)
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log (e∗ic) =
φ

δ (1− φ)− β
log (φ) +

1− φ
δ (1− φ)− β

log

(
β

δ

)
+

1

δ (1− φ)− β
ζtc +

φδ

(δ (1− φ)− β) (δ − β)
ξc +

1

δ − β
ξic (7)

The optimal student e�ort levels already take into account the indirect spillovers that there are

among them, and thus it depends on four di�erent terms: a constant, teacher's quality, the average

ability of the students in the classroom and their own individual ability. Teacher's optimal e�ort level

is similar, and it depends on a constant, his own quality and the mean of students' ability. Graphically,

this can be seen in �gure 1

Figure 1: Best Response functions and Nash Equilibrium
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The straight line represents the best response function of the student, and the dotted and slashed

lines represent the best response function of the teacher for two levels of e�ort of the rest of students

in the classroom. The Nash Equilibrium is the point at which they intersect. Both response functions

are positively sloped, i.e. student and teacher e�ort are complements. However, notice that the slope is

bigger for the student reaction function. This is because the teacher's best response function depends

linearly on the average of the e�ort of all his students. Thus, holding the e�ort of the rest of the

students �xed, the amount of e�ort exerted by the teacher varies little in response to an increase in the

e�ort of the student. If the rest of the students increase their e�ort, the best response function of the

student remains the same, while the best response function of the teacher shifts to the right. In �gure 1

this is depicted by moving from the dotted line to the dashed line. The student exerts more e�ort

because the teacher increased e�ort, showing that the spillover is indirect and it operates through the

teacher's reaction function. Plugging the optimal e�ort levels into the production function, we obtain

the individual test score in equilibrium

log (yic) = ζtc + ξic + φlog (e∗tc) + βlog (e∗ic)

=
φδ

δ (1− φ)− β
log (φ) +

β

δ (1− φ)− β
log

(
β

δ

)
+

δ

δ (1− φ)− β
ζtc +

φδ2

(δ (1− φ)− β) (δ − β)
ξc +

δ

δ − β
ξic (8)

The test score of student i in class c in equilibrium is determined in equation (8). It depends

positively on teacher's quality, ζtc, the average ability of the students in class c, ξc, and the own

individual ability, ξic. This expression is long and not very convenient to work with. Moreover, as it

is shown in the identi�cation section, not all the primitive parameters of the model are identi�ed. In

particular, (β, φ, δ) cannot be identi�ed, and as a result the distributions of ζtc and ξic are identi�ed up

to scale. Therefore, it is convenient to rewrite equation 8 as

log (yic) = αc + (γ − 1) εc + εic (9)

where

αc ≡
φδ

δ (1− φ)− β
log (φ) +

β

δ (1− φ)− β
log

(
β

δ

)
+

δ

δ (1− φ)− β
ζtc

εic ≡
δ

δ − β
ξic
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γ ≡ δ − β
δ (1− φ)− β

That is, I rede�ne the teacher e�ect10 as the sum of the constant and teacher's quality, scaled by
δ

δ(1−φ)−β ; the student e�ect is rede�ned as the student ability, scaled by δ
δ−β ; and gamma is interpreted

as the social multiplier, i.e. by how much the student test scores increase if we increase the average

student e�ect by one unit. The latter variable was de�ned by Manski (1993) and it measures the

strength of the social spillovers, which are generated by the endogenous e�ects. To see this, consider the

case in which γ = 1. This means that increasing mean student ability by one would lead to an increase

in mean outcome of one. The whole e�ect is a composition e�ect. On the other hand, if γ > 1, then

it follows that an increase in mean student ability by one would lead to an increase in mean outcome

larger than one. The reason for this is the existence of social interactions that create a virtuous circle,

by which every student bene�ts from their peers, and hence the increase in mean outcome is due to both

compositional reasons and positive spillovers11. By inspecting the expression of the social multiplier in

terms of the model primitives, we can see that it is equal to one as long as φ = 0. This is the case in

which teacher's behavior plays no role, and the production function simpli�es to yic = exp (ζtc + ξic) e
β
ic.

This implies that teacher's strategic choice of e�ort, which depends on all students' abilities, has no

e�ect on students' outcomes and therefore students do not bene�t from having better peers. Notice

that even in this case students bene�t from teacher's quality, ζtc. If φ < 1, better peers have a positive

spillover through the increase in teacher's optimal e�ort.

2.2 Multiplicity of equilibria

In the previous section I noted that there are two Nash equilibria that solve the previous model.

Therefore, one could think of this game as a coordination game. In the �rst equilibrium, all agents

put no e�ort. In the second equilibrium all agents put the optimal level of e�ort given by equations 6

and 7. This paper does not attempt to capture this feature. Todd and Wolpin (2012) have a richer

model whose main focus is the coordination game in the classroom. Their model also includes the

equilibrium in which no agent puts e�ort, to which they refer as the trivial equilibrium. As in their

paper, I rule out this equilibrium. One compelling reason for this is that if the model were correct, then

in classes in which this equilibrium occurred, everyone would have a zero in their test score, which is

not observed in the data. Therefore, I consider only the nontrivial equilibrium.

10In this model it can be interpreted as a mixture of teacher and classroom e�ects, since it is assumed that teachers are
always in the same classroom, making it impossible to distinguish between teacher speci�c e�ects and classroom speci�c
e�ects.

11This is a double edged sword, as decreasing peers quality leads to ampli�cation in the decrease of their test scores.
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3 Identi�cation

In this section I propose a way to identify both the social multiplier γ and several features of the

distributions of teacher and student e�ects. A policy maker interested in maximizing some function

of students' test scores, would not only require knowledge of the social multiplier, but also of the

distributions of teacher and student e�ects. The expected value and the variance of teacher's quality

and student's ability are two moments that are interesting for the policy maker. If the distribution

of teacher's quality and student's ability is not normal, then cumulants of order three and higher are

di�erent from zero. If that this case, any counterfactual experiment that takes assumes normality yields

inconsistent results. Since one of the goals of this paper is to do counterfactual analyses, it becomes

crucial to identify as many features of the distributions of teacher's quality and student's ability as

possible. In section 8.2 I present the identi�cation results of their characteristic functions. Since there

is a bijection between characteristic functions and probability density functions, it follows that the

distribution of these e�ects can be identi�ed under some conditions.

The model presented in section 2 accomodates any correlation among students abilities, teacher

quality and class size, which can happen if there is sorting of students or teachers. For identi�cation

purposes this possibility is ruled out, and instead I limit the attention to the case in which there is

double randomization.

Assumption 1. Conditional double randomization, i.e.
(
αc, {εic}Nci=1

)
are jointly independent given

Nc.

Conditional double randomization means that conditional on class size, students are randomly sorted

into classes, and teachers are randomly matched to classes and thus teacher and student e�ects are

independent of each other. As a result, when doing variance or higher order moments analysis, the

calculations simplify a lot, since all the cross terms vanish. This is a powerful identi�cation assumption.

Mathematically, for any three functions f , g1 and g2 such that ∀N E [f (αc) |N ] <∞, E [g1 (εic) |N ] <∞
and E [g2 (εic) |N ] <∞, the following conditions hold:

E [f (αc) g1 (εic) |N ] = E [f (αc) |N ]E [g1 (εic) |N ]

E [g1 (εic) g2 (εjc) |N ] = E [g1 (εic) |N ]E [g2 (εic) |N ]

3.1 Identi�cation of the �rst moment

The �rst moment alone is not able to identify the social multiplier. Equation 9 requires some normalization

in order to be able to identify the expected value of the teacher e�ect. If student e�ect is normalized to

zero, then the conditional expectation of test scores equals the conditional expectation of teacher e�ect.
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E [log (yic) |Nc] = E [αc + (γ − 1) εc + εic|Nc]

= E [αc|Nc] (10)

3.2 Heterogeneous e�ects

In section 2 I brie�y introduced the notion of potential outcomes in teacher's quality and student's

ability. I consider three di�erent models for the distribution of teacher and student e�ects, conditional

on class size. The baseline model assumes that these e�ects are homoskedastic in class size, i.e. these

distributions are the same for all class sizes. In the other two models these e�ects are heteroskedastic.

The �rst one allows the distributions to be di�erent for small and large classrooms12. Mathematically,

it can be represented as

αc = α0c1 (small) + α1c1 (large)

εic = ε0ic1 (small) + ε1ic1 (large)

In terms of the model primitives, it means that teachers are endowed with the vector (ζ0tc, ζ1tc) and

only one of the two is observed. Thus, this is a potential outcome model that allows teachers to be

better suited at teaching in small than in large classes, or the other way around. If teachers could be

observed both in large and small classes, one could be able to make inference on the covariance between

α0c and α1c, but this is not the case. Each teacher receives only one treatment, and just the marginal

moments can be identi�ed. Hence, we have V ar (α0c) and V ar (α1c), which in general are di�erent.

Similarly, students are endowed with (ξ0ic, ξ1ic) and I can identify V ar (ε0ic) and V ar (ε1ic). Under this

assumption, higher order cumulants have a similar structure, having two di�erent cumulants, one for

each class type. Alternatively, the second model is a random coe�cients model in class size, i.e.

αc = α0c + α1cNc

εic = ε0ic + ε1icNc

where the pairs (α0c, α1c) ∼ Fα and (ε0c, ε1c) ∼ Fε and they are independent of class size by

assumption 2. In this model, the variance is a polynomial of order two of class size. This model is not

as general as one that allows teacher and student e�ect to have a potential outcome for each value of

12Later in section 5 the precise meaning of large classroom is de�ned.
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class size. For expositional purposes, consider a teacher. This model assumes that teacher e�ect varies

with class size monotonously, either increasing if αc > 0 or decreasing if αc < 0. However, di�erent

teachers get di�erent draws of (α0c, α1c), which means that some are better suited to teach in large

classes than in small classes and the other way around. This model provides a parsimonious way to

capture heterogeneity in teacher and student e�ects at the class size level.

3.3 Identi�cation of the variance

The conditional double randomization assumption allows us to identify the variance of teacher and

student e�ects, together with the social multiplier. To see this, consider a classroom of size Nc and

the test scores of students i and j. Denote by σ2
α (Nc), σ

2
ε (Nc), σαε (Nc) and σεε (Nc) the conditional

variance of teacher e�ect, the conditional variance of student e�ect, the conditional covariance between

teacher and student e�ects and the conditional covariance between the student e�ects of two di�erent

students, respectively. In order to simplify notation, de�ne ỹic ≡ log (yic) − E [log (yic) |Nc]. Similarly

to Graham (2008), the covariance of the test scores of students i and j, conditional on class size is given

by

Cov (ỹic, ỹjc|Nc) = σ2
α (Nc) +

[
γ2 − 1

Nc
+ 1 (i = j)

]
σ2
ε (Nc)

+ 2γ (Nc − 1)σαε (Nc) +

[(
γ2 − 1

)
(Nc − 1)

Nc
+ 1 (i 6= j)

]
σεε (Nc)

= σ2
α (Nc) +

[
γ2 − 1

Nc
+ 1 (i = j)

]
σ2
ε (Nc)

since by double randomiztion σαε (Nc) = σεε (Nc) = 0. Denote by ΣY,Nc the 2 dimensional array

(matrix) that contains all the covariances of vector of test scores in classroom c. De�ne vech (·) as

the operator that transforms an array into a vector without repeated elements13. For the variance, the

transformed vector would be one of dimension (Nc+1)Nc
2 , which would have the Nc variance terms and

the Nc(Nc−1)
2 distinct covariance terms. The following equality holds

ω2
Y,Nc ≡ vech (ΣY,Nc) = Λ2 (γ;Nc)D2 (αc, εic|Nc)

where D2 (αc, εic|Nc) ≡ (V ar (αc|Nc) , V ar (εic|Nc))
′ and Λ2 (γ;Nc) is a known (Nc+1)Nc

2 × 2 matrix

that depends on the social parameter. ω2
Y,Nc

is the vector that contains all the distinct variance and

covariance terms of the vector of test scores of classroom c, and it is expressed as a linear combination

of the variances of αc and εic.

13See appendix C for further details.
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Depending on the model, the variances of teacher and student e�ects, conditional on class size,

are constant for all class sizes (homoskedastic model), are di�erent for small or large classes (class

type heteroskedasticity) or they are a polynomial of order 2 in class size (random coe�cients model

in class size). Let H denote the distinct number of class sizes, i.e. the cardinality of the support

of the distribution of class sizes, which I assume to be �nite. The total number of moments is

2H. Therefore, one can estimate at most 2H − 1 of the conditional variances, since the remaining

moment identi�es the social multiplier. This implies that in general it is not possible to identify all

the 2H + 1 parameters of the model if the conditional variances were all di�erent and they had no

structure. The homoskedastic model reduces the number of parameters to 3, (γ, V ar (αc) , V ar (εic)).

The class type heteroskedastic model depends on 5 parameters, (γ, V ar (αc|type) , V ar (εic|type)) for

type = {small, large}. Finally, the random coe�cients model in class size depends on 7 parameters,

(γ, V ar (α0c) , V ar (α1c) , Cov (α0c, α1c) , V ar (ε0c) , V ar (ε1c) , Cov (ε0c, ε1c)). As long as H ≥ 4, all

these parameter are identi�ed.

3.4 Identi�cation of higher order cumulants

The covariances are not the only moments that can be used for the identi�cation of the social multiplier.

Higher order moments are functions of the social multiplier and the moments of teacer and student

e�ects. As long as these moments are �nite and the distribution of teacher and student e�ects are

not normal14. If the distributions of the teacher and student e�ects are not normal, then the third

moments and beyond o�er several overidentifying restrictions for the social multiplier. Thus one

could adduce e�ciency reasons for the usage of higher order moments in the estimation of social

interactions. Moreover, another potentially important reason to do this kind of analysis is the estimation

of distributional e�ects beyond the mean and the variance. This spillovers model does not satisfy the

usual comonotonicity restrictions necessary for quantile regression estimation, which prevents us from

going in that direction. As a result, knowledge of a few more moments of the distribution of student

and teacher e�ects would allow the policy maker to know more about the distributional impact of a

particular policy. However, although in principle it is feasible, it is not a very good idea to estimate

very high order moments. The amount of noise of a sample moment greatly increases as we increase

the order, requiring increasingly more data in order to be able to accurately estimate those moments.

Moreover, moments one to four are usually well interpreted, but the interpretation of moments of order

�ve or greater is more di�cult. Therefore, in this paper I consider identi�cation and estimation using

moments up to order 4, but this could in principle be generalized to even higher order moments.

The most convenient way to use higher order moments is to use cumulants, which are functions

that characterize the distribution of the random variable. There is a bijection between cumulants and

moments, so there is no loss of information by using the former. Moreover, given the linearity of

equation 9 and the conditional double randomization, working with cumulants becomes very tractable.

14The identi�cation results of this section as long as some of the cumulants of the distributions of teacher and student
e�ects are di�erent from zero, which is the value for all cumulants of order 3 or greater when the distribution is normal.
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The identi�cation results are based on Bonhomme and Robin (2009). In their framework they consider

a vector Y that has expected value zero and their second and higher order cumulants (potentially)

di�erent from zero. In the model, test scores can have non-zero mean, which moreover can vary for

di�erent values of class size. By substracting the conditional mean of the test scores from the actual

test scores, the resulting vector of demeaned test scores is used to identify the second and higher order

cumulants.

Consider the vector containing all the demeaned test scores of the students in class c, Yc. Also de�ne

the vector Xc as Xc ≡ (αc, ε1c, ..., εNc)
′. Then, we can write Yc as a linear function of Xc

Yc = Λ (γ;Nc)Xc (11)

where Λ (γ;Nc) ≡
(
ιNc , INc + γ−1

Nc
ιNcι

′
Nc

)
is aNc×(Nc + 1) matrix known up to the social multiplier,

γ, IN is the identity matrix of dimension N and ιN denotes a vector of ones of dimension N . Each

of the rows of the matrix Λ (γ;Nc) contains the contribution of the teacher and students e�ects to the

test score of a student. Assumption 1 is very strong, as it implies that all the components of vector

Xc are jointly independent. Hence, fully using this strength, the characteristic function of Yc can be

expressed as the product of Nc + 1 di�erent characteristic functions. Notice that although students are

iid, the di�erent arguments of the characteristic function can be di�erent, so the student characteristic

functions are the same but evaluated at a di�erent value, so it is not possible to take common factor.

The same is true for the cumulant generating function (CGF) of Yc, which is a sum of Nc + 1 terms.

However, the Rth cumulant of Yc can be expressed as the sum of two terms, one of which is the Rth

cumulant of teacher e�ect and the other one is the Rth cumulant of student e�ect, multiplied by a

function of the social multiplier. Consider the following analysis conditional on class size, which allows

us to accommodate heterogeneity at the class size level. Start by rewriting the characteristic function

of Yc as the product of the characteristic functions of teacher and student e�ects

ϕYc (t|Nc) = E
[
exp

(
i
(

ΣNc
j=1ỹjctj

))
|Nc

]
= ϕα

(
ΣNc
j=1tj |Nc

)
ΠNc
j=1ϕε

(
tj +

γ − 1

Nc
ΣNc
h=1th|Nc

)
(12)

In order to obtain the CGF of Yc, which I de�ne as gYc , simply take logarithms to both sides of

equation 12, and it is a linear function of the CGF of teacher and student e�ects, which I de�ne as gα

and gε, respectively

gYc (t|Nc) = gα

(
ΣNc
j=1tj |Nc

)
+ ΣNc

j=1gε

(
tj +

γ − 1

Nc
ΣNc
h=1th|Nc

)
(13)
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Let i, j, h and k denote students of class c. By taking the Rth derivative of the CGF with respect

to the di�erent components of the vector t and evaluating at t = 0, we can obtain the joint cumulants

of the test scores. Since we are computing the joint cumulants, these are di�erent from the normal

cumulants. For example, the variance of ỹic is in general di�erent from the covariance between ỹic and

ỹjc, and for the rest of the cumulants this is similar. The variance case was seen in section 3.3, so I skip

this case and go straight into the third and fourth order cumulants.

κ3 (ỹic, ỹjc, ỹh|Nc) = κ3 (αc|Nc)

+

[
(γ − 1)2 (γ − 2)

N2
c

+
γ − 1

Nc
(1 (i = j) + 1 (i = h) + 1 (j = h)) + 1 (i = j)1 (i = h)

]
κ3 (εic|Nc)

κ4 (ỹic, ỹjc, ỹh, ỹk|Nc) = κ4 (αc|Nc)

+

[
(γ − 1)3 (γ − 3)

N3
c

+
(γ − 1)2

N2
c

(1 (i = j) + 1 (i = h) + 1 (i = k) + 1 (j = h) + 1 (j = k) + 1 (h = k))

+
γ − 1

Nc
(1 (i = j)1 (i = h) + 1 (i = j)1 (i = k)

+ 1 (i = h)1 (i = k) + 1 (j = h)1 (j = k))

+ 1 (i = j)1 (i = h)1 (i = k)]κ4 (εic|Nc)

In words, each of the elements of the third and fourth order joint cumulants of Yc can be expressed

as the sum of the cumulant of teacher e�ect and the cumulant of student e�ect, multiplied by a number

that depends on the social multiplier, class size and the di�erent permutations of (i, j, h) and (i, j, h, k),

respectively. The second cumulant has two di�erent permutations, either i = j or i 6= j, but the third and

fourth order cumulants have more. In particular, the third cumulant has �ve di�erent permutations15

and the fourth cumulant has eighteen di�erent permutations. Moreover, the joint cumulants of order R

are expressed as an array of order R, i.e. for the second order it is a matrix, for the third order it is an

array of order three, which can be geometrically interpreted as a cube with N3
c di�erent cells, and for

the fourth order it is an array of order four whose geometrical interpretation is complicated. This array

has N4
c di�erent cells, one for each of the di�erent combinations of (i, j, h, k).

Working with arrays of di�erent order is problematic, so instead of that, transform these arrays into

vectors. These vectors of the di�erent cumulants of Yc are a linear function of the cumulants of the

15i = j = h, i = j 6= h, i = h 6= j, j = h 6= i and i, j, h all di�erent.
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teacher and student e�ects. Thus, they can be represented as the product of a matrix, which is known

up to the social multiplier, γ, and a vector composed of the cumulants 2 to 4 of αc and εic. Also notice

that these arrays have repeated information, as cross terms appear repeatedly. For example, if we have

a variance covariance matrix, it is satis�ed that the element (i, j) is the same as the element (j, i). Thus,

we would like to avoid having those repeated terms in the vector used for estimation.

More generally, if we consider cumulants of order R, the vector resulting from applying the operator

vech to the array of order R is a vector of dimension

(
Nc +R− 1

R

)
. Similarly, de�ne ΓY,Nc and ΩY,Nc

as the 3 and 4 dimensional arrays that contain all the third and fourth joint cumulants of vector Y .

This representation is very convenient and easy to combine with other cumulants that can be similarly

represented in vector form. For the third and fourth cumulants, we have the following two restrictions

ω3
Y,Nc ≡ vech (ΓY,Nc) = Λ3 (γ;Nc)D3 (αc, εic|Nc)

ω4
Y,Nc ≡ vech (ΩY,Nc) = Λ4 (γ;Nc)D4 (αc, εic|Nc)

where D3 (αc, εic|Nc) ≡ (κ3 (αc|Nc) , κ3 (εic|Nc))
′ and D4 (αc, εic|Nc) ≡ (κ4 (αc|Nc) , κ4 (εic|Nc))

′,

and the Λi (γ;Nc) matrices are de�ned in the appendix. In the previous section I presented three

di�erent types of modeling teacher and student e�ects. In the �rst case, the e�ects are homoskedastic

in class size, i.e. their distributions are the same for all class sizes. It follows that there is only one

cumulant of each order for teacher and student e�ects. In the second case, the distribution are the same

for small and large classrooms, implying that the number of cumulants of each order for teacher and

student e�ects is two. Finally, for the random coe�cients model, the cumulant of order R of the teacher

and student e�ects is expressed as a polynomial of order R of class size16

κR (αc|Nc) = ΣR
r=0µα,R,rN

r
c

κR (εc|Nc) = ΣR
r=0µε,R,rN

r
c

The number of unknowns of this system of equations depends on the distributional assumptions on

teacher and student e�ects. If teacher and student e�ects are homoskedastic in class sizes, then the

total number of parameters using cumulants 2 to 4 is seven. If they are heteroskedastic at the class

16Notice that if the support of Nc is �nite, then it follows that the maximum number of terms that can be identi�ed
equals the cardinality of the support, i.e. the di�erent number of mass points in the support. If we denote the cardinality
of the support of Nc by H, then it follows that at most H − 1 cumulants can be identi�ed, as the Rth cumulant is a linear
function of the terms {Nr

c }Rr=0.
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type level, then the total number of parameters is 13. Finally, if they follow a random coe�cients model

in class size, then the total number of parameters is 25. If there are H distinct class sizes, then the

total number of moment restrictions is 10H. To see this, there are 2H for the variances, as there is a

variance and a covariance for each class size. For the third cumulants there are 3H di�erent moments,

since there are three types of third order cumulant for each class size17. For the fourth cumulants there

are 5H di�erent moments18. The social multiplier appears in all the equations, but the cumulants of

teacher and student e�ects appear only on the cumulants of test scores of the same order. Hence, if

these distributions are not normal, one could fully nonparametrically identify the variances of teacher

and student e�ects for each class size19.

3.5 Identi�cation when there are missing test scores

Throughout this section the maintained assumption was that all test scores are observed. However,

this is not true for the data used in this paper. Therefore, we need to take into account that the

number of observed test scores is smaller than the number of students in the class. This can be easily

accommodated using this framework. To see this, let N0c denote the number of students in a class

and N1c the number of students whose test scores are observed. Then, Yc is a vector of dimension

N1c, and Xc is a vector of dimension N0c. Similarly as before, we have Yc = Λ (γ;N0c, N1c)Xc, where

Λ (γ;N0c, N1c) =
(
ιN1c ,

(
IN1c , 0N1c0

′
N0c−N1c

)
+ γ−1

N0c
ιN1cι

′
N0c

)
. Most of the analysis remains the same,

but now the ωrY vectors are smaller, and the Λr matrix are also di�erent. Their exact form is shown in

appendix D.

4 Estimation

The �rst step is to estimate the equation in levels. As it was stated in the identi�cation section, I assume

a linear speci�cation for this equation. The residuals from this speci�cation are used to construct the

demeaned vector of test scores, which is used to construct the vector that is used in the estimation of

higher order cumulants. Call this residuals ŷic. The identi�cation results from section 3.4 allow us come

up with a minimum distance estimator that does not require such corrections. For class c, de�ne the

vectors ω̂2
Y,c, ω̂

3
Y,c and ω̂

4
Y,c as

ω̂2
Y,c ≡ vech

(
Σ̂Y,c

)
17All test scores are of the same student, two are of the same student and the other one is di�erent, or the three of them

are of di�erent students.
18All test scores are of the same student, three are of the same student and the other one is di�erent, two of them are

of the same student and the other two are of a di�erent student, two of the are of the same student and the other two are
of di�erent students, or the four of them are of di�erent students.

19Notice that in this case the social multiplier would be identi�ed by the higher order cumulants but not by the variance.
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ω̂3
Y,c ≡ vech

(
Γ̂Y,c

)

ω̂4
Y,c ≡ vech

(
Ω̂Y,c

)
where Σ̂Y,c, Γ̂Y,c and Ω̂Y,c are arrays of dimension 2, 3 and 4 respectively, with generic elements

Σ̂Y,c (i, j) = ŷicŷjc

Γ̂Y,c (i, j, h) = ŷicŷjcŷhc

Ω̂Y,c (i, j, h, k) = ŷicŷjcŷhcŷkc −
[
σ̂2
Y (i, j) σ̂2

Y (h, k) + σ̂2
Y (i, h) σ̂2

Y (j, k) + σ̂2
Y (i, k) σ̂2

Y (j, h)
]

where σ̂2
Y (l,m) =

(
1

ΣCc=1Nc
ΣC
c=1ΣNc

i=1ŷ
2
ic

)
1 (l = m)+

(
2

ΣCc=1Nc(Nc−1)
ΣC
c=1ΣNc−1

i=1 ΣNc
j=i+1ŷicŷjc

)
1 (l 6= m).

In words, the ω̂jY,c vectors contain all possible cumulant sample analogues combinations of j test scores

with repetition but without ordering them. For the variance, it would include all the Nc individual

variances and the Nc(Nc−1)
2 distinct covariances, and similarly for higher order cumulants. These vectors

are concatenated, creating a large vector, ω̂Y . Similarly, one can suitably concatenate the Λj,Nc and Dj

matrices creating the matrices Λ and D, so that for a given weight matrix, WC , the minimum distance

estimator is the solution to the following problem:

θ̂MD = arg min
θ

(ω̂Y − ΛD)′WC (ω̂Y − ΛD) (14)

where θ ≡ [γ, κ2 (αc) , κ3 (αc) , κ4 (αc) , κ2 (εic) , κ3 (εic) , κ4 (εic)]
′ under homoskedastic teacher and

student e�ects. Under heteroskedastic teacher and student e�ects, the vector θ is appropriately de�ned.

In particular, for the �rst case it includes κR (αc|small) and κR (αc|large) for the teacher cumulants

and similarly for the student cumulants. In the second model, they depend on {µα,R,r, µε,R,r}Rr=0. The

matrix Λ depends on γ and D depends on the rest of the parameters of vector θ.

Some comments on the choice of the weighting matrix are needed. Using the identity matrix is a bad

idea for at least two reasons. First of all, the vector ω̂Y has dimension ΣC
c=1

(
Nc + 1

2

)
+

(
Nc + 2

3

)
+(

Nc + 3

4

)
, which means that the higher the order of the moment, the higher the weight it receives

in the estimation. For example, if all classrooms were of size 18, the number of second, third and

fourth order cumulants for each class would be 171, 1140 and 5985, respectively. In relative terms,

21



the weight of the second cumulats would be approximately 2%, that of the third cumulants would be

approximately 16% and that of the fourth cumulants would be approximately 82%. A way to address

this problem is to weight each moment by the inverse of the number of cumulants of the same order,

i.e.

(
Nc +R− 1

R

)−1

. The second problem is that the higher the order of the cumulant, the noisier

it is. To address this problem, I follow Cragg (1997), which gives weights 1
2 ,

1
15 and 1

96 , to second,

third and fourth moments, respectively. These weights are proportional to the variance of the second,

third and fourth power of a standard normal distribution. Clearly, if the teacher and student e�ects

are not normally distributed, these weights are not optimal, but they can be considered the standard.

Such weighting matrix is diagonal. There is another option that has not been explored, which is using

the estimated optimal minimum distance weighting matrix. Although it has the most appealing large

sample properties, there are two compelling reasons why it shouldn't be used in this case. As Altonji

and Segal (1996) showed, using such matrix when the sample is small would result in biased estimates,

with a large bias when the distributions have thick tails. The second reason is computational feasibility,

as the dimension of the weighting matrix is very large because of the sheer number of permutations

that there are. A diagonal matrix can be used easily by weighting each observation separately, but a

non-diagonal matrix would simply require too much memory. I computed the standard errors by using

the robust White formula with clusters at the school level20.

Computationally speaking, the minimization problem is almost linear21, which means that it cannot

be solved in closed form. Thus, the optimum has to be solved numerically22. The fact that it is almost

linear means that for the simpler speci�cations, the optimum is computationally fast to obtain, but for

the speci�cations with many parameters, it is computationally more intensive.

5 Tennessee Project STAR dataset

This section brie�y explains the data that is used in the empirical section of this paper. The data comes

from the Tennessee Project STAR experiment. This dataset has been used in previous work to estimate

peer e�ects, like Graham (2008) or Chetty et al. (2011a). The goal of this experiment was to estimate

the impact that a class size reduction policy would have on students achievement. Coincidentally, the

conditions of this experiment are also very well suited for an analysis of classroom spillovers. The

design of the experiment was as follows, each school in the experiment would have three di�erent types

of classrooms: small, regular and regular with aide. Small classes had between 13 and 17 students, and

the other two types of classes would have between 22 and 25 students each, with the di�erence that

regular with aide classes would have full time teacher's aide, and regular classes didn't. In order to be

eligible for participation, school enrollment should be high enough to have at least one class of each

20In terms of computation, I did not have to de�ne the square matrix of dimension equal to the length of vector ω̂Y .
21The vector ω̂Y depends linearly on D, but the social multiplier interacts with all the terms of D, so this term makes

the minimization problem nonlinear.
22For the empirical application of this paper I used the Newton-Raphson algorithm.
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type.

Once class sizes were determined, students would be sorted randomly into class type, and teachers

would be randomly matched into class type. This implies that there was no fully random matching

of teachers into classes, but random matching into class types. However, many23 schools had only

enough students to accommodate one class of each type, forming a subset of schools for which there is

fully randomization. But even in the rest of schools, principals had little scope to assign teachers and

students within classrooms of the same type. Nye et al. (2004) and Graham (2008) results indicate that

using the full sample or only the subsample for which there is fully randomization led to very similar

estimates, so I use the full sample in my analysis.

The dataset consists of 6308 kindergarten students distributed across 325 classrooms. At the end

of the academic year, students took the Stanford Achievement Tests in Mathematics and Reading. No

measure of ability or pretreatment test scores is available. Finally, all the test scores are normalized to

have mean zero and variance one. Among those students who were enrolled, test scores are observed for

a majority of the students, but not all of them. Therefore, the actual number of student observations is

slightly smaller24. Under the assumption that the probability of having a missing value is independent

of the student, teacher and class characteristics, then there exists a correction for the variance term25.

Table 1 shows the absolute frequencies of the di�erent class sizes observed in the data. The class size

range goes from 11 to 28, with values 13 to 17 and 21 to 24 exhibiting the highest frequencies. As a

result, the between and within variances are much more precise for these class size values.

Table 1: Class sizes distribution
Class size 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

Number of classes 3 5 19 23 24 31 29 3 13 14 27 40 36 32 12 6 7 1

6 Results

6.1 First moment estimates

For the equation in levels, assume that the following moment condition holds, E [yic −X ′cθX |Xc] = 0,

where Xc is a vector whose components are school dummies, class size and a dummy for regular classes

with aide. Table 2 summarizes the results of this regression. The class size coe�cient is negative in all of

the two speci�cations, and it is signi�cant at a 99%, both for the mathematics test scores (1,2) and for

the reading test scores (3,4). School dummies are important insofar there are di�erences across schools,

since the randomization of teachers takes place within schools, and by including them we can capture

between school variation. Classes of regular size with aide have a negative coe�cient associated to them,

although this may be because this variable is correlated with large size classes. Our baseline speci�cation

2328 out of 79 schools in the sample.
245856 students have valid mathematics test scores and 5646 students have valid reading test scores.
25See appendix.
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includes school dummies that may capture di�erences in mean teacher quality across schools and also

regular with aide. The residuals coming from this speci�cation are used for the higher order cumulants

estimation in the next section.

Table 2: OLS estimates of the equation in levels
Mathematics Reading

(1) (2) (1) (2)
Class Size -0.022*** -0.021*** -0.023*** -0.020***

(0.003) (0.004) (0.003) (0.004)
Regular with aide - -0.026 - -0.053**

(0.027) (0.027)
School dummies X X X X

Standard errors in parentheses. *, ** and *** denote signi�cant
at the 90, 95 and 99 percent levels. Columns (1) and (2) report
the estimates of the mathematics test scores; columns (3) and (4)
report the estimates of the reading test scores.

6.2 Variance and higher order cumulants estimates

Three models are considered in this section. The �rst model assumes that the cumulants of teacher's

quality and student's ability do not depend on class size. The second model assumes that the cumulants

of teacher's quality do not depend on class size, but those of student's ability are di�erent for small and

large classes, i.e. those with class size smaller or equal than 17. Finally, the third model also assumes

that the cumulants of teacher's quality do not depend on class size, but student's ability is a random

coe�cient model in class size,εic = εic0 + εic1Nc
26. For the three models, I have three sets of estimates,

one which uses only the variances, another one that uses also the third order cumulants, and a �nal one

that also uses fourth order cumulants.

Regarding the weighting matrix, notice that for the mathematics test scores the dimension of the

vectors ω̂2
Y , ω̂

3
Y and ω̂4

Y are 58210, 418898 and 2425677, respectively, and for the reading test scores, their

sizes are 56764, 404545 and 2321956, respectively. This means that we are using almost three million

data points in the estimation. I weight each data point by the inverse of the number of data points of the

same order times the variance of the second, third and fourth power of a standard normal distribution,

i.e. 1
116420 ,

1
6283470 and 1

232864992 for second, third and fourth order cumulants of the mathematics test

scores, and 1
113528 ,

1
6068175 and 1

222907776 for second, third and fourth order cumulants of the reading test

scores. These weights mean that the majority of the information comes from the variances, and the

skewness and the kurtosis do not fully drive the estimates.

Tables 3 and 5 summarize some of the estimation results for the mathematics and reading test scores,

respectively. These tables show the estimates of the social multiplier, the standard deviation, the third

and the fourth cumulants of the teacher e�ect, which are assumed to be constant in class size. Whenever

26In section 3 I also considered the two di�erent types of heterogeneity at the class size levels for teacher e�ects. The
results when I consider heterogeneous teacher e�ects are shown in appendix F. When I include those, the estimates of the
social multiplier are below 1, which suggests that there is misspeci�cation. Therefore, they are not included in the main
text.
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Table 3: Variance and higher order teacher e�ect cumulants estimates, mathematics test scores

(1) (2) (3) (4) (5) (6) (7) (8) (9)

γ̂ 1.854*** 1.868*** 1.867*** 1.545*** 1.564*** 1.564*** 1.520*** 1.544*** 1.544***
(0.374) (0.395) (0.374) (0.299) (0.299) (0.300) (0.311) (0.311) (0.312)

σ̂α - - - 0.156 0.149 0.149 0.164 0.156 0.156
(0.109) (0.115) (0.116) (0.106) (0.113) (0.113)

κ̂3 (αc) - 0.007 0.007 - 0.008 0.008 - 0.008 0.008
(0.012) (0.010) (0.010) (0.010) (0.010) (0.010)

κ̂4 (αc) - - -0.076*** - - -0.075*** - - -0.076***
(0.009) (0.010) (0.010)

Standard errors in parentheses. *, ** and *** denote signi�cant at the 90, 95 and 99 percent levels. Speci�cations 1,
to 3 assume that moments of student e�ects are the same for all students (i.e., homoskedastic e�ects); speci�cations
4 to 6 relax this assumption and allow for two di�erent values for students in small and large classes; speci�cations 7
to 9 assume that student e�ect is a random coe�cient in class size, and thus their cumulants are polynomials in class
size.

the estimates of the variance are negative, the estimate of the standard deviation is an imaginary number

and is not reported in the tables. The tables with all point estimates are shown in appendix I. First

look at the mathematics results. In all the nine di�erent speci�cations, the social multiplier is larger

than one and signi�cant. Its estimated value is between 1.4 and 1.8, approximately. For comparison

with Graham (2008) estimates, the estimate of the square of the social multiplier ranges between 2.1.

and 3.4, which are similar to the estimates he obtained, which were between 2.3 and 3.5. For this

parameter, one hypothesis that is particularly relevant is H0 : γ = 1, i.e. absence of spillovers. Notice

that this is equivalent to test H0 : log (γ) = 0, the no signi�cance hypothesis for the logarithm of the

social multiplier. Table 6.2 shows the t-statistics of this test for each of the nine speci�cations. The null

hypothesis is rejected at the 95% con�dence level in all nine speci�cations. However, the t-statistic is

larger for the estimates that assume homoskedastic student e�ects. This is because the estimates of the

social multiplier are much larger for the estimates under that assumption than for the estimates obtained

when the student e�ects are assumed to be heteroskedastic. The estimates from the models that assume

that the cumulants of student's ability are constant, which are numbers 1 to 3 in the table, present all

of them a problem, since the estimated variance of teacher's quality is negative in all cases, and as a

result the standard deviation is imaginary. However, these estimates are not signi�cant. If we allow

the cumulants of student's ability to be di�erent for small and large classes (speci�cations 4 to 6), then

it becomes positive. The size of estimated standard deviations approximately 0.15, which means that

increasing teacher's quality by one standard deviation would increase the performance of all students by

0.15 standard deviations. These �gures are in line with the estimates from the literature, although not

signi�cant. The estimates of the third cumulant of the teacher e�ect is positive but insigni�cant in all

speci�cations, which suggests that the distribution is skewed to the left, like for example the log normal

distribution. The estimates of the fourth cumulant are negative and signi�cant, which suggests that the

distribution of the teacher e�ect is platykurtic, i.e. it has thinner tails than the normal distribution.

Figure 2 shows the estimates of the standard deviation, third cumulant and fourth cumulant of
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Table 4: Tests of signi�cance of log (γ), mathematics test scores

(1) (2) (3) (4) (5) (6) (7) (8) (9)

t-statistic 3.06 2.95 3.11 2.25 2.34 2.34 2.05 2.15 2.15

student e�ect for speci�cations 3, 6 and 9, for mathematics and reading test scores27. These �gures are

easier to interpret, since they point estimates are in some cases polynomials of high order, which makes

comparison across models di�cult. The standard deviation of the student e�ect is much larger than

the standard deviation of the teacher e�ect. Depending on the model, the estimates range between 0.8

and 0.9. The estimates in the models that allow this e�ect to be heteroskedastic in class size show a

decreasing pattern in the student's standard deviation as we increase class size. This fact, together with

the negative variance obtained in the models with homoskedastic student e�ect (speci�cations 1 to 3),

are pointing towards misspeci�cation. To get an idea of the magnitude of the spillovers, assume that we

change the classmates of a student, with the new classmates being on average one standard deviation

more able than the original ones. Under model 6, if the student is in a small classroom, this leads to

an increase of his mathematics test score of 0.48 standard deviations, while if he is in a large classroom

it leads to an increae of 0.45 standard deviations.

Similarly to the teacher e�ect, the third cumulant is positive and signi�cant, and similarly to the

variance, it varies across di�erent class sizes. The estimates are larger for smaller classes, which means

that the student e�ect is more asymmetric the smaller the class size. The fourth cumulant of the student

e�ect is di�erent from that of the teacher e�ect, since it is positive or very close to zero in most cases.

The student e�ect is more kurtotic in smaller classrooms, and in large classrooms the kurtosis is not

signi�cantly di�erent from that of the normal distribution.

In terms of e�ciency improvement, the results are not so good. Including the third or the fourth

cumulants in the estimation does not improve the precision of the estimates of the social multiplier, nor

of the teacher and student e�ects. Without a larger sample size one cannot draw the conclusion that

these higher order cumulants are not useful in improving the e�ciency of the estimates. Therefore, for

this sample size, the main motivation for including these cumulants is because they are important by

themselves.

27The �gures of the second and third cumulants for the other speci�cations are very similar.
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Figure 2: Estimates of the standard deviation, third and fourth cumulants of student e�ect, mathematics

test scores
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The dotted line represents the 95% con�dence interval. Standard errors computed for each class size

using the delta method.

The results for the reading test scores are quite similar in sign, although they are in general more

imprecisely estimated. The estimates of the social multiplier lie between 1.4 and 1.8, but these estimates

are noisier than those for the mathematics test scores. In fact, as table 6.2 shows, the null hypothesis of

no spillovers is accepted in the majority of the speci�cations that assume heteroskedastic student e�ects.

The standard deviation of the teacher is also smaller, between 0.09 and 0.15. The third moment is very

close to zero and statistically insigni�cant, which means that the estimated distribution is not very

asymmetric. The fourth cumulant again is negative, implying a platykurtic distribution. Regarding

the estimates of the student e�ect, the second moment are very similar to those estimated for the

mathematics test scores. The estimates of the third cumulant, however, are approximately three times

as large as those as the mathematics test scores, which implies that the distribution of student e�ect
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Table 5: Variance and higher order teacher e�ect cumulants estimates, reading test scores

(1) (2) (3) (4) (5) (6) (7) (8) (9)

γ̂ 1.791*** 1.776*** 1.733*** 1.553*** 1.545*** 1.505*** 1.466*** 1.471*** 1.427***
(0.413) (0.456) (0.416) (0.349) (0.341) (0.344) (0.371) (0.361) (0.364)

σ̂α - - - 0.091 0.095 0.116 0.132 0.130 0.147
(0.222) (0.203) (0.163) (0.152) (0.149) (0.129)

κ̂3 (αc) - 0.001 0.002 - 0.004 0.004 - 0.004 0.005
(0.014) (0.011) (0.011) (0.011) (0.010) (0.011)

κ̂4 (αc) - - -0.072*** - - -0.070*** - - -0.069***
(0.012) (0.012) (0.012)

Standard errors in parentheses. *, ** and *** denote signi�cant at the 90, 95 and 99 percent levels. Speci�cations 1,
to 3 assume that moments of student e�ects are the same for all students (i.e., homoskedastic e�ects); speci�cations
4 to 6 relax this assumption and allow for two di�erent values for students in small and large classes; speci�cations 7
to 9 assume that student e�ect is a random coe�cient in class size, and thus their cumulants are polynomials in class
size.

Table 6: Tests of signi�cance of log (γ), reading test scores

(1) (2) (3) (4) (5) (6) (7) (8) (9)

t-statistic 2.53 2.24 2.29 1.96 1.97 1.79 1.51 1.57 1.39

is more asymetric. Finally, the estimates of the fourth cumulant are much larger, and for most class

sizes signi�cantly di�erent from zero, although the estimates are not very precise. Hence the estimates

suggest that the student e�ect distribution is also leptokurtic for the reading test scores. It is worth

noticing that the patterns of the di�erent cumulants of the student distribution for the reading test

scores are also very similar to those found for the mathematics test scores, with smaller classes having

larger variance, skewness and kurtosis.

In terms of e�ciency gain by using more cumulants, the results are better than for the mathematics

test scores. Including the third cumulant in the estimation improves the e�ciency of the social multiplier

for the two heteroskedastic models, reducing the standard error from 0.349 and 0.371 to 0.341 and 0.361,

respectively. In relative terms it constitutes an improvement of around 2.5%. However, including the

fourth cumulant increases the standard error, reducing the e�ciency gain by about one third. On the

other hand, the standard error of the standard deviation of teacher e�ect gets signi�cantly smaller

by including the third and fourth cumulant, with gains of about 25% and 15% for each of the two

heteroskedasticity models. For the estimates of the student cumulants, including extra cumulants in

the estimation does not reduce the standard errors.
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Figure 3: Estimates of the standard deviation, third and fourth cumulants of student e�ect, reading

test scores
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The dotted line represents the 95% con�dence interval. Standard errors computed for each class size

using the delta method.

6.3 Goodness of �t

In order to compare the �t of the di�erent models, one possibility is to compare the value attained

of the objective function at the minimum, for each of the three models considered. This comparison

requires that the objective function be the same, i.e. it is possible to compare models 3, 6 and 9 because

they use cumulants two to four in the estimation, but it is not possible to compare models 7, 8 and

9 because the objective function is the same. Table 7 shows the results. For the mathematics test

scores, the model with class type heteroskedasticity for student e�ects achieves the smallest value of the

objective function of all three models, irrespective of how many cumulants are used in the estimation.

The random coe�cients model in class size for student e�ect has a similar �t, but it is not as good in
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any speci�cation. Finally, the model that assumes homoskedastic teacher and student e�ects does a

poorer job than the other two. For the reading test scores the results are similar, as the model with

heteroskedastic student e�ects does a better job at minimizing the objective function. However, the

random coe�cients model in class size for student e�ect is now the model that achieves the smallest

value of the objective function.

Table 7: Goodness of �t

Mathematics test scores Reading test scores

(1) (2) (3) (1) (2) (3)
Homoskedasticity 45889.9 55945.3 59273.8 63995.3 88224.6 103950.8

Class type heteroskedasticity 45871.7 55926.5 59254.3 63983.4 88211.1 103934.9
Random coe�cients model 45878.7 55933.7 59261.2 63978.7 88203.9 103925.9

The estimates of the third and fourth cumulants are in many cases signi�cantly di�erent from zero.

If teacher and student e�ects were normal, these cumulants should be equal to zero. In that case,

the estimates of the variance of the teacher and student e�ects are su�cient to characterize these

distributions. Compare the increase in the �t of the model by looking at the di�erence in the objective

function when using the estimates that assume normality with those that relax this assumption and

allow for nonzero third and fourth order cumulants. Table 8 shows the results. Columns 1 and 2 report

the value of the objective function when using only the second and third cumulants, whereas columns 3

and 4 report the value of the objective function when using the second, third and fourth cumulants28.

The �t under normality is always worse. This is specially true for the reading test scores.

Table 8: Goodness of �t under normality

Mathematics test scores

Cumulants 2 &3 Cumulants 2 to 4
Non-normality Normality Non-normality Normality

Homoskedasticity 55945.3 55954.8 59273.8 59290.3
Class type heteroskedasticity 55926.5 55936.5 59254.3 59272.0
Random coe�cients model 55933.7 55943.6 59261.2 59279.1

Reading test scores

Cumulants 2 &3 Cumulants 2 to 4
Non-normality Normality Non-normality Normality

Homoskedasticity 88224.6 88332.6 103950.8 104093.2
Class type heteroskedasticity 88211.1 88320.8 103934.9 104081.3
Random coe�cients model 88203.9 88316.1 103925.9 104076.6

The estimates of the social multiplier are economically large and statistically signi�cant. If the

28The results when using only the variances in the objective function are the same for both estimators, so they are not
reported.
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model is not correctly speci�ed and there are no spillovers (γ = 1) how would this a�ect the �t of the

model? Figure 4 shows the value of the objective function for di�erent values of the social multiplier.

The values of all the other parameters are the estimates conditional on the value of the social multiplier.

The results show that for values of the social multiplier between 1 and 2, the rank in the performance

of each model is the same. Hence, the model with homoskedastic teacher and student e�ects has the

poorest �t and the models with heteroskedastic student e�ects have a better �t. These last two models

have a very similar di�erence in the objective function for each value of the social multiplier, whereas

the di�erence between any of this two and the model with homoskedastic teacher and student e�ects

is decreasing as the social multiplier increases. This is because the estimate of the social multiplier is

much larger in the latter model than in the former two.

Figure 4: Goodness of �t for di�erent γ, mathematics test scores
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Given that the sum of the total variance in the test scores is the sum of the variances of student

and teacher e�ects, weighted by the social multiplier, there is a tension between these two estimates. If
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social spillovers are large, then the variance of teacher e�ects is small, and the other way around. One

particular case of interest is restricting the social multiplier to be one, and see what the estimates of

the standard deviation of teacher e�ects are in that case. Figure 5 shows the estimates of the standard

deviation of the teacher e�ect for di�erent values of the social multiplier. Notice that for the three

models, the estimates of the standard deviation of teacher e�ects are very close. If the actual value

of the social multiplier were 0, then the estimate of the standard deviation of teacher e�ects would

be approximately 0.27, a number much higher than what has been usually found in the literature.

Moreover, for values of the social multiplier larger than 1.75, the estimate of the variance is negative,

which suggests that the social multiplier cannot be that large.

Figure 5: Standard deviation of teacher e�ects as a function of γ, mathematics test scores
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6.4 Non-normally distributed teacher and student e�ects

The results obtained show that the third and fourth cumulants of student e�ects are signi�cantly di�erent

from zero, and thus non-normal. This would obviously cause some di�erences in the distribution of

test scores. Since normally distributed errors are usually the most prevalent assumption when the

true underlying distribution is unknown, let us compare the normal distribution with a more �exible

distribution that allows having di�erent cumulants of order three and four. One such distribution is

the Skew Exponential Power (SEP) distribution, which depends on four parameters (µ, σ, λ, α). The

particular case in which λ = 0 and α = 2 is a normal distribution with parameters
(
µ, σ

2

2

)
. Fit the

second to fourth cumulants of the estimated teacher and student e�ects in speci�cation 8, for a class of

15 individuals, to the SEP distribution, and then compare it to the normal that has the same variance.

The pdf of the SEP distribution is the following

fX (x;µ, σ, λ, α) =
1

σα
1
α
−1Γ

(
1
α

)e−( |x−µ|ασαα

)
Φ

(
sign

∣∣∣∣x− µσ
∣∣∣∣ ∣∣∣∣x− µσ

∣∣∣∣α2 λ( 2

α

) 1
2

)

where Φ (·) is the standard normal cdf and Γ (·) is the gamma function. Figure 6 shows the pdf of the

teacher and student e�ects under normality and when the e�ects follow an unrestricted SEP distribution.

The di�erences between the two distributions are quite marked in both cases. The unrestricted SEP of

the teacher e�ect is asymetric and platykurtic, which contrasts with the normal distribution that has

much heavier tails and is symmetric. In fact, it is so platykurtic that the support of the distribution is

a closed interval, instead of the real line. For the student e�ect the unrestricted SEP is also asymmetric

and the third moment has the same sign29, but the student distribution is leptokurtic, and therefore

the tails are heavier than the normally distributed counterpart. Figure 7 shows the cdf of students test

scores assuming that the teacher and student e�ects are drawn from an unrestricted SEP and a normal

distribution. The di�erences between both distributions are quite marked: the tails of the distribution

are much thicker if we allow the SEP to be unrestricted. This is natural, since the student e�ect is

leptokurtic and represents a larger share of the total test score than the teacher e�ect. Moreover, the

distribution is asymmetric, as the two distributions cross at a positive value instead of at zero, around

which they are centered.

Therefore, relative to the normal case, the distribution of test scores has more students obtaining

very large or very small values, but also there are more low achieving students, which is compensated

by larger test scores for high achieving students. The SEP distribution is not likely to be the correct

distribution of student and teacher e�ects, so the distributions shown here are not to be taken as

the estimated distributions of teacher and student e�ects and test scores. Rather, their purpose is to

highlight the �rst order implications of the distributional di�erences caused by making some parametric

assumptions, and in particular assuming normality.

29
i.e. in both the teacher and student e�ect the distributions are �leaning� towards the left.
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Figure 6: SEP and normal distributions for student and teacher e�ects
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The cumulants second to fourth of the SEP distribution have been �tted to those estimated in model 6
for a class with 15 students. For the normal distribution only the variance was �tted.

7 Counterfactuals and policy analysis

7.1 Changing the teacher and students assignment rules

Consider now the problem of a social planner who wants to maximize some function of students' test

scores. This could be for example the average outcome, but it could also be some function that depends

negatively on some inequality measure, like the variance. Also, the social planner could focus on the

quantiles of the distribution, since they are easier to interpret than higher order moments.

Given that computing the exact changes in the moments or the distribution of test scores in closed

form solution is not practical, I run a Monte Carlo in which I draw teacher and student e�ects from the

normal distribution and the skewed exponential power with the parameters implied by the estimates
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Figure 7: SEP and normal distributions for the test scores
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The cumulants second to fourth of the SEP distribution have been �tted to those estimated in model 6
for a class with 15 students. For the normal distribution only the variance was �tted.

from speci�cations 6 and 9, i.e. the two models with heterogeneity with cumulants of order up to four.

The baseline case against all counterfactual distributions are compared is the case in which there is

random assigment of teachers and students into classrooms and the class size distribution is the same

as the one in the data. Notice that although in the equation in levels there were school �xed e�ects

and a dummy for regular classes with aide, I take the mean of these variables as the intercept30, and

the class size e�ect as the slope. I consider several counterfactual experiments. Class size distribution

is the same in all cases, and the counterfactuals are di�erent combinations of matching teachers to class

size, according to their teacher quality, positive assortative matching of students at a global level (i.e.

30In other words, the di�erences in test scores are not driven by begin in a particular school or in a regular class with
aide. Rather, they depend on the class size distribution and the assignment rules.
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not at a school level), which means that students are in classes with those whose ability is more similar

to theirs and negative assortative matching, which means that the student with the highest ability is

grouped with the student with the lowest ability and so on.

1. Matching best teachers to largest classrooms, random sorting of students.

2. Random matching of teachers to classrooms, positive assortative sorting of students, best students

assigned smallest classrooms.

3. Matching best teachers to largest classrooms, positive assortative sorting of students, best students

assigned smallest classrooms.

4. Random matching of teachers to classrooms, negative assortative matching of students, random

assigment into classrooms.

These counterfactuals have several shortcomings that require some comments. First of all, since

computation of the exact changes in the moments is a very cumbersome from an analytical perspective,

we need to make a parametric assumption, which drives some of the results. Under random assignment

of students and teachers into classrooms, the e�ect of this parametric assumption is minor for the

moments of the distribution of test scores that were matched to the data. However, any kind of

distributional e�ect that goes beyond these moments, like quantile treatment e�ects, depends heavily

on the parametric assumption. Further, if there is positive or negative assortative matching, the changes

in the distribution are driven by the parametric assumption, which implies that for the majority of the

counterfactuals this assumption has a �rst order e�ect. Moreover, assortative matching is done at the

population level, which is highly unrealistic31. Another important concern is that these counterfactuals

do not take into account the estimation errror, and hence no con�dence interval is provided for these

counterfactual distributions and statistics.

Finally, in our model the teacher and student e�ects have potential outcomes for di�erent class sizes.

Given that we observe each agent once, it follows that we can identify the marginal distribution of these

e�ects for di�erent class sizes, but the joint distribution is not identi�ed. Hence, it could be possible that

a student's rank in the student e�ect distribution be di�erent for di�erent class sizes. As a result, in the

absence of random assignment, the joint distribution of teacher of student e�ect for all class sizes has a

�rst order impact on the distribution of test scores. In this paper's counterfactuals, the rank for teachers

and students is the same for all classrooms. This is equivalent to assume that although e�ectiveness

of agents depends on class size, their position in the e�ectiveness ranking is always the same. This

strong assumption rules out the possibility of having teachers and students who are relatively good in

classrooms of a particular size but relatively bad in classrooms of other size. More generally, one could

use a multivariate copula that gives a rank for all di�erent potential outcomes32.

31Matching at the school level would be feasbile, and it could be done, but it has not been done in order to show the
power of assortative matching at its greatest generality.

32Given that this copula cannot be identi�ed, it would always be a nontestable assumption.
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Despite these limitations, these counterfactual experiments are interesting in their own right. Even

if the numbers do not re�ect the e�ect that such policy would imply on the distribution of test scores,

the counterfactuals still give us the qualitative e�ects of these policies. The constant rank assumption,

although very strong makes the assignment problem very tractable. By having only one index, we can

match them using this index, instead of looking at all their potential outcomes. In particular, it allows

us to use assortative matching.

Table 9: Counterfactual results, mathematics test scores

Counterfactual (1) (2) (3) (4) (1) (2) (3) (4)

mean 0.03 0.04 0.07 0.00 0.03 0.06 0.09 0.03
sd -0.01 1.34 1.20 -0.09 -0.01 1.17 1.01 -0.08

p10 0.06 -1.55 -1.33 0.21 0.06 -1.41 -1.16 0.25
p25 0.40 -0.90 -0.73 0.05 0.04 -0.87 -0.70 0.06
p50 0.30 -0.09 0.05 -0.10 0.03 -0.24 -0.17 -0.04
p75 0.30 0.72 0.63 -0.13 0.03 0.47 0.42 -0.09
p90 0.20 1.79 1.61 -0.06 0.03 1.00 0.86 -0.07

The �rst four columns are the change in the counterfactuals when using the
estimates from model 6; the last four columns are the change in the counterfactual
when using the estimates from model 9.

Table 9 shows the counterfactual mathematics test scores results when the student and teacher

e�ects are drawn from a skewed exponential power �tted to the data. The �rst four columns use the

estimates from model 6, i.e. student e�ects are heterogeneous for small and large classrooms; the last

four columns use the estimates from model 9, i.e. the random coe�ciient model in class size. The �rst

row of the table shows the change in the mean test scores with respect to the baseline case, the second

row shows the change in the standard deviation and the last �ve rows show the change in the test scores

for a selected number of percentiles.

Assigning the best teachers to best classrooms (counterfactual 1) has a both a positive e�ect on the

mean of test scores and a decrease on the standard deviation. This comes from the fact that teachers are

a public good, since all students equally bene�t from them, and by assigning better teachers to larger

classrooms, more students can bene�t from them, and less students bene�t from low quality teachers.

The other side of the coin is that assigning high quality teachers to small classrooms would decrease

the mean test scores. In terms of percentiles, students at the bottom of the distribution bene�t more

than students at the top. The reason for this is that bad students are now more likely to have a good

teacher, which o�sets the particularly bad value of their ability in large classrooms. This counterfactual

is extremely relevant from a policy intervention perspective, since it implies that a rearrangement of the

inputs without altering the total number of inputs would increase the average test scores and reduce

the inequality at the same time.

Positive assortative matching of students and assigning high ability students to small classrooms

(counterfactual 2) has a positive e�ect on test scores. This comes from the fact that the variance is

smaller in large classrooms, which means that the distribution of students ability has the mass more
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concentrated around zero, and thus bad students do not have such a large value of their student e�ect,

but good students, who are assigned to smaller classrooms, get more positive values, resulting in an

overall increase of test scores. On the other hand, assigning best students to large classrooms, would

lead to a decrease in average test scores. In both cases, such type of matching increases inequality, as

the variance is larger than in the baseline model. This assigment rule reduces the within variance, as

students in the same classroom tend to be more similar, but it greatly increases the between classroom

variance, which is a larger increase than the decrease in the within variance. This is clearly seen if one

looks at the changes in the percentiles, which are negative for students on the left tail and positive for

students in the right tail. Therefore, there is a tradeo� between e�ciency and inequality with this kind

of policy. The combination of the two policies (countefactual 3) leads to a greater increase of mean test

scores, but at the cost of increasing the variance, although the increase in the variance is not as marked

as in the second countefactual.

Finally, negative assortative matching barely a�ects mean but it reduces the variance in test scores.

This comes from the fact that now the between variance is greatly reduced, at the expense of increasing

the within variance. This type of matching is particularly e�ective for students in the lower tail of the

distributions, who greatly bene�t for being in the same classroom with the best students.

Table 10: Counterfactual results, mathematics test scores

Counterfactual (1) (2) (3) (4) (1) (2) (3) (4)

mean 0.03 0.06 0.09 0.00 0.03 0.07 0.10 0.00
sd -0.01 1.30 1.15 -0.11 -0.01 1.27 1.11 -0.07

p10 0.05 -1.55 -1.33 0.15 0.04 -1.51 -1.28 0.10
p25 0.04 -0.90 -0.75 0.07 0.04 -0.89 -0.74 0.06
p50 0.04 -0.15 -0.11 0.02 0.04 -0.16 -0.11 0.02
p75 0.03 0.61 0.55 -0.06 0.03 0.61 0.58 -0.06
p90 0.02 1.25 1.15 -0.10 0.02 1.20 1.09 -0.08

The �rst four columns are the change in the counterfactuals when using the
estimates from model 6; the last four columns are the change in the counterfactual
when using the estimates from model 9.

Table 10 shows the same results when the teacher and student e�ects are drawn from a normal

distribution. The results are qualitatively the same. Quantitatively speaking, the change in the mean

and the standard deviation is also very similar. However, when one looks at the distributional e�ects,

there are relatively large di�erences. This points out that erroneously assuming normality has �rst order

implications that lead to false conclusions. Hence, by assuming a more �exible parametric family of

distributions, this error is smaller.

7.2 Changing the distribution of class sizes

Another completely di�erent counterfactual would be to alter the distribution of class sizes. Suppose that

a principal only observes the quality of their teachers, but the ability of his students is unknown. This

is a plausible assumption for kindergarten students with whom the principal had no prior interaction.
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Figure 8: Counterfactuals, model 6
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Lack of knowledge of students' abilities implies that they are randomly assigned to di�erent classrooms.

Therefore, the principal can a�ect students test scores by determining how many students each teacher

will have. If the principal wants to maximize the expected average outcome, the maximization problem

is the following

(N1, ..., NC) = arg max
n1,...nC

1

N
ΣC
c=1E (yic|nc, αc)nc

subject to the restriction that all students are assigned to a classroom, i.e. Σ
Nj
j=1 = N . Condtional on

class size and teacher's quality, the expected value of students ability is zero. Therefore, E (yic|Nc, αc) =

αc (Nc) = α0,c+α1Nc. That is, the intercept is di�erent for di�erent teachers, but the slope is the same.

39



In other words, class size a�ects all teachers equaly. After solving for the expected value of test scores

conditional on class size, and substituting the previous restriction, the maximization problem becomes

(N1, ..., NC−1) = arg max
n1,...nC−1

1

N

[
α0,C + ΣC−1

c=1 (α0,c − α0,C)nc + α1ΣC−1
c=1 N

2
c +

(
N − ΣC−1

c=1 Nc

)2
]

The maximum is attained at Nc = N
C + 1

2CΣC
d=1

α0,d−α0,c

α1
for c = 1, ..., C− 1 and NC = N −ΣC−1

c=1 Nc.

In words, if a teacher is good relative to teacher C, then this teacher is assigned more students than

the average number of students per teacher. This, way, more students can bene�t from his teaching

quality. This, however, has a cost, as students tend to have a worse performance in large classrooms, so

the problem is convex, and it is not optimal to put all students together with the same teacher. Notice

that the particular case in which all teachers have the same quality results in an optimal equal class

size distribution.

8 Extensions

In this section I extend some of the results presented in the main text of the paper.

8.1 Peer e�ects in the production function

The model presented in section 2 ruled out the possibility of direct spillovers among students. The

assumption was that test scores depended only on the e�ort and ability of the student and the teacher,

and it was the optimal choice of e�ort what would lead to the social interactions. In this subsection I

relax this assumption and I present a model that allows for direct spillovers in the production functions.

Consider now that peers have an impact on the production function of student i. Moreover, assume

that this e�ect does not depend on the amount of peers, i.e. the intensity of the interaction between

peers is inversely proportional to the number of peers. Then, given our Cobb-Douglas speci�cation, we

can add an extra term that captures the e�ect of peers' e�ort on the production function of student i:

yic = exp (ζtc + ξic) e
φ
tce

β
icΠj 6=ie

η
Nc−1

jc

With this speci�cation it is more convenient to make a slight modi�cation to the game structure.

Instead of a simultaneous game, consider a two stage game in which the teacher moves �rst and students

move in the second stage33. As before, all agents choose e�ort by maximizing their utility functions,

33With these speci�cation, if all agents move simultaneously, the best response functions yield a system of linear
equations such that not all of the eigenvalues can be expressed in closed form in terms of the parameters of the model,
and hence the system cannot be solved in closed form. By modeling the game in two steps this problem is avoided. Notice
that in any case the optimal functions can be numerically solved.
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which are the same as those of the baseline model. All the calculations are omitted here, and instead

the �nal expression of the reduced form equation is shown

log (yic) =
β + η

δ (1− φ)− β − η
log

(
β

δ

)
+

φδ

δ (1− φ)− β − η
log

(
φδ

δ − β − η

)
+

δ

δ (1− φ)− β − η
(
ζtc + ξc

)
+

δ (Nc − 1)

(δ − β) (Nc − 1) + η

(
ξic − ξc

)
8.2 Characteristic functions

In section 3.4 we saw how to express the characteristic function of the vector of class test scores as a

function of the characteristic functions of teacher and students e�ects (equation 12). Bonhomme and

Robin (2010) showed that using the empirical characteristic functions of the observed data, one can

recover the characteristic functions of the underlying processes. Our framework is very similar, but it

has three main di�erences: several factors are equally distributed, every realization of the Y vector has

a di�erent size and some of the observations from this vector are missing. The �rst di�erence comes

from the fact that students are randomly assigned into classes and therefore student e�ects are treated

as coming from the same distribution. Thus, there is extra structure that we can use to our advantage

in our framework. The second and the third di�erences come from the fact that classrooms have a

di�erent number of students and some of the test scores are missing. These two di�erences constitute

an additional challenge with respect to Bonhomme and Robin (2010) framework, but nonetheless it is

still possible to recover the distribution of teacher and student e�ects.

Assume for the time being that N0c = N1c, i.e. all students test scores are observed, and drop the

0/1 subscript. Let Yc be the vector of dimension Nc that consists of the test scores of students in class

c. Let t be a vector of dimension Nc. Equation 12 express the characteristic function of the vector

of observed test scores as a product of the characteristic functions of teacher and students e�ects. By

taking logarithms of the previous expression we get the cumulant generating function of the vector of

observed test scores

gYc (t|Nc) = gα

(
ΣNc
j=1tj |Nc

)
+ ΣNc

j=1gε

(
tj +

γ − 1

Nc
ΣNc
h=1th|Nc

)
Take the second derivatives of the cumulant generating function and obtain the following matrix of

dimension Nc ×Nc

∇∇T gYc (t|Nc) = g
′′
α

(
ΣNc
j=1tj |N0c

)
+ ΣNc

j=1g
′′
ε

(
tj +

γ − 1

Nc
ΣNc
h=1th|Nc

)[(
γ − 1

Nc

)2

ιNcι
′
Nc +

γ − 1

Nc

(
ΥNc (j) + ΥNc (j)′

)
+ ΨNc (j)

]

41



where ΥNc (j) is a Nc × Nc matrix of zeros except for column j, whose elements equal one, and

ΨNc (j) is a Nc × Nc matrix of zeros except for the element (j, j), which equals one. The next step

would be to apply the vech operator to the matrix of second derivatives of the cumulant generating

function, and express it as the product of a weighting matrix and a vector with the Nc + 1 di�erent

second derivatives of the cumulant generating functions of teacher and students e�ects. Since we know

that the students are randomly sorted into classes, we can apply use the extra information coming from

the fact that not only they are independent, but also identically distributed. To do so, let t = τιNc , i.e.

we no longer have any vector t, but only vectors that give the same weight, τ ∈ R, to all test scores.

By doing this and applying the vech operator to the previous expression, we obtain

vech
(
∇∇T gYc (τιNc |Nc)

)
= Q

[
g
′′
α (Ncτ |Nc)

g
′′
ε (γτ |Nc)

]

where Q ≡
(
ι (Nc+1)Nc

2

, vech (INc) +
(γ2−1)
Nc

ι (Nc+1)Nc
2

)
. If we let Q−j denote the jth row of matrix

Q−, we can obtain an expression of the second derivative of the CGF of the teacher and student e�ects

g
′′
α (τ |Nc) = Q−1 vech

(
∇∇T gYc

(
τ

Nc
ιNc |Nc

))

g
′′
ε (τ |Nc) = Q−2 vech

(
∇∇T gYc

(
τ

γ
ιNc |Nc

))
Und using the fact that α and ε have both mean zero and g (0) = 0, we can doubly integrate the

previous expressions to obtain the CGF of the teacher and student e�ects

gα (τ |Nc) =

� τ

0

� u

0
Q−1 vech

(
∇∇T gYc

(
v

Nc
ιNc |Nc

))
dvdu

gε (τ |Nc) =

� τ

0

� u

0
Q−2 vech

(
∇∇T gYc

(
v

γ
ιNc |Nc

))
dvdu

All that remains to do is to take the exponential of those two quantities to get the characteristic

function of the teacher and student e�ects

ϕα (τ |Nc) = exp

(� τ

0

� u

0
Q−1 vech

(
∇∇T gYc

(
v

Nc
ιNc |Nc

))
dvdu

)

42



ϕε (τ |Nc) = exp

(� τ

0

� u

0
Q−2 vech

(
∇∇T gYc

(
v

γ
ιNc |Nc

))
dvdu

)
Notice that in the last expressions, in order to have the CGF or characteristic function of the teacher

and student e�ects evaluated at τ , we need two di�erent weighting vectors t. In both cases each test

score has the same weight, but they are di�erent for the two functions. For the function of the teacher

e�ect the weight has to be equal to 1
Nc
, and for the student e�ect the weight equals 1

γ . This means

that knowledge of γ is required in order to get estimates of the characteristic function of the student

e�ect. In practice I use an estimate of the social multiplier, which implies that the estimator of the

characteristic function of the student e�ect has an extra source of noise.

Now consider again the case in which we allow for some test scores to be missing, i.e. N0c 6= N1c.

We can express the vector of second derivatives of the CGF as

vech
(
∇∇T gYc (τιN1c |N0c)

)
= Q

g′′α (N1cτ |N0c) +
(γ2−1)N1c

N0c
g
′′
ε

(
(γ−1)N1c

N0c
τ |N0c

)
g
′′
ε

(
γN1c+N0c−N1c

N0c
τ |N0c

)


Since there are no observations for the test scores of studentsN1c+1, ..., N0c, there is multicollinearity

between their e�ects and the teacher e�ect, since they a�ect all the remaining students proportionally

to the teacher. This means that an extra step is needed in order to identify the characteristic function

of the teacher e�ect. After some algebra, we can get the CGF of both the teacher and student e�ects,

which are

gε (τ |N0c) =

� τ

0

� u

0
Q−2 vech

(
∇∇T gYc

(
vN0c

γN1c + (N0c −N1c)
ιN1c |N0c

))
dvdu

gα (τ |N0c) =

� τ

0

� u

0

[
Q−1 vech

(
∇∇T gYc

(
v

N1c
ιN1c |N0c

))
− g′′ε

(
(γ − 1) (N0c −N1c)

N0cN1c
vιN1c |N0c

)]
dvdu

That is, the CGF of ε needs a minor correction that involves only the class size and the observed

number of test scores, whereas the CGF of α needs a major correction, as the term is now contaminated

by the second derivative of the CGF of ε.

8.3 Estimation of the characteristic function

In the identi�cation section the matrix Q was de�ned as a matrix of dimension (Nc+1)Nc
2 × 2. This

means that given a sample of test scores that have di�erent class sizes, the dimension of this matrix

varies. Now denote by Qc the Q matrix that has dimension (Nc+1)Nc
2 × 2. Again, there are two di�erent
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cases. Firstly assume that we observe the test scores of all individuals. In this case, the estimates of

the CGF of teacher and student e�ects would be

ĝα (τ |Nc) =

� τ

0

� u

0

1

C
ΣC
c=1Q

−
c,1vech

(
∇∇T ĝYc

(
v

Nc
ιNc |Nc

))
dvdu

ĝε (τ |Nc) =

� τ

0

� u

0

1

C
ΣC
c=1Q

−
c,2vech

(
∇∇T ĝYc

(
v

γ̂
ιNc |Nc

))
dvdu

where ∇∇T ĝYc
(
t
γ̂ ιNc |Nc

)
is the Nc ×Nc matrix whose (l,m) element equals

∇∇TlmĝYc
(
t

γ̂
ιNc |Nc

)
lm

= −ylcymce
it′Yc

Ê [eit′Y ]
+

 Ê
[
yeit

′Y
]

Ê [eit′Y ]

2

where Ê
[
eit
′Y
]

= 1
CΣC

c=1e
it′Yc and Ê

[
yeit

′Y
]

= 1
CΣC

c=1
1
Nc

ΣNc
l=1ylce

it′Yc .

To get the estimates of the characteristic functions all that remains to do is to take exponentials of

the estimates of the CGF.

9 Conclusion

This paper has addressed the topic of estimation of spillovers in the classroom. Using the linear in means

equation of test scores predicted by the model together with double randomization, I propose a way

to identify and estimate the strength of the spillovers in the classroom. This method provides several

overidentifying restrictions for the social multiplier, and, at the same time, it identi�es the di�erent

moments of the distribution of teacher and student e�ects.

The results provide evidence on the existence of strong spillovers in the classroom, with a social

multiplier of around 1.5. Moreover, teacher and student e�ects depart from the usually maintained

normality assumption: the distribution of teacher e�ects is slightly asymmetric and has tails thinner

than the normal disitribution, whereas the distribution of student e�ects is skewed to the left and

has thicker tails than the normal distribution. This departure from normality casts some doubts on

the validity of the estimates of teacher e�ects in the teacher value-added literature, as well as on any

counterfactual experiment that involves non-random assignment of teachers and students to classrooms.

Teachers have a sizeable impact on students test scores. Increasing the teacher's quality by one

standard deviation is associated with an increase in test scores of around 10 to 15% of a standard

deviation. On the other hand, increasing classmates' abilities by one standard deviation is associated

with an increase in one's own test scores of around 45% of a standard deviation. The student e�ects
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are heteroskedastic in class size. The variance of these e�ects is decreasing in class size, as is the degree

of asymmetry and the thickness of the tails of the distribution.

Using the results from the estimation, I conduct counterfactual social planning experiments. These

experiments show that a resource neutral policy can have a direct impact on the distribution of test

scores, with some students bene�ting more than others. In particular, assigning good teachers to large

classrooms improves the overall test scores while at the same time reduces inequality; positive assortative

matching and assigning good students to small classrooms is associated with an increase in test scores

for good students, at the cost of a decrease of bad students' test scores; negative assortative matching

has a very small impact on mean test scores, but it does a good job at reducing the inequality among

students. Finally, I also consider the optimal class size distribution, which assigns more students to

better teachers, but not so many that the negative e�ect of being in a larger class size o�sets the

positive e�ect of the teacher quality.
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Appendix

A Some linear algebra results

Let An be a n×n matrix such that all diagonal elements are the same and all o� diagonal elements are

the same but di�erent to the diagonal elements:

An =


a b . . . b

b a . . . b
...

...
. . .

...

b b . . . a

 = bιnι
′
n + (a− b) In

Denote by Λn and Sn its eigenvalue and eigenvector matrices. They take the following values:

Λn =


a− b . . . 0 0
...

. . .
...

...

0 . . . a− b 0

0 . . . 0 a+ (n− 1) b



Sn =



1 1 1 . . . 1 1

−1 0 0 . . . 0 1

0 −1 0 . . . 0 1
...

...
...
. . .

...
...

0 0 0 . . . −1 1


In order to obtain the inverse of An, simply use the formula An = SnΛ−1

n Sn, for which it is needed

to obtain the inverse of the eigenvalues and eigenvectors matrices:

Λ−1
n =


1
a−b . . . 0 0
...

. . .
...

...

0 . . . 1
a−b 0

0 . . . 0 1
a+(n−1)b



S−1
n =



1
n

1−n
n

1
n . . .

1
n

1
n

1
n

1
n

1−n
n . . . 1

n
1
n

...
...

...
. . .

...
...

1
n

1
n

1
n . . .

1−n
n

1
n

1
n

1
n

1
n . . .

1
n

1
n


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A−1
n =

1

n (a− b)


(n− 1) + a−b

a+(n−1)b −1 + a−b
a+(n−1)b . . . −1 + a−b

a+(n−1)b

−1 + a−b
a+(n−1)b (n− 1) + a−b

a+(n−1)b . . . −1 + a−b
a+(n−1)b

...
...

. . .
...

−1 + a−b
a+(n−1)b −1 + a−b

a+(n−1)b . . . (n− 1) + a−b
a+(n−1)b


=

−b
(a+ (n− 1) b) (a− b)

ιnι
′
n +

1

a− b
In

Now de�ne Cn, which is a matrix that has the same structure as An but has di�erent values. Let

c and d denote the value of the diagonal and o�-diagonal elements of Cn. Then, the product CnA
−1
n ,

equals

CnA
−1
n =

[
−b (c+ (n− 1) d)

(a+ (n− 1) b) (a− b)
+

d

a− b

]
ιnι
′
n +

c− d
a− b

In =
ad− bc

(a+ (n− 1) b) (a− b)
ιnι
′
n +

c− d
a− b

In

B Cumulants, cumulant generating functions and k-statistics

Let X be a random variable. Its Moment Generating Function, MX (t), is de�ned as

MX (t) ≡ E [exp (X)]

The Cumulant Generating Function, gX (t) is de�ned as the logarithm of the MGF:

gX (t) ≡ log (MX (t))

To obtain the cumulant of order R, simply take the Rth derivative of the CGF with respect to t and

evaluate at t = 0:

κR (X) ≡ ∂RgX (t)

∂tR

∣∣∣∣
t=0

There is a bijection between cumulants and moments. For example, cumulants up to order 6 are

κX1 = E [X]

κX2 = E
[
(X − E (X))2

]
κX3 = E

[
(X − E (X))3

]
κX4 = E

[
(X − E (X))4

]
− 3E

[
(X − E (X))2

]2
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κX5 = E
[
(X − E (X))5

]
− 10E

[
(X − E (X))3

]
E
[
(X − E (X))2

]
κX6 = E

[
(X − E (X))6

]
−15E

[
(X − E (X))4

]
E
[
(X − E (X))2

]
−10E

[
(X − E (X))3

]2
+30E

[
(X − E (X))2

]3

Cumulants satisfy the following two properties: let a be a scalar, then the Rth order cumulant of aX

is κR (aX) = aRκR (X). Let X and Y be two independent random variables, then the Rth cumulant of

their sum is κR (X) = κR (X) + κR (Y ). These two properties allowed us to obtain convenient closed

form expressions for the cumulants of the between and within variables.

k -statistics are the unique symmetric unbiased estimators of the cumulants of a distribution. Let

mR denote the Rth sample central moment of the variable Xi. Then, the �rst four k -statistics are given

by

k1 =
1

N
ΣN
i=1Xi

k2 =
N

N − 1
m2

k3 =
N2

(N − 1) (N − 2)
m3

k4 =
N2

(N − 1) (N − 2) (N − 3)

[
(N + 1)m4 − 3 (N − 1)m2

2

]
C Operator vech

Let AN be a d-dimensional array with all dimensions of size N . The operator vech selects some of the

elements of this array and arranges them into a vector. If AN is a matrix, it selects the diagonal and

upper diagonal elements and arrange them row by row:

vech (AN ) = (a11, a12, ..., a1N , a22, ..., a2N , ..., aNN )′

More generally, for d-dimensional arrays it selects the elements (i1, i2, ..., id) such that i1 ≤ i2 ≤
... ≤ id and arrange them lexicographically by dimensions. Since the total number of combinations with

repetition is
(
N+d−1

d

)
, then that is the size of the vector obtained by applying the vech operator.

D Λ matrices

D.1 All test scores are observed

Λ2 (γ;Nc) ≡ ι
(

1,
γ2 − 1

Nc

)
+
[
0, vech

(
ηNc2,1,2

)]
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Λ3 (γ;Nc) ≡ ι

(
1,

(γ − 1)2 (γ − 2)

N2
c

)
+

[
0,
γ − 1

Nc
vech

(
ηNc3,1,2 + ηNc3,1,3 + ηNc3,2,3

)]
+
[
0, vech

(
ηNc3,1,2 � η

Nc
3,1,3

)]

Λ4 (γ;Nc) ≡ ι

(
1,

(γ − 1)3 (γ − 3)

N3
c

)
+

[
0,

(γ − 1)2

N2
c

vech
(
ηNc4,1,2 + ηNc4,1,3 + ηNc4,1,4 + ηNc4,2,3 + ηNc4,2,4 + ηNc4,3,4

)]

+

[
0,
γ − 1

Nc
vech

(
ηNc4,1,2 � η

Nc
4,1,3 + ηNc4,1,2 � η

Nc
4,1,4 + ηNc4,1,3 � η

Nc
4,1,4 + ηNc4,2,3 � η

Nc
4,2,4

)]
+

[
0, vech

(
ηNc4,1,2 � η

Nc
4,1,3 � η

Nc
4,1,4

)]
where 0 and ι represent vectors of zeros and ones of the appropriate dimension, i.e. (Nc+1)Nc

2 ,
(Nc+2)(Nc+1)Nc

6 and (Nc+3)(Nc+2)(Nc+1)Nc
24 , respectively. ηNcd,e,f is the d-dimensional array whose d dimensions

are all of size Nc and all elements zero except for those that are the same in dimensions e and f , e < f .

Those elements take value one34. For example, ηN2,1,2 = IN , and for the array ηN3,1,2, its element (i, j, h)

equals one if i = j, and is zero otherwise. The total number of nonzero elements is Nd−1
c . Finally, � is

the Hadamard product, i.e. the elementwise product of arrays.

D.2 N1c out of N0c test scores are observed

Λ2 (γ;N0c, N1c) ≡ ι
(

1,
γ2 − 1

N0c

)
+
[
0, vech

(
ηN1c

2,1,2

)]

Λ3 (γ;N0c, N1c) ≡ ι

(
1,

(γ − 1)2 (γ − 2)

N2
0c

)

+

[
0,
γ − 1

N0c
vech

(
ηN1c

3,1,2 + ηN1c
3,1,3 + ηN1c

3,2,3

)]
+
[
0, vech

(
ηN1c

3,1,2 � η
N1c
3,1,3

)]

Λ4 (γ;N0c, N1c) ≡ ι

(
1,

(γ − 1)3 (γ − 3)

N3
0c

)

+

[
0,

(γ − 1)2

N2
0c

vech
(
ηN1c

4,1,2 + ηN1c
4,1,3 + ηN1c

4,1,4 + ηN1c
4,2,3 + ηN1c

4,2,4 + ηN1c
4,3,4

)]

+

[
0,
γ − 1

N0c
vech

(
ηN1c

4,1,2 � η
N1c
4,1,3 + ηN1c

4,1,2 � η
N1c
4,1,4 + ηN1c

4,1,3 � η
N1c
4,1,4 + ηN1c

4,2,3 � η
N1c
4,2,4

)]
+

[
0, vech

(
ηN1c

4,1,2 � η
N1c
4,1,3 � η

N1c
4,1,4

)]
34These arrays are generalizations of the identity matrix in 2-dimensional arrays.
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E Estimation when N1c out of N0c test scores are observed

Denote by N0c the total number of students in a classroom and by N1c the number of test scores

observed. So far I have assumed that N0c = N1c, but in the data the case in which N0c > N1c is very

frequent. In this case, the estimation using cumulants of order two to four is very similar. One only

needs to use the Λj,N0c,N1c matrices shown in appendix D, and the estimation method remains the same.

Estimation of the characteristic functions is slightly more complicated, as it requires a correction to take

into account the fact that in general N0c 6= N1c. In this case the �rst step is to estimate the CGF of

the student e�ect

ĝε (τ |N0c) =

� τ

0

� u

0

1

C
ΣC
c=1Q

−
c,2vech

(
∇∇T ĝYc

(
vN0c

γ̂N1c + (N0c −N1c)
ιN1c |N0c

))
dvdu

To estimate the CGF of the teacher e�ect we require estimating the second derivative of the CGF

of the student e�ect, so know the estimator is

ĝα (τ |N0c) =

� τ

0

� u

0

[
1

C
ΣC
c=1Q

−
c,1vech

(
∇∇T ĝYc

(
v

N1c
ιN1c |N0c

))
− ĝ′′ε

(
v (γ − 1) (N0c −N1c)

N0cN1c
ιN1c |N0c

)]
dvdu

where ĝ
′′
ε

(
τ(γ−1)(N0c−N1c)

N0cN1c
ιN1c |N0c

)
= 1

CΣC
c=1Q

−
2,cvech

(
∇∇T ĝYc

(
τ(γ−1)(N0c−N1c)

N0cN1c
ιN1c |N0c

))
, and the

rest of the objects are de�ned similarly as above.

F Full results

In this section I present the full table with the estimates of speci�cations 1 to 9, as described in section 4,

for both the mathematics and reading test scores. Moreover, I also present a table with the results of the

speci�cation that allows for heterogeneous teacher and student e�ects. These e�ects take two di�erent

distributions for small and large classrooms.
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Table 11: New estimates, mathematics test scores
(1) (2) (3) (4) (5) (6) (7) (8) (9)

γ̂ 1.854*** 1.868*** 1.867*** 1.545*** 1.564*** 1.564*** 1.520*** 1.544*** 1.544***

(0.374) (0.395) (0.374) (0.299) (0.299) (0.300) (0.311) (0.311) (0.312)

κ̂2 (αc) -0.013 -0.014 -0.014 0.024 0.022 0.022 0.027 0.024 0.024

(0.050) (0.053) (0.050) (0.034) (0.034) (0.034) (0.035 (0.035)) (0.035)

κ̂3 (αc) - 0.007 0.007 - 0.008 0.008 - 0.008 0.008

(0.012) (0.010) (0.010) (0.010) (0.010) (0.010)

κ̂4 (αc) - - -0.076*** - - -0.075*** - - -0.076***

(0.009) (0.010) (0.010)

κ̂2 (εic) 0.709*** 0.709*** 0.709*** - - - - - -

(0.021) (0.021) (0.021)

κ̂3 (εic) - 0.242*** 0.242*** - - - - - -

(0.083) (0.049)

κ̂4 (εic) - - 0.263* - - - - - -

(0.136)

κ̂2 (εic|small) - - - 0.791*** 0.789*** 0.789*** - - -

(0.042) (0.041) (0.041)

κ̂2 (εic|large) - - - 0.672*** 0.673*** 0.673*** - - -

(0.024) (0.024) (0.024)

κ̂3 (εic|small) - - - - 0.367*** 0.367*** - - -

(0.115) (0.115)

κ̂3 (εic|large) - - - - 0.187*** 0.187*** - - -

(0.057) (0.057)

κ̂4 (εic|small) - - - - - 0.899** - - -

(0.355)

κ̂4 (εic|large) - - - - - 0.014 - - -

(0.124)

µ̂ε,2,0 - - - - - - 0.933* 0.928*** 0.928**

(0.467) (0.465) (0.465)

µ̂ε,2,1 - - - - - - -0.010 -0.010 -0.010

(0.049) (0.049) (0.049)

µ̂ε,2,2 - - - - - - 4.5·10−5 4.5·10−5 4.7·10−5

(1.2·10−3) (1.2·10−3) (1.2·10−3)

µ̂ε,3,0 - - - - - - - -2.281 -2.283

(5.264) (5.263)

µ̂ε,3,1 - - - - - - - 0.438 0.439

(0.845) (0.845)

µ̂ε,3,2 - - - - - - - -0.023 -0.023

(0.044) (0.044)

µ̂ε,3,3 - - - - - - - 3.8·10−4 3.8·10−4

(7.3·10−4) (7.4·10−4)

µ̂ε,4,0 - - - - - - - - -138.55**

(61.65)

µ̂ε,4,1 - - - - - - - - 30.49**

(13.35)

µ̂ε,4,2 - - - - - - - - -2.429**

(1.051)

µ̂ε,4,3 - - - - - - - - 0.084**

(0.036)

µ̂ε,4,4 - - - - - - - - -0.001**

(4.5·10−4)

Standard errors in parentheses. *, ** and *** denote signi�cant at the 90, 95 and 99 percent levels. Speci�cations 1,

to 3 assume that moments of student e�ects are the same for all students (i.e., homoskedastic e�ects); speci�cations 4

to 6 relax this assumption and allow for two di�erent values for students in small and large classes; speci�cations 7 to 9

assume that student e�ect is a random coe�cient in class size, and thus their cumulants are polynomials in class size.
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Table 12: New estimates, reading test scores
(1) (2) (3) (4) (5) (6) (7) (8) (9)

γ̂ 1.791*** 1.776*** 1.733*** 1.553*** 1.545*** 1.505*** 1.466*** 1.471*** 1.427***

(0.413) (0.456) (0.416) (0.349) (0.341) (0.344) (0.371) (0.361) (0.364)

κ̂2 (αc) -0.020 -0.019 -0.013 0.018 0.009 0.013 0.022 0.017 0.022

(0.054) (0.058) (0.052) (0.040) (0.039) (0.038) (0.040) (0.039) (0.038)

κ̂3 (αc) - 0.001 0.002 - 0.004 0.004 - 0.004 0.005

(0.014) (0.011) (0.011) (0.011) (0.010) (0.011)

κ̂4 (αc) - - -0.072*** - - -0.070*** - - -0.069***

(0.012) (0.012) (0.012)

κ̂2 (εic) 0.727*** 0.728*** 0.728*** - - - - - -

(0.033) (0.033) (0.033)

κ̂3 (εic) - 0.882*** 0.887*** - - - - - -

(0.146) (0.125)

κ̂4 (εic) - - 2.730*** - - - - - -

(0.609)

κ̂2 (εic|small) - - - 0.793*** 0.793*** 0.796*** - - -

(0.060) (0.059) (0.059)

κ̂2 (εic|large) - - - 0.697*** 0.697*** 0.697*** - - -

(0.040) (0.040) (0.040)

κ̂3 (εic|small) - - - - 1.067*** 1.075*** - - -

(0.261) (0.261)

κ̂3 (εic|large) - - - - 0.835*** 0.840*** - - -

(0.141) (0.142)

κ̂4 (εic|small) - - - - - 3.697*** - - -

(1.329)

κ̂4 (εic|large) - - - - - 2.567*** - - -

(0.681)

µ̂ε,2,0 - - - - - - 0.286 0.285 0.288

(0.743) (0.743) (0.749)

µ̂ε,2,1 - - - - - - 0.062 0.062 0.062

(0.079) (0.079) (0.080)

µ̂ε,2,2 - - - - - - -0.002 -0.002 -0.002

(0.002) (0.002) (0.002)

µ̂ε,3,0 - - - - - - - -11.63 -11.63

(13.90) (13.18)

µ̂ε,3,1 - - - - - - - 1.992 1.995

(2.090) (2.103)

µ̂ε,3,2 - - - - - - - -0.100 -0.100

(0.108) (0.109)

µ̂ε,3,3 - - - - - - - 0.002 0.002

(0.002) (0.002)

µ̂ε,4,0 - - - - - - - - -98.76

(287.19)

µ̂ε,4,1 - - - - - - - - 19.38

(62.26)

µ̂ε,4,2 - - - - - - - - -1.304

(4.939)

µ̂ε,4,3 - - - - - - - - 0.037

(0.170)

µ̂ε,4,4 - - - - - - - - 3.7·10−4

(0.002)

Standard errors in parentheses. *, ** and *** denote signi�cant at the 90, 95 and 99 percent levels. Speci�cations 1,

to 3 assume that moments of student e�ects are the same for all students (i.e., homoskedastic e�ects); speci�cations

4 to 6 relax this assumption and allow for two di�erent values for students in small and large classes; speci�cations

7 to 9 assume that student e�ect is a random coe�cient in class size, and thus their cumulants are polynomials in

class size.
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Table 13: Heterogeneous teacher e�ects
Mathematics Reading

γ̂ 0.739 0.715*

(1.142) (0.392)

κ̂2 (αc|small) 0.123 0.114***

(0.076) (0.030)

κ̂2 (αc|large) 0.079 0.066***

(0.060) (0.022)

κ̂3 (αc|small) 0.059* 0.054

(0.032) (0.035)

κ̂3 (αc|large) 3.1 · 10−4 0.004

(0.011) (0.011)

κ̂4 (αc|small) -0.021 0.002

(0.040) (0.055)

κ̂4 (αc|large) -0.084*** -0.0723***

(0.009) (0.040)

κ̂2 (εic|small) 0.676*** 0.703***

(0.024) (0.040)

κ̂2 (εic|large) 0.783*** 0.779***

(0.040) (0.059)

κ̂3 (εic|small) 0.319*** 1.187***

(0.119) (0.265)

κ̂3 (εic|large) 0.213*** 0.934***

(0.058) (0.148)

κ̂4 (εic|small) 1.104** 4.608***

(0.488) (1.524)

κ̂4 (εic|large) 0.216 3.196***

(0.142) (0.778)

Standard errors in parentheses. *, ** and

*** denote signi�cant at the 90, 95 and 99

percent levels.

G Identi�cation

Assumption 2. Class size is independent of students and teacher's sorting mechanism.

This assumption, together with assumption 1 rules out any dependence among student and teacher

e�ects, both conditionally on class size and unconditionally. In some of the empirical analysis we use

the sample within variance as a regressor, which creates a measurement error bias. Therefore, we need

to �nd an instrument. Assumption 2 points out that class size can be used as an instrument, since it

satis�es the exogeneity condition. Since class size has a �nite support, we have as many instruments

as support points35. However, we also need class size to satisfy the relevance condition in order to be a

valid instrument, which is true under assumption 3.

Assumption 3. κR (Wic|Nc) = fR (Nc) 6= kR∀R ≥ 2

35More speci�cally, we use class size dummies as instruments.
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In words, the second and higher order moments of Wic vary with class size, Nc
36. This condition is

needed for identi�cation reasons, since otherwise the cumulants of teacher and student e�ects could not

be disentangled.

G.1 Variance analysis

Begin by considering the variance of test scores conditional on class size. It can be decomposed into the

sum of the between and the within variances, whose exact expressions after applying assumption 1 are

V ar (Bc|Nc) = V ar (αc|Nc) + γ2 1

Nc
V ar (εic|Nc) (15)

V ar (Wic|Nc) =
Nc − 1

Nc
V ar (εic|Nc) (16)

The additive nature of the between equation implies that the between variance is the sum of two

components, one which is the variance of teacher's quality, and another one that is the variance of

students' ability, scaled by the square of the social multiplier and divided by class size. In principle, one

could specify the functional form of the variances of the teacher and student e�ects, so that they depend

on a �nite number of parameters that allow for identi�cation using the two equations separately. Another

strategy, however, is to solve for V ar (εic|Nc) in equation 16 and plug it into equation 15, obtaining

V ar (Bc|Nc) = V ar (αc|Nc) + γ2 1

Nc − 1
V ar (Wic|Nc) (17)

Equation 17 expresses the between variance as the sum of two components, the teacher e�ect variance

and the within variance. If the latter was known, then one could use it as an instrument, and the variance

of teacher e�ect could be �exibly speci�ed as it was done in the �rst stage equation. However, this is

an unobserved quantity. Instead, we observe its sample analogue, ˆV arc (Wic|Nc) ≡ 1
Nc

ΣNc
i=1W

2
ic. This

variable constitutes the channel through which the estimates will su�er from measurement error bias.

By assumptions 2 and 3 we can use any deterministic function of class size as an instrument. Given

that class size takes a �nite number of values, we use class size dummies, which give us as many linearly

independent instruments as we can get. V ar (Bc|Nc) is also not observed, so it is also measured with

error. However, as long as it has no bias conditional on class size it creates no bias in the estimation.

Finally, V ar (αc|Nc) needs to be speci�ed. In line with Graham (2008) assumption, one possibility

is to assume that it does not depend on class size. In that case it would be the constant term in the

36Notice that even if εic is independent of Nc, there is dependence between Wic and Nc, since the distribution of the
within variance is di�erent for di�erent class sizes. To see this more clearly, consider the within variance when εic = σ2

ε ,
then the within variance equals V ar (Wic|Nc) = Nc−1

Nc
σ2
ε .
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regression. More generally, we can think that it is a function of class size, known up to a �nite and

small number of parameters. This, however, would be a problem if there is multicollinearity between

V ar (αc|Nc) and
1

Nc−1V ar (Wic|Nc). We rule out this possibility, which amounts to assume a full rank

condition.

Assumption 4. V ar (αc|Nc) is a function known up to a �nite number of parameters, V ar (αc|Nc) =

f (Nc, θα). Moreover, the following rank condition is satis�ed

rank

(
E

[
dc

(
∂f (Nc, θα)

∂θ
+
∂γ2 1

Nc−1V ar (Wic|Nc)

∂θ

)])
= dim (θ)

where dc is the H × 1 vector of class sizes dummies, H is the distinct number of class sizes, which is

assumed to be �nite, and θ ≡
(
θ′α, γ

2
)′
. This full rank condition essentially restricts the variance of the

teacher e�ect conditional on class size to depend on a �nite number of parameters. Since dim (dc) = H,

it follows that dim (θ) ≤ H, and therefore dim (θα) ≤ H − 1. As a consequence, V ar (αc|Nc) cannot

be nonparametrically identi�ed37. Finally, we have to deal with the fact that the between and within

variances are not observed and they have to be estimated. If the between and within variance estimates

are unbiased, conditionally on class size, i.e. E
[

ˆV ar (Wic|Nc) |Nc

]
= E

[
ˆV ar (Bc|Nc) |Nc

]
= 0, then

the following conditional moment holds

E
[

ˆV ar (Bc|Nc)− f (Nc, θα)− γ2 1

Nc − 1
ˆV ar (Wic|Nc) |Nc

]
= 0 (18)

G.2 Cumulants and cumulant generating functions

The previous variance analysis can be extended to higher order central moments. However, their

decompositions are in general more complicated expressions than those of the variance. To avoid this

problem, we use higher order cumulants, which are statistical functions that depend on the moments

of the random variables. There exists a bijection between cumulants and moments, so by working

with the former we are not losing any information. Further, they allow us to obtain simple closed

form expressions in terms of the cumulants of the teacher and student e�ects. Begin by computing

the cumulant generating function38 of the between and within variables as a function of the cumulant

generating functions of αc and εic

gB (t|Nc) = gα (t|Nc) +Ncgε

(
γ

Nc
t|Nc

)
37One easy way to think about this is to consider the case in which there are two di�erent class sizes. In this case we

can only let the two variances depend on one parameter, like assumption 1.2 in Graham (2008), which states that they
are the same.

38See appendix.
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gW (t|Nc) = gε

(
Nc − 1

Nc
t|Nc

)
+ (Nc − 1) gε

(
− 1

Nc
t|Nc

)
By taking the Rth derivative and evaluating it at t = 0 we get their Rth cumulants

κR (Bc|Nc) = κR (αc|Nc) + γR
1

NR−1
c

κR (εic|Nc) (19)

κR (Wic|Nc) =
Nc − 1

NR
c

[
(Nc − 1)R−1 + (−1)R

]
κR (εic|Nc) (20)

The expression of higher order cumulants is very similar to that of the variances39, as the Rth

between cumulant is the sum of two terms, the Rth cumulant of the teacher e�ect, and another term

that depends on the Rth cumulant of the student e�ect, whereas the Rth within cumulant is a function

of class size and the Rth cumulant of the student e�ect. As we did with the variances, solving for the

student e�ect cumulant in equation 20 and plugging it into equation 19, allows us to obtain the Rth

between cumulant as a function of the Rth teacher e�ect cumulant and the Rth within cumulant

κR (Bc|Nc) = κR (αc|Nc) + γR
Nc

(Nc − 1)
[
(Nc − 1)R−1 + (−1)R

]κR (Wic|Nc) (21)

Using the same argument as with the variances, we can use higher order cumulants to identify

the social multiplier. Again, we face the problem of not observing the actual values of the conditional

between and within cumulants, which have to be estimated. However, we use the same strategy by using

class size as an instrument in the regression. Moreover, we need to use unbiased estimators of these

cumulants, for which we use the so called k -statistics. These are the unique unbiased and symmetric

statistics of a cumulant. Using them, we get that the following conditional moment holds40

E

k̂R (Bc|Nc)− fR (Nc, θα,R)− γR Nc

(Nc − 1)
[
(Nc − 1)R−1 + (−1)R

] k̂R (Wic|Nc)

 = 0 (22)

Using higher order cumulants in the estimation would work for those distributions whose cumulants

exist, except for the normal distribution, whose cumulants beyond the variance are all equal to zero. It

39This is no surprise, since the variance is the second cumulant.
40It is also required an Rth cumulant equivalent to assumption 4. This assumption would be stronger as we consider

higher order cumulants, since the number of parameters on which the Rth cumulant can depend cannot grow beyond H-1.
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is the only distribution with such property, so as long as the teacher and student e�ects, conditional on

class size, are not normally distributed, and the cumulants exist, the methods presented in this section

can provide some extra identi�cation moments. The utilization of such moments can be argued on the

basis of estimation e�ciency, since they provide overidentifying restrictions of the social multiplier.

G.3 Distribution of e�ects

De�ne the characteristic functions of the teacher and student e�ects, conditional on class size, as

ψα (t|Nc) and ψε (t|Nc). Then, the characteristic functions of the between and within variables are

ψB (t|Nc) = ψα (t|Nc)ψε

(
γ

Nc
t|Nc

)Nc

ψW (t|Nc) = ψε

(
Nc − 1

Nc
t|Nc

)
ψε

(
− 1

Nc
t|Nc

)Nc−1

Assume γ and ψε (t|Nc) were known. Then, it becomes straightforward to obtain the characteristic

function of teacher's e�ect as a function of the characteristic functions of the between variable and the

student's e�ect

ψα (t|Nc) = ψB (t|Nc)ψε

(
γ

Nc
t|Nc

)−Nc
The student's e�ect characteristic function can be expressed as the in�nite product of the characteristic

function of the within variable

ψε

(
Nc − 1

Nc
t|Nc

)
= ψW (t|Nc)ψε

(
− 1

Nc
t|Nc

)−(Nc−1)

= Π∞k=0ψW

((
− 1

Nc

)k
t|Nc

)[−(Nc−1)]k

limk→∞ψε

((
− 1

Nc

)k
t|Nc

)[−(Nc−1)]k

= Π∞k=0ψW

((
− 1

Nc

)k
t|Nc

)[−(Nc−1)]k

Hence, unless γ is known, there is no full identi�cation of the characteristic functions of αc and εic.

Even in that case, in order to obtain the expression of the characteristic function of student's e�ect, one

needs to compute an in�nite product of characteristic functions, making this strategy inconvenient for

estimation purposes.
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G.4 Graham (2008) assumptions

Graham (2008) model is a particular case of the one presented here, and under some conditions it

is the most e�ecient estimator. Denote by Wc the dummy variable that takes value one if a class is

large. Using our notation, he made the following set of assumptions: independent random assignment,

stochastic separability and

Assumption 5. Independent Random Assigment:

Fα,ε (α (w) , ε (w) |Wc) = Fα (αc (w)) ΠNc
i=1Fε (εic (w) |Wc)

Assumption 6. Stochastic Separability:

αc (1) = αc (0) + κ0

Assumption 7. Peer Quality Variation:

E
[

1
(Nc−1)Nc

ΣNc
i=1 (yic − yc)

2 |Wc = 1
]
6= E

[
1

(Nc−1)Nc
ΣNc
i=1 (yic − yc)

2 |Wc = 0
]

Assumption 5 is very similar to assumption 1 in the main text. It di�ers because this assumption

is made conditional on class type, whereas the main assumption maintained in the text was conditional

on class size, which is more restrictive. Assumption 6 restrics all cumulants of order 2 and higher of the

teacher e�ect to be the same, regardless of class size. Finally, assumption 7 requires that there is some

variation in student e�ects between di�erent types of classes. Under a similar set of assumptions, this

estimator is the e�cient estimator of the square of the social multiplier, γ2. Reformulate the lattest

assumption and include a new one

Assumption 8. Student's Variance Heterogeneity:

V ar (εic|Wc = 1) 6= V ar (εic|Wc = 0)

Assumption 9. Gaussianity:

αc|Wc ∼ N
(
µWc , σ

2
α

)
εic|Wc ∼ N

(
0, σ2

ε (Wc)
)

Assumption 10. Class size distribution

Wc =

{
0 if Nc = N0

1 if Nc = N1

}
In words, assume that the variance of student e�ects is heterogeneous depending on class type, and

moreover both the teacher and student e�ects are normally distributed. Large classrooms are those of

size N1 and small classrooms are those of size N0, which are the only two possible class sizes. Recall

Graham (2008) estimator of the social multiplier

γ̂2 =
Gb (1)−Gb (0)

Gw (1)−Gw (0)
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where

Gb =
1

C
ΣC
c=1 (yc − µ)2 1 (Wc = w)

Gw =
1

C
ΣC
c=1

1

Nc (Nc − 1)
ΣNc
i=1 (yic − yc)

2 1 (Wc = w)

Lemma 1. Under assumptions 5, 6, 8, 9 and 10, the su�cient statistics for
(
γ, µ0, µ1, σ

2
α, σ

2
ε0, σ

2
ε1

)
is

T (yic|wc) =
(
y0, y1,Σc:Nc=N0ΣNc

i=1y
2
ic0,Σc:Nc=N1ΣNc

i=1y
2
ic,Σ

C
c:Nc=N0

y2
c ,Σc:Nc=N1y

2
c

)
.

Proof. Denote by Yc the vector of dimension Nc with all the test scores of class c. Under the stated

assumptions, the log likelihood function of {Yc}Cc=1 is

L = −ΣC
c=1Nc

2
log (2π)− ΣC

c=1 (1−Wc)

2
log
(
σ

2(Nc−1)
ε0

(
σ2
αNc +

[
(γ − 1)2 + 1

]
σ2
ε0

))
− ΣC

c=1Wc

2
log
(
σ

2(Nc−1)
ε1

(
σ2
αNc +

[
(γ − 1)2 + 1

]
σ2
ε1

))
− 1

2
ΣC
c=1ΣNc

i=1 (yic − µ0)2 (1−Wc)
1

σ2
ε0

+ ΣC
c=1 (yc − µ0)2 (1−Wc)

σ2
α + (γ − 1)2 σ2

ε0
Nc

σ2
ε0

(
σ2
αNc +

[
(γ − 1)2 + 1

]
σ2
ε0

)
− 1

2
ΣC
c=1ΣNc

i=1 (yic − µ1)2Wc
1

σ2
ε1

+ ΣC
c=1 (yc − µ1)2Wc

σ2
α + (γ − 1)2 σ2

ε1
Nc

σ2
ε1

(
σ2
αNc +

[
(γ − 1)2 + 1

]
σ2
ε1

)
After some algebra, and using Neymar factorization, we have that the su�cient statistics are

T (yic|wc) =
(
y0, y1,Σc:Nc=N0ΣNc

i=1y
2
ic0,Σc:Nc=N1ΣNc

i=1y
2
ic,Σ

C
c:Nc=N0

y2
c ,Σc:Nc=N1y

2
c

)
.

Denote by C0 and C1 the total number of classes of sizes Nc and N1, respectively. The expected

value of the Wald estimator, conditional on the su�cient statistis T (yic|wc) equals

E
[
γ̂2|T (yic|wc)

]
= E

[
1
C1

ΣC
c=1 (yc − y1)2Wc − 1

C0
ΣC
c=1 (yc − y0)2 (1−Wc)

1
C1N1(N1−1)ΣC

c=1ΣNc
i=1 (yic − yc)

2Wc − 1
C0N0(N0−1)ΣC

c=1ΣNc
i=1 (yic − yc)

2 (1−Wc)
|T (yic|wc)

]
= γ̂2

Thus, Graham (2008) estimator is a function of the su�cient statistic, which implies that its e�ciency

cannot be improved by the Rao-Blackwell theorem. However, it is still an ine�cient estimator. To see

this, notice that the between class term can be written as
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Gbc = (yc − µwc)
2

= σ2
α + γ2Gwc − γ2

[
1

Nc (Nc − 1)
ΣNc
i=1 (yic − yc)

2 −
σ2
εwc

Nc

]
+

[
(yc − µwc)

2 − σ2
α − γ2σ

2
εwc

Nc

]
≡ σ2

α + γ2Gwc + uc

uc is the error term of the regression of Gbc on G
w
c , and it has mean zero and it is heteroskedastic in

class size. Its variance equals

E
[
u2
c |wc

]
=

2γ4

N3
c

σ4
εwc + 2

(
σ2
α +

γ2

Nc
σ2
εwc

)2

γ̂2 is the 2SLS estimator of γ2 when regressing Gbc on xc ≡ (1, Gwc )′ using zc ≡ (1, wc) as the

instrument. The asymptotic variance of this estimator equals

AV ar
(
γ̂2
)

=
(
E
[
xcz
′
c

]
E
[
zcz
′
c

]−1 E
[
zcx
′
c

])−1
E
[
xcz
′
c

]
E
[
zcz
′
c

]−1 E
[
u2
czcz

′
c

]
E
[
zcz
′
c

]−1 E
[
zcx
′
c

]
·

·
(
E
[
xcz
′
c

]
E
[
zcz
′
c

]−1 E
[
zcx
′
c

])−1

where

E
[
zcx
′
c

]
=

[
1 E [Gwc ]

E [wc] E [Gwc wc]

]

E
[
zcz
′
c

]
=

[
1 E [wc]

E [wc] E [wc]

]

E
[
u2
czcz

′
c

]
=

[
σ2
u0E [1− wc] + σ2

u1E [wc] σ2
u1E [wc]

σ2
u1E [wc] σ2

u1E [wc]

]

E [wc] = P (wc = 1)
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E [Gwc ] =
σ2
ε0

N0
E [1− wc] +

σ2
ε1

N1
E [wc]

σ2
uw ≡ E

[
u2
c |wc = w

]
The optimal weighting matrix under such conditions is not the one used in 2SLS, but W ∗ =

E
[
u2
czcz

′
c

]−1
. Moreover, the optimal instrument is not zc, but z

∗
c ≡ E

[
u2
c |zc
]−1 E [xc|zc], where

E
[
u2
c |zc
]

=

[
2γ4

N3
0

σ4
ε0 + 2

(
γ2

N0
σ2
ε0 + σ2

α

)2
]

(1− 1 (wc = 1)) +

[
2γ4

N3
1

σ4
ε1 + 2

(
γ2

N1
σ2
ε1 + σ2

α

)2
]
1 (wc = 1)

E [xc|zc] =
σ2
ε0

N0
(1− 1 (wc = 1)) +

σ2
ε1

N1
1 (wc = 1)

H Estimation

Estimation of the social multiplier requires variance or higher order moments analysis, which in turn

requires the estimation of these moments, which are unobserved. Therefore, as a �rst step we need to

consistently estimate E [Yic|Nc]. I assume that this expectation is linear in class size and possibly other

covariates.

Denote the residuals of this �rst regression as ûic, with class average ûc. Using these residuals,

compute the following variables, k̂b2c and k̂
w
2c

k̂b2c =
(
ûc
)2

(23)

k̂w2c =
1

Nc (Nc − 1)
ΣNc
i=1

(
ûic − ûic

)2
(24)

Then the estimates solve the following set of moment restrictions:

E
[
dc

(
k̂b2c − f (Nc, θα)− γ2k̂w2c

)]
= 0 (25)

In practice we let f (Nc, θα) be a polynomial of class size, possibly a constant. Using GMM, we
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can easily obtain θ̂ =
(
θ̂′α, γ̂

2
)
, and under the stated assumptions these estimates are consistent and

asymptotically normal. For higher order cumulants the strategy is similar. In practice, not all test

scores are observed, so the observed empirical variances underestimate the actual ones. Let N0c denote

actual class size and N1c denote the number of students of class c whose test score is observed. Then,

k̂b2c and k̂
w
2c need to be corrected to take into account these missing scores. Their new expressions are

k̂b2c =
(
ûc
)2 − ( 1

N1c
− 1

N0c

)
1

N1c − 1
ΣN1c
i=1 û

2
ic

k̂w2c =
1

N0c

1

N1c − 1
ΣN1c
i=1 û

2
ic

Similar corrections exist for higher order moments, but their expressions are very complicated.

I Additional results

Using the residuals from speci�cation 6 for the equation in levels, we compute the within and between

variances for each class size. Figure 9 plots the within and between variances for each class size41 for the

mathematics test scores. In general, both variances are slightly declining with class size, although this

is more clear for the within variance. For the between variance there is much more noise, and for those

values of class size that are not frequent the variance can have a lot of noise. This is not surprising, since

there are 325 classes only, compared to around 6000 students. Despite this, since the unit of analysis of

the estimation method is the class, the results are mostly driven by the variances of frequent class sizes.

For the variance analysis, the baseline speci�cation assumes that the variance of teacher e�ect is

constant. The estimate of the square of the social multiplier is approximately 3.2, which is only slightly

smaller than the e�ect found in Graham (2008). Since we have included school dummies, it follows

that there is not an estimate of the constant term. Speci�cations 2 and 3 include a small class size

dummy and class size as regressors, respectively. The social multiplier becomes much smaller in these

two speci�cations, and their standard errors increase a lot, making the coe�cient insigni�cant even at

the 90% level. Moreover, the coe�cients associated to small and class size are very close to zero and

not signi�cant. Now look at the estimates of the square of the social multiplier in model 1. By taking

the square root we can get an estimate of the social multiplier, which is 1.7. This means that if we

change the composition of a classroom such that the average student e�ect increases by one standard

deviation, the test scores of all the students would lead to a spillover of size 0.7 standard deviations42.

41Notice that there is only one class with size 28, so the between variance for this class size equals zero.
42This does not mean that test scores would increase by 0.7 standard deviations, this �gure need to be multiplied by

the standard deviation of student e�ect, which in principle can depend on class size.
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Figure 9: Within and between variances
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Table ?? shows the estimates of the within variance regression, scaled by Nc
Nc−1

43. We consider

three di�erent speci�cations, one that allows the variance of the student e�ect to be constant for all

class sizes, another one that is di�erent for small and large classes and �nally we let it be a random

coe�cient model of the form εic ≡ ε0ic + ε1icNc, which means that the variance is quadratic in class

size. Compare speci�cations 1 and 2. We can see that there is a di�erence in the variance between small

and large classes, of size 0.1, and assuming that the variance is constant results in an estimate that lies

between the two distinct values the variance can take when it is di�erent for small and large classes.

This di�erence is signi�cant at the 95% con�dence level. If we look at speci�cation 3, we can see that

the estimates don't �t the random coe�cients model very well: the coe�cient associated to the square

of class size is negative, when it should be positive, as it is the estimate of V ar (ε1ic). Moreover, none

of the coe�cients is signi�cantly di�erent from zero.

43By doing this normalization, the right hand side is the variance of the student e�ect.
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We could also be concerned with the validity of the instruments, since the mechanism to determine

class size was not stated in the STAR experiment. The experiment required only that each school had

at least a classroom of each type, but principals could have some margin to determine the exact number

of students in a class. Notice however, that principals would not be able to choose enrollment levels,

limiting their ability to choose class size. I test the validity of the assumption of class size randomness

by using a Sargan test of overidentifying restrictions. In all speci�cations the test fails to reject the null

hypothesis of instruments validity. I do not comment the results for the reading analysis, which are

shown in tables 16 and 17.

Table 14: Variance analysis estimates, mathematics test scores
(1) (2) (3)

γ̂2 3.186*** 2.320 2.396
(0.990) (3.023) (2.422)

Small - 0.023 -
(0.072)

Class size - - -0.003
(0.008)

Regular with aide -0.009 -0.004 -0.006
(0.018) (0.022) (0.019)

Sargan test 0.49 0.48 0.48
p value 1.0000 1.0000 1.0000

Standard errors in parentheses. *, ** and *** denote

signi�cant at the 90, 95 and 99 percent levels. All

speci�cations include school dummies.

Table 15: Within variance analysis estimates, mathematics test scores
(1) (2) (3)

Constant 0.719*** 0.678*** 0.692
(0.022) (0.024) (0.443)

Small - 0.104** -
(0.049)

Class size - - 0.015
(0.047)

Class size2 - - -0.001
(0.001)

Standard errors in parentheses. *, ** and *** denote

signi�cant at the 90, 95 and 99 percent levels.
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Table 16: Variance analysis estimates, reading test scores
(1) (2) (3)

γ̂2 4.236** 1.042 1.211
(1.839) (1.814) (1.832)

Small - 0.082* -
(0.046)

Class size - - -0.010*
(0.006)

Regular with aide 0.013 0.018 0.015
(0.028) (0.027) (0.026)

Sargan test 1.12 0.74 0.72
p value 1.0000 1.0000 1.0000

Standard errors in parentheses. *, ** and *** denote

signi�cant at the 90, 95 and 99 percent levels. All

speci�cations include school dummies.

Table 17: Within variance analysis estimates, reading test scores
(1) (2) (3)

Constant 0.740*** 0.717*** -0.038
(0.034) (0.040) (0.787)

Small - 0.060 -
(0.073)

Class size - - 0.095
(0.085)

Class size2 - - -0.003
(0.002)

Standard errors in parentheses. *, ** and *** denote

signi�cant at the 90, 95 and 99 percent levels.
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