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Abstract

A long tradition suggests a fundamental distinction between situ-
ations of risk, where true objective probabilities are known, and un-
measurable uncertainties where no such probabilities are given. This
distinction can be captured in a Bayesian model where uncertainty is
represented by the agent’s subjective belief over the parameter govern-
ing future income streams. Whether uncertainty reduces to ordinary
risk depends on the agent’s ability to smooth consumption. Uncer-
tainty can have a major behavioral and economic impact, including
precautionary behavior that may appear overly conservative to an
outside observer. We argue that one of the main characteristics of
uncertain beliefs is that they are not empirical, in the sense that they
cannot be objectively tested to determine whether they are right or
wrong. This can confound empirical methods that assume rational
expectations.
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1 Introduction

Knight (1921)’s idea of a fundamental difference between “measurable risk

and an unmeasurable uncertainty” has generated both interest and contro-

versy. Standard models in economics assume that agents use probabilities to

quantify all uncertainties regardless of their source or nature. No distinction

is drawn between actuarial and strategic risks, or between risks associated

with repetitive vs. singular events. Yet there is a compelling intuition that

some probability judgments are less ‘obvious’ or ‘objective’ than others. Bet-

ting on events like the unraveling of the European monetary union or global

warming seems qualitatively different from betting on the outcome of a coin

toss or whether it rains tomorrow. The first type of event represents, in

Knight’s words, unmeasurable uncertainties that should be treated differ-

ently from measurable risks.

This paper suggests that a Bayesian framework can capture the distinc-

tion between situations with known probabilities, or “risk,” and Knightian

uncertainty where objective probabilities are unknown.1 We illustrate the

distinction in a consumption-saving model where uncertainty is represented

by the agent’s subjective belief about the parameter governing future income.

We relate the impact of uncertainty to the agent’s ability to intertemporally

smooth consumption and show that this leads to precautionary behavior that

may appear overly conservative to an outside observer. We also point to the

potential tension between subjective uncertainty and empirical methods that

use rational expectations for econometric identification.

Consider an agent with time-separable utility over (finite or infinite) con-

sumption streams. The agent receives an i.i.d. income stream with unknown

parameter θ.2 Uncertainty is lack of knowledge represented by a prior belief

µ over θ. Uncertainty does not necessarily lead to measurable consequences

1 Keynes (1937) characterized uncertain beliefs as follows: “The sense in which I am
using the term [uncertainty] is that in which the prospect of a European war is uncertain,
or the price of copper and the rate of interest twenty years hence, or the obsolescence
of a new invention, or the position of private wealth-owners in the social system in 1970.
About these matters there is no scientific basis on which to form any calculable probability
whatever. We simply do not know.”

2 The i.i.d. assumption simplifies the analysis, but is not essential to our point. We
discuss this point in Section 4.
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on behavior. For example, if uncertainty is defined on consumption streams

directly, then discounted expected utility is unaffected by replacing the un-

certain belief µ by a parameter with the same marginal as µ. In this case,

uncertainty reduces to ordinary risk. The role of uncertainty is manifested

in the indirect utility the agent derives from income streams when he has

(perhaps limited) freedom to save or borrow.

We first illustrate this point in a simple setting where consumption occurs

after an initial phase of payoff accumulation. For example, a retirement

portfolio generates dividends each period, but the agent cares only about

its value at the time of retirement. Another example is a start-up that

accumulates gains and losses over a period of time, but whose value is realized

only when the entrepreneur sells the firm. In these examples, separating

consumption from payoff accumulation simplifies the calculation of indirect

utility, making the impact of uncertainty transparent and striking.

We then turn to a richer consumption-saving problem where consumption

and wealth can change as uncertainty about income resolves. Using exponen-

tial utility for tractability, we derive the evolution of consumption and show

that uncertainty results in precautionary behavior that may appear overly

conservative to an outside observer. Consumption is more volatile under

uncertainty because the agent perceives short-run income variations to be

potentially informative about his long-run income prospects. Under risk, by

contrast, all income realizations are viewed as transitory.

A Bayesian framework represents any lack of knowledge in terms of prob-

abilities. What then justifies treating uncertainty differently from other sit-

uations of imperfect information? Our main point is that the key difference

between risk and uncertainty is that uncertain beliefs are not empirical. Sec-

tion 4 introduces two arguments to support this point.

First, we formalize the intuition that the probabilities of uncertain events

are subjective opinions about which, in Keynes’ words, “there is no scientific

basis to form any calculable probability whatever.” We capture this intuition

using statistical tests that compare agents’ subjective beliefs with the actual

sequence of realized outcomes. Consider asymptotic tests for simplicity. A

natural property to require in such tests is to be free of Type I error: if

the agent knows the true probabilities, he must pass the test almost surely.

2



Proposition 4.1 says that an agent who is uncertain about the true parameter,

and who has subjective belief µ, must also believe that there is an alternative

belief µ′ 6= µ such that no Type I error free test could reject µ′ regardless of

the amount of data used. Bayesian agents assign probabilities to all events,

whether risky or uncertain. What distinguishes beliefs about uncertain events

is that they cannot be objectively tested to determine whether they are right

or wrong. By contrast, it is easy to test beliefs under risk by comparing them

with observed frequencies.

The second sense in which uncertain beliefs are not empirical concerns

the difficulty of estimating their impact using standard econometric meth-

ods. Beliefs influence decisions regardless of whether they reflect risk or

uncertainty. But since beliefs are not directly observable, econometric iden-

tification assumptions are needed to recover them from data. A standard

assumption is rational expectations which identifies beliefs with observed

empirical frequencies. While this assumption offers considerable advantages,

it also rules out subjective model-uncertainty as a factor in decisions, a point

made by Weitzman (2007) among others. In Section 4 we suggest that the

perceived failure of equilibrium models to capture Knightian uncertainty may

have more to do with the use of rational expectations in their econometric

estimation than with the Bayesian rational choice paradigm.

There is a growing interest in the economic role of Knightian uncer-

tainty.3 One motivation is the discrepancy between observed behavioral

patterns (e.g., in asset prices) and the predictions of models where agents

are assumed to know the true data generating process. Introducing uncer-

tainty about fundamentals is a natural way to bring models closer to reality.

Pástor and Veronesi (2009) survey asset pricing anomalies that could be ex-

plained with the introduction of uncertainty about fundamental parameters.

They conclude that “[m]any facts that appear baffling at first sight seem

less puzzling once we recognize that parameters are uncertain and subject to

learning.” Hansen and Sargent (2001) discuss the importance of model mis-

specification and parameter-uncertainty in macroeconomic modeling. Con-

nections to these works are discussed in greater detail in Section 4.

3 The terms parameter-uncertainty, model-uncertainty, or model mis-specification are
often used instead of what we simply call “uncertainty.”
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Two seminal papers, Gilboa and Schmeidler (1989) and Bewley (1986),

formalize the concept of Knightian uncertainty as lack of full Bayesian belief.

In Bewley (1986), uncertainty is modeled as an incomplete ranking over acts.

Gilboa and Schmeidler (1989)’s ambiguity averse agents use a maxmin crite-

rion with respect to a set of priors to incorporate caution in their decisions.

Both approaches focus on the typical pattern of choices in static Ellsberg

experiments as a key behavioral manifestation of uncertainty.

The present paper argues that a distinction between risk and Knight-

ian uncertainty can be made within the Bayesian framework. This point of

view follows a number of authors, including Halevy and Feltkamp (2005) and

Weitzman (2007), who pursue Bayesian approaches to uncertainty. LeRoy

and Singell (1987) suggest that such approach can be traced to Knight

(1921)’s original work, noting that “Knight shared the modern view that

agents can be assumed always to act as if they have subjective probabili-

ties.” Similarly, Keynes (1937) writes that, even in situations of uncertainty,

“the necessity for action and for decision compels us [..] to behave exactly

as we should if we had [...] a series of prospective advantages and disadvan-

tages, each multiplied by its appropriate probability, waiting to be summed.”

Knight and Keynes, writing decades before modern subjective expected util-

ity theory, seemed to believe that decision making under uncertainty is not

necessarily in conflict with probabilistic reasoning.

We find it useful to distinguish Knightian uncertainty from ambiguity

aversion. We take uncertainty to mean probabilities that cannot be ob-

jectively measured, an intuition we formalize in terms of statistical tests.

Ambiguity aversion, on the other hand, refers to non-probabilistic beliefs,

exemplified by the static Ellsberg choices. Although both lead to precau-

tionary behavior, there are profound differences. In a Bayesian model, the

implications of uncertainty appear in connection with intertemporal choice

and the constraints on consumption smoothing. In static settings, such as

Ellsberg’s choices, risk and uncertainty are indistinguishable. This consistent

with Knight (1921)’s view: “when an individual instance only is at issue,

there is no difference for conduct between a measurable risk and an unmea-

surable uncertainty. The individual [...] throws his estimate of the value of

an opinion into the probability form of ‘a successes in b trials’ [...] and ‘feels’
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toward it as toward any other probability situation.” In modern Bayesian

language, agents care only about the prizes they receive, not whether they

were the result of risk rather than uncertainty.

The outline of the rest of the paper is as follows. Section 2 introduces the

basic setup and defines the uncertainty premium. This section also introduces

a very simple model where the value function can be easily computed and

the impact of uncertainty is obvious. This simple model is related to Halevy

and Feltkamp (2005), which we discuss in some detail. Section 3 introduces

a more complete saving-consumption model and derives the stochastic laws

of consumption under risk and uncertainty. Uncertainty leads to precaution-

ary behavior and greater sensitivity to information. Section 4 discusses the

empirical implications of uncertainty. We begin with a simple argument il-

lustrating that uncertain beliefs are not testable, then discuss the potential

tension between uncertainty and rational expectations econometrics. We dis-

cuss in detail the relationship of our work to Weitzman (2007) and Cogley

and Sargent (2008).

2 Risk and Uncertainty

2.1 Model and Notation

We consider infinite horizon decision problems (finite horizon problems can

be obtained as a special case). In each period, an outcome in a finite set

S = {s1, . . . , sk} is realized. The set of infinite sequences of outcomes is

denoted S∞. We use subscripts to indicate time periods and superscripts to

indicate outcomes. For example, si is the outcome at time i while sj is the

jth outcome.

An agent has a a time-separable discounted utility for consumption streams:

U(c1, . . .) =
∞∑
i=1

δi u(ci), (1)

where δ ∈ [0, 1] is a discount factor and u : R → R is a concave von

Neumann-Morgenstern utility.
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Let Θ be the set of all probability distributions θ = (θ1, . . . , θk) on S.

In this paper, a parameter is an i.i.d. distribution P θ on S∞ obtained by

independently sampling from S according to θ. We will refer to either θ or

P θ as “parameter.”4 We do not consider more general parametric models,

such as Markov processes, for tractability and expositional simplicity.

The agent’s uncertainty about θ is represented by a prior µ over Θ. Let

P µ represent the implied belief about infinite samples, defined by P µ(B) ≡∫
Θ
P θ(B) dµ(θ), for every event B.5 From the perspective of the agent, the

parameter θ is a random variable with distribution µ. Expectations with

respect to µ and θ are denoted Eµ, Eθ, respectively.

It will be useful to define the “average” parameter θ̄
µ

by θ̄
µ
(si) = Eµθ(s

i).

For example, if si is ‘Heads’ in a coin toss, then the space of parameters is

[0,1] and µ is a distribution on [0,1]. In this case, Eµ θ
i is the expected value

of the probability of Heads. Although P µ and P θ̄
µ

share the same marginal

on any single coordinate, P θ̄
µ

is always independent, while P µ is independent

only when µ concentrates all its mass on a single parameter.

2.2 Risk, Uncertainty, and the Value Function

A Bayesian agent who is uncertain about the ‘true’ parameter θ represents

this lack of knowledge in terms of a prior µ. His expected utility on con-

sumption streams is:

EµEθ U(c1, . . .).

It is easy to see that this equals Eθ̄µ U(c1, . . .), so the agent is indifferent be-

tween uncertainty about the parameter and certain knowledge of the average

parameter.6

This makes a simple but important reference point: how confident an

agent ‘feels’ about his knowledge of the true θ is irrelevant in ranking con-

4 All events in S∞ are assumed to be Borel sets. The space of probability measures on
S∞ is itself endowed with the weak* topology and the Borel sigma-algebra of events. All
functions used in the paper are assumed measurable.

5 There is a 1-1 correspondence between Pµ and µ, yet they are different objects: the
former is a distribution on Sn, while µ is a distribution on Θ.

6 This follows from the linearity of probabilities and the time-separability of utility:∫
Θ

∫
Sn

∑∞
i=1 δ

i u(ci) dP θ dµ =
∑∞
i=1 δ

iEθ̄µ u(ci) = Eθ̄µ U(c1, . . . , cn).
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sumption streams. This apparent failure of the standard framework to cap-

ture uncertainty about the true probabilities may be behind the perception

that Knightian uncertainty requires a departure from probability-based rea-

soning. For instance, consider an agent A who believes that his consumption

stream will either be high forever or low forever with equal probability, vs.

an agent B who believes that each day there is an independent 50-50 draw

between high and low. Our standard utility function evaluates these as equal,

because agent B does not derive any hedging benefit from the independent

draws, but is forced to “starve” on bad days. It is more natural, though to

consider the case that some intertemporal smoothing is possible.7

While a Bayesian framework cannot distinguish risk and uncertainty in

consumption streams, this distinction is possible, indeed natural, in evaluat-

ing the indirect utility of payoff streams. To make this idea formal, define a

consumption plan c as a sequence of functions:

ci : Ri → R, i = 1, . . . ,

with the interpretation that ci is period i consumption given the payoffs

realized up to that period. The agent chooses a consumption plan from a

non-empty subset C which we interpret as the set of feasible plans. The

specification of C will vary with the problem considered.

Given a random payoff stream fi, i = 1, . . ., an agent with belief µ solves:

max
c∈C

EµEθ

∞∑
i=1

δi u(ci). (2)

Let c∗(µ, f, C) be a solution to this problem. The indirect utility function is

the value V (µ, f, C) of the above problem. That is,

V (µ, f, C) = EµEθ

∞∑
i=1

δi u
(
c∗i (f1, . . . , fi)

)
.

7 For example Hansen and Sargent (2001) write: “Knight (1921) distinguished risky
events, which could be described by a probability distribution, from a worse type of igno-
rance that he called uncertainty and that could not be described by a probability distri-
bution. [...] A person behaving according to Savage’s axioms has a well-defined personal
probability distribution. [...] Savage’s system undermined Knight by removing the agents
possible model misspecification as a concern of the model builder.”
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We suppress references to f and C when they are clear from the context. In

many applications, C has a recursive structure, and the impact of past payoff

realizations can be summarized by a vector of state variables.

A basic intuition is that agents prefer prospects with known probabilities

to ones where the probabilities are unknown. In fact, Knight’s original mo-

tivation was that economic profits are paid to bearing uncertainty. The first

criterion to measure the impact of uncertainty is in terms of the expected

utility improvement if the agent knew the true parameter:

Eµ V (θ)− V (µ). (3)

This term is strictly positive if V is strictly convex in θ. It captures the

value of information in helping the agent make better consumption decisions.

We examine consumption smoothing under uncertainty in greater detail in

Section 3. For now, we simply note that uncertainty has no impact when

considering preferences over consumption streams, since there is no decision

to be made. Formally, a constraint set C precludes intertemporal smoothing

if ci = f(si) for all i and s.

Proposition 2.1 If C precludes intertemporal smoothing then for every f ,

V (µ) = V (θ̄
µ
).

Precluding intertemporal smoothing means that the agent consumes his en-

dowment, so indirect utility reduces to utility over consumption streams.

The agent cannot, for example, open a checking account, store consumption

goods, or put money under the proverbial mattress. In realistic economic

environments, some degree of intertemporal smoothing is possible, and un-

certainty potentially has an impact on behavior.

The second criterion to measure the impact of uncertainty is to use as a

reference point the agent’s utility under the average parameter:

V (θ̄
µ
)− V (µ) (4)

and define the uncertainty premium as:

u−1
(
V (θ̄

µ
, f)
)
− u−1

(
V (µ, f)

)
.

To illustrate these concepts, we focus on a concrete class of examples:
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Example 1 (Deferred Consumption) There are n+1 periods and δ = 1.

The set C consists of a single consumption plan: ci = 0, i 6= n + 1 and

cn+1 =
∑n

i=1 fi.

One interpretation of the utility of consumption in period n+1 is that it rep-

resents the indirect utility of consumption in subsequent periods with initial

wealth given by the lump-sum payment
∑n

i=1 fi. Many important problems

fit this description, including assets that generate payoffs each period but

pay the cumulative dividend at time n+ 1.8

The separation of consumption (period n + 1) and payoff accumulation

(periods i = 1, . . . , n) makes the problem tractable. Assuming u(0) = 0,

indirect utility is simply:

V (µ) = EµEθ u
(∑n

i=1 fi

)
.

Note that the term (3) is zero, so that criterion cannot separate risk and

uncertainty. The separation is possible under criterion (4). However, when

u is strictly concave and n > 1, the distribution of the sum
∑n

i=1 fi has more

variability under the uncertain belief µ than under the i.i.d. parameter θ̄
µ
.

This suggests that an agent will prefer a project with known probability θ̄
µ

to a project with uncertain probability represented by µ.

This intuition is confirmed by Halevy and Feltkamp (2005) in the case of

n = 2. They consider an agent whose utility depends on the sum f(s1)+f(s2)

of two draws from an urn with fixed but unknown composition. They show

that this creates sensitivity to uncertainty: a risk averse agent would prefer to

bet on an urn with known composition θ̄
µ

to an uncertain urn with subjective

distribution µ, so (4) holds strictly. Halevy and Feltkamp (2005)’s important

insight is that many real-world situations involve multiple draws and that

utility may depend on the sum of these draws. They suggest that agents

may develop heuristics that make them appear sensitive to uncertainty even

in one-draw experimental settings.

8 For example, a start-up company which accumulates gains and losses to its value over
a period of time, but investors are paid when the company is sold or goes public. Another
example is a retirement portfolio that generates dividends each period, but the agent cares
only about its value at the time of retirement.
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Halevy and Feltkamp (2005)’s study shows that analyzing even the n = 2

case can be quite involved. We gain additional intuition by considering large

n. Imagine a partnership where each partner owns (conveniently) a 1
n

share

of the final value of the firm. This normalization eliminates the effect of

possible changes in risk attitude as n grows. The agent has a choice between

two projects: one with known odds θ̄
µ

and another with uncertain odds µ.

Proposition 2.2 Suppose that u is strictly concave and µ is non-degenerate.

Then for all sufficiently large n, the agent strictly prefers the project with

known odds.

This says that V
(
θ̄
µ)
> V (µ) and the uncertainty premium is strictly posi-

tive. With large n, the intuition is simple: the law of large numbers implies

that for any θ there is high probability that the average is close to the ex-

pectation Eθf , hence the approximate equality:

Eθ u
(

1
n

∑∞
i=1 fi

)
' u

(
1
n
Eθ
∑∞

i=1 fi
)
.

The distinction between parameters and subjective beliefs about parameters

is key: while the variability implied by θ tends to average out, uncertainty is

unaffected by n. We finally note that uncertainty is irrelevant in a one-period

problem. With n = 1, P θ̄
µ

and P µ induce identical distributions on outcomes,

and are therefore indistinguishable. Our model is therefore inconsistent with

behavioral anomalies that arise in one-period choice problems.

3 Uncertainty and Precautionary Behavior

In this section we turn to a richer model where consumption decisions and

income realizations occur in each period. This standard consumption-saving

setting makes it possible to examine the theoretical and empirical implica-

tions of uncertainty in a familiar context.

3.1 Model

In each period t = 1, . . ., the agent starts with a level of wealth wt and

belief µt which represents the physical state and belief state of the system,

respectively. His consumption decision is a function of the state, ct(wt, µt).
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The physical state evolves according to:

wt+1 = (1 + r)(wt + ft − ct), (5)

where ct is consumption in period t and r > 0 is the net return on savings.

Beliefs evolve according to Bayes rule. Note that the transition of the physical

state does not depend on beliefs, and conversely. The transitions on wealth

and beliefs define a feasible set C. The value function (indirect utility) and

the policy function are denoted V (µ,w) and c∗(µ,w).

To obtain an analytical expression for the evolution of consumption and

wealth under uncertainty, we assume that the agent has an exponential

(CARA) utility function u(x) = −e−ax and that δ = 1
1+r

. Our analysis

for the pure risk case is based on Caballero (1990), while the results for

uncertainty appear new. See Carroll and Kimball (2008) for a recent survey.

The optimal solution to this problem must satisfy the Euler equation:

u′(c∗t ) = Et[u
′(c∗t+1)].

For the exponential utility, marginal utility is a constant multiple of the

utility level. Using this fact, and iterating expectations, we have:

u(c∗t ) = Et[u(c∗t+k)]

for every k. This implies (by taking u−1 of both sides) that consumption

today equals the certainty equivalent of consumption at any future date.

This in turn implies that the value function satisfies:9

V (µt, wt) = u(c∗t ).

3.2 Pure Risk

The evolution of consumption under risk and exponential utility is well-

known in the literature on precautionary saving. We summarize these results

for the benefit of the reader:

9 This follows from: V (µt, wt) = (1− δ)Eµt
[∑∞

l=t δ
l−tu(c∗l )

]
= (1− δ)

∑∞
l=t δ

lu(c∗t ).
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Proposition 3.1 Given any parameter θ, the optimal consumption rule is:

c∗(θ, w) =
r

1 + r
w + r−1CE(rf |θ) (6)

where

CE(rf |θ) ≡ u−1

(∫
u(rf)dθ

)
is the certainty equivalent of the random permanent impact rf on consump-

tion from the dividend implied by θ.

Furthermore, the evolution of consumption can be written

ct+1 = ct + Γ(θ) + r(ft − E[f |θ]) (7)

where Γ(θ) is the risk premium of the variable rf , defined by

Γ(θ) ≡ E(rf |θ)− CE(rf |θ) ≥ 0. (8)

Examining formula (7), we see that Γ is the drift of the consumption pro-

cess (since the last term has mean zero). Once again, Γ equals the standard

risk premium of the prospect rf . In particular, Γ is increased if the distri-

bution on f is replaced by a mean-preserving spread. It is strictly positive

as long as θ is not a point mass, since a certainty equivalent (under concave

utility) is always less than expected value. It should be interpreted as due

to “precautionary savings” since it would be absent if future dividends were

known. The term r(ft−E[f |θ]) is a mean-zero random shock to consumption

due to the wealth effect of the difference between the realized and expected

payoff.

We can also observe that, by inspection of the CARA utility form, the

term r−1CE(rf |θ) which appears in (6) is in fact the certainty equivalent

of the prospect f for an agent who has CARA utility with risk aversion of

ra rather than a. Notice that this must be larger than CE(f |θ) whenever

r < 1; an agent who is less risk averse has larger certainty equivalents. An

equivalent statement is that for r < 1:

CE(rf |θ) ≥ rCE(f |θ)

which is just the statement that there is less risk aversion at a smaller scale.

The inequality is strict whenever f takes on more than one value.
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3.3 Uncertainty

Here we let µ be a non-trivial distribution over the parameter θ. The fol-

lowing general form, stating that adding wealth simply results in additional

interest income being consumed each period, follows intuitively from the fact

that risk attitudes under CARA are invariant to the wealth level:

Lemma 3.2

c∗(µ,w) =
r

1 + r
w + c∗(µ, 0).

In light of the lemma, it makes sense to use the notations

c∗(µ) ≡ c∗(µ, 0) and V (µ) ≡ V (µ, 0).

The next result shows that the value and consumption functions are con-

vex in µ; this can be interpreted to mean that given any uncertainty, resolu-

tion of this uncertainty will on average increase consumption. The last part

states further that, for a fixed marginal distribution on tomorrow’s return,

we consume less under uncertainty than under pure risk. That is, there is

additional precautionary savings due to the uncertainty about θ. To take

an extreme example, we consume more if we know our returns will be i.i.d.

50-50, 0 or 1, forever, than if we think there is a 50% chance they will be 0

forever and a 50% chance they will be 1 forever.

Proposition 3.3 For any w, V and c∗ are strictly convex in µ. That is,

letting µ1 and µ2 be any beliefs which result in distinct consumption plans,

1. V (λµ1 + (1− λ)µ2, w) < λV (µ1, w) + (1− λ)V (µ2, w);

2. c∗(λµ1 + (1− λ)µ2, w) < λc∗(µ1, w) + (1− λ)c∗(µ2, w).

Furthermore, for any µ with finite support, letting θ̄
µ

be the average of θ

under µ, if r < 1 then

V (µ) ≤ V (θ̄µ)

with strict inequality whenever µ is not a point mass, implying also

c∗(µ) ≤ c∗(θ̄
µ
).
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The proof of the last statement makes it clear that there are two forces

at work in the preference for the risk represented by θ̄
µ

over the uncertainty

represented by µ. First, there is the value of information; it is better to have

uncertainty resolved at time 0, because it allows for superior consumption

planning. Formally, this value of information is equivalent to convexity with

respect to µ. Second, there is the hedging motive of having many independent

gambles, which is valuable when consumption can be smoothed. 10

Lemma 3.2 implies that

ct+1 = ct +
r

1 + r
(wt+1 − wt) + c∗(µt+1)− c∗(µt)

= ct + r(ft − c∗(µt)) + c∗(µt+1)− c∗(µt)

To interpret the evolution of consumption under uncertainty, it is useful to

write it in a way that parallels that under risk, (7). Let

Γ(µt) ≡ r(E[ft]− c∗(µt)),

and note that this reduces to (8) when µ has support θ. This term is certain

as of time t and represents an upward drift in consumption similar to what

we have seen under risk.

Rearranging terms, the evolution of consumption can be written as:

ct+1 = ct + Γ(µt) + r
[
ft − Eµt [ft]

]
+
[
Eµt [c

∗(µt+1)]− c∗(µt)
]

+
[
c∗(µt+1)− Eµt [c

∗(µt+1)]
]
. (9)

The first line in (9) closely resembles behavior under risk. The second line

includes a new source of upwards drift and a new mean-zero random shock

to consumption. Both terms are due to the resolution of uncertainty and

therefore absent under risk. The upward drift in consumption is due to

the resolution of uncertainty which implies less precautionary savings in the

future. This term is positive because Bayesian updating implies that µt =

Eµt [µt+1], and by Jensen’s inequality and the previous proposition, this means

that Eµt [c
∗(µt+1)] ≥ c∗(µt), with strict inequality whenever µt is not a point

mass. The new source of randomness (second term in the second line) is due

10 Formally, this is concavity with respect to θ as shown in Proposition A.1.
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to the persistent effect of the random resolution of uncertainty – that is, the

current dividend is informative about future dividends. This was not present

under risk.

4 Empirical Implications of Uncertainty

How is uncertainty different from other situations of imperfect information?

In a Bayesian setting, both “measurable risk” and an “unmeasurable uncer-

tainty” correspond to the agents’ probabilistic belief about his environment.

We will argue, however, that risk and uncertainty have sharply different em-

pirical content.

4.1 Uncertain Beliefs are Untestable

A natural intuition is that the probabilities of uncertain events are, in a

sense, subjective. They are, in Keynes’ words, events “about [which] there

is no scientific basis on which to form any calculable probability whatever.”

This has important implications for disagreement and belief heterogeneity.

One would expect most people to agree on the probability of heads in a

fair coin toss, but not on the probability of the outcome of a presidential

election or the unraveling of a monetary union. We formalize the distinction

between objective risk and subjective uncertainty in terms of statistical tests

with suitable properties. We show that objective statistical tests cannot

determine whether uncertain beliefs are right or wrong.

Consider a simple setting where only two parameters, θ1 6= θ2, are rele-

vant. Let ∆ be the set of beliefs µ with µ(θ1) + µ(θ2) = 1 and µ(θi) > 0, i =

1, 2. Interpret a function

T : {θ1, θ2} × S∞ → {0, 1}

as a statistical test, where T (θm, s
∞) = 1 indicates that the infinite sequence

of observations s∞ confirms the hypothesis that the true data generating

process is θm, while T = 0 means that s∞ is inconsistent with θm. As an

idealization of what is in principle testable, consider asymptotic tests that
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make use of the entire infinite sequence of data.11

With unlimited data, it is natural to require a test to have the following

properties:

1. T is free of Type I error on parameters:

P θm{T (θm, s
∞) = 1} = 1 ∀m.

2. T identifies the true parameter:

P θm{T (θm′ , s∞) = 1} = 0 ∀m 6= m′.

A simple test with these properties is one that compares θm with the empirical

frequencies along the sequence of data. In the absence of uncertainty, such

a test can be used to objectively determine whether the belief that the true

parameter is θm is right or wrong.

This objective measurement of the correctness of beliefs is not possible

under uncertainty. To make this precise, fix a test T with the above properties

and let T̂ : ∆×S∞ → {0, 1} be any Type I error-free extension of T (that is,

P µ{T (µ, s∞) = 1} = 1 for all µ ∈ ∆). Requiring small Type I error (or zero,

in the asymptotic limit) reflects the priority given to controlling this type of

error in statistical practice.

Proposition 4.1 Let µ, µ′ be any pair of beliefs in ∆ and T̂ any test with

the above properties. Then

P µ{T (µ′, s∞) = 1} = P µ′{T (µ, s∞) = 1} = 1

Consider agent i who believes the economy evolves according to µi. This

agent is therefore convinced that any other agent j who disagrees with him,

µj 6= µi, must be wrong. The proposition says that this agent must also

believe that there is no Type I error-free test that can objectively determine

which belief is correct.

Proof: We have

1 = P µ′{T (µ′, s∞) = 1} = P θ1{T (µ′, s∞) = 1}µ′(θ1)+P θ2{T (µ′, s∞) = 1}µ′(θ2).

11 Footnote 12 below discusses finite tests.
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This implies that P θ1{T (µ′, s∞) = 1} = P θ2{T (µ′, s∞) = 1} = 1. From this

it follows that:

P µ{T (µ′, s∞) = 1} = P θ1{T (µ′, s∞) = 1}µ(θ1)+P θ2{T (µ′, s∞) = 1}µ(θ2) = 1.

The other equality is proved similarly.

Parameters are objective in the sense that one can devise a powerful

statistical test that verifies the value of the true parameter. Uncertainty

about parameters, by contrast, is subjective because any unprejudiced test

of these beliefs has no power, and thus cannot be used to refute or confirm

these beliefs. Uncertainty is different from risk not because agents do not

use probabilities in making decisions, but because it is difficult to devise

objective criteria to test them.12

4.2 Inference under Uncertainty

The discussion above suggests that uncertainty is a state of beliefs whose cor-

rectness cannot be objectively tested. On the other hand, uncertain beliefs

influence decisions and can have important observable implications. For con-

creteness, we use a simple parametrized version of the consumption-saving

model to show that incorporating uncertainty in empirical studies raises spe-

cial challenges.

4.2.1 The Rational Expectations Benchmark

Empirical methods in dynamic economic models usually assume that agents

have rational expectations, i.e., beliefs coincide with the observed empirical

frequencies. In the stylized saving-consumption model of Section 3, we define

the rational expectations benchmark as an agent’s belief that coincides with

the observed empirical frequencies of the exogenous income process f .

12 A test T̂n based on n observations cannot distinguish between knowing θm with
certainty and a belief µ that puts arbitrarily large weight on θm. The argument in the
proposition can be modified to cover finite tests. We show this with an example: Suppose
that µ(θ1) = µ(θ2) = 0.50 and Pµ{T̂n(µ, s∞) = 1} ≥ 1 − ε, where ε is a small positive
number representing Type 1 error. This says that T̄n has small Type I error at µ. Using
the same argument as the proposition, it is easy to show that Pµ{T̄n(µ′, s∞) = 1} ≥ 1−2ε.
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Take the perspective of an outside modeler (an econometrician) who com-

bines restrictions inspired by an economic model with past observations of

income realizations to estimate parameters such as θ and a. If the sequence

of observations is long enough, the modeler’s estimate, denoted θ̂, will be

close to the true parameter θ̄ with high probability. Roughly, rational expec-

tations econometrics estimates the remaining model parameters by assuming

that the agent’s decisions are optimal with respect to the belief θ̂. These

“cross-equation restrictions” are a powerful empirical tool that eliminates

expectations as a free variable.

For our numerical example, assume that income takes just two values,

f ∈ {0, 1}, the interest rate is r = 0.01, and that the true parameter is

θ̄ = 0.50. After a long sequence of observations, the modeler’s point estimate

θ̂ will be close to 0.50 with high probability. Since the inference of the

econometrician is not our main concern here, assume for convenience that

his estimate is not subject to sampling error: θ̂ = θ̄. The simplest way to

impose rational expectations is to assume that the agent’s belief µ puts unit

mass on the sample estimate:

µ(θ̂) = 1.

Rationality implies that past choices are optimal given this belief.

In this example, the hypothesis of rational expectations is a key iden-

tifying assumption that pins down beliefs to observations. This leads the

modeler to assume that consumption evolves according to the autoregressive

equation (7):

ct+1 = ct + Γ(θ̂) + r(ft − E[f |θ̂]),

where r(ft−E[f |θ̂]) is a mean-zero i.i.d. disturbance and Γ(θ̂) is a drift term.

This model has a number of concrete empirical implications that can

be tested against income and consumption data. For example, the model

predicts that the drift term is Γ(θ̂), where θ̂ is estimated directly from ob-

served income. Letting α̂ denote the coefficient in a simple linear regression

of ct+1− ct on a constant term, the model’s null hypothesis is that α̂ = Γ(θ̂),

and that the residuals are generated by the i.i.d. process r(ft − E[f |θ]). In

particular, the residuals must be serially uncorrelated and homoskedastic.
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4.2.2 Consumption under Uncertainty

The assumption that the agent’s beliefs equal the empirical distribution im-

plicitly assumes that: (1) the agent observed a long sequence of past real-

izations of the process; and (2) the agent believes that the future will be

similar to the past, in the sense that the same parameter that governed past

income will continue to govern future income. Uncertainty, in the form of a

non-degenerate µ, may represents a “belief shock” where the agent questions

the stability of the parameter governing his environment and the relevance

of past data to estimating the new parameter.

Under uncertainty, consumption evolves according to (9):

ct+1 = ct + Γ(µ) + r
[
ft − Eµt [ft]

]
+
[
Eµt [c

∗(µt+1)]− c∗(µt)
]

+
[
c∗(µt+1)− Eµt [c

∗(µt+1)]
]
.

The belief state µt changes with the arrival of new information plays a crucial

role in the decision problem. Under risk, by contrast, beliefs are not updated

since the agent is assumed to know the true parameter θ̄.

Qualitatively, the introduction of uncertainty results in an additional drift

term and a new mean-zero disturbance. However, the evolution of consump-

tion itself cannot be derived analytically. To better understand the impact

of uncertainty, we simulate the model numerically. Continue to assume that

the true parameter is θ̄ = 0.50 and that it is estimated without error by the

econometrician after observing a long sequence of income realizations. The

agent, who lacks this knowledge ex ante, quantifies his uncertainty with a

uniform prior µ over [0,1]. Note that the agent is convinced that the pa-

rameter is ‘on average’ equal to θ̄
µ

= 0.50, in the sense that he believes the

marginal on income in any period to be 50/50.

To give a sense of how consumption evolves under risk (θ̄
µ

= 0.50) and un-

certainty (µ), four samples are shown in Figure 1. In each sample, an income

realization is drawn under the true parameter θ̄ = 0.50. Given income, we

compute the optimal consumption under risk and uncertainty, using (7) and

(9) respectively. In each of the four samples, consumption under uncertainty

is lower in period 1, has more upward drift, and is more volatile.

Figure 2 summarizes the behavior of consumption averaged over 10,000
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Figure 1 – Four Sample Paths of Consumption under Risk and Uncertainty

In each subplot, both lines come from the same sequence of draws,
with θ = 0.50. The blue line represents the consumption path un-
der risk (known θ), while the green line represents consumption under
uncertainty (the agent’s has uniform prior over θ).

samples. Under risk (assuming known θ̄ = 0.50), we have ct+1 − ct = Γ(θ),

so ct increases linearly from an initial value c1 that depends on θ, a, and r.

An outside observer who uses past income realizations to obtain an estimate

θ̂ = 0.50 will expect consumption, averaged over samples, to evolve according

to this linear relationship.

Under uncertainty, consumption starts at a lower level. This reflects the

increased precautionary savings motive due to the agent’s uncertainty about

the true value of θ.13 Under the assumption that the data is generated by

the parameter value θ̄ = 0.50, consumption rises, eventually exceeding RE

consumption. The reason is that the agent, who accumulated greater wealth

initially, has more dividend income.

Take again the perspective of a modeler whose model incorporates the

hypothesis that the agent’s belief is equal to the sample estimate, θ̂. If

13 Precautionary saving is also present under risk. The difference in period 1 consump-
tion in the figure is the additional precautionary saving due to uncertainty.
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Figure 2 – Average Consumption under Risk and Uncertainty

The straight line is consumption under risk averaged over 10,000 samples.
The concave line is average consumption under uncertainty.

the agent is uncertain about θ, his behavior will evolve according to (9)

instead, and the model is misspecified. The modeler will find, among other

things, that residuals are serially correlated and heteroskedastic. As evident

from Figure 2, serial correlation is a consequence of the steeper consumption

growth resulting from a more aggressive precautionary saving early on.

4.3 Discussion and Related Literature

Lewellen and Shanken (2002) and Weitzman (2007) introduce learning-based

models to explain asset pricing anomalies in terms of parameter-uncertainty.

A major focus of these papers is the equity premium puzzle, namely that,

for plausible levels of risk aversion, asset prices seem to imply a volatility in

payoffs that is significantly higher than their empirical volatility (estimated,

say, from the standard deviation of past returns).14 These authors argue

that a possible source of this and other related puzzles is the econometric

identification assumption that investors’ beliefs about the future volatility

of income and consumption are equal to these variables’ historical volatility.

14 Equivalently, investors’ risk aversion implied by observed asset prices is an order of
magnitude higher than what is considered reasonable.
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As noted earlier, this rational expectations assumption implicitly requires

agents to believe that the parameter generating future outcomes is the same

as the one that generated past data.

Although we do not consider asset pricing in this paper, similar effects

appear in the precautionary saving model. Under our i.i.d. assumption, pay-

offs are generated by one true parameter θ̄, yet an agent who does not know

its value will subjectively expect greater volatility in future income. This

uncertainty may be the result of the agent fearing that a structural change

in the income process might have occurred, shaking his confidence that the

future will be similar to the past. This uncertainty can have important con-

sequences for the behavior of endogenous variables but, as shown earlier, it

may be difficult to objectively demonstrate through statistical tests that such

uncertain beliefs are paranoid or irrational.

In Weitzman (2007)’s model, the data is generated by i.i.d. draws from

a normal distribution with known mean but unknown standard deviation.

An agent’s subjective uncertainty about the standard deviation implies that

his belief is a Student t distribution which, unlike the normal component

distributions, has a fat tail. Weitzman shows that agents’ concern about

this tail risk can lead to significant implications for asset pricing. There is a

parallel with what we do: in our model, a subjective distribution over i.i.d.

parameters is not an i.i.d. distribution, while in Weitzman’s model uncer-

tainty over standard deviations of normals implies a subjective belief that is

not itself normal. A second difference is that Weitzman does not consider

intertemporal smoothing.

There is an extensive literature on precautionary savings. That litera-

ture mainly focuses on what we call risk (agents’ beliefs coincide with the

ergodic probabilities). An important exception is Cogley and Sargent (2008)

who consider a model of precautionary savings with parameter uncertainty.

Cogley and Sargent (2008)’s main focus is on whether behavior based on

anticipated utility approximates well the full Bayesian solution in simula-

tions under power utility. They assume an income process generated by a

Markov matrix with unknown coefficients. The agent’s prior on these co-

efficients is a Dirichlet distribution, a tractable modeling assumption that

makes it easy to represent the extent to which an agent trusts his prior. The
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uniform distribution used in our simulation reported earlier is a binomial

Dirichlet (i.e., Beta) distribution with parameters n0 = n1 = 1. As with

Cogley and Sargent (2008), we can model the agent’s uncertainty by varying

the parameter of his prior. Pure risk is then the limiting case where n0 and

n1 approach infinity. We may interpret this, as they do, that the agent has

observed a long history of the process and that he believes that the future

will look like the past. The advantage of CARA utility is that there are no

wealth effects, making the model more tractable. This allowed us to derive

equation (9) which showed clearly the relation between behavior under risk

and uncertainty in an explicit equation and proved that uncertainty causes

increased precautionary savings and increased volatility. While power utility

is considered more realistic, the differences are very minor for any modest

changes in wealth, and so we consider the ability to write down the solution

more explicitly worthwhile. Of course, we still had to solve the model nu-

merically to calculate V (µ), but the theory behind the calculation is made

much simpler by the separability of wealth in the CARA model.
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A Appendix

Proof of Proposition 2.2:

V (µ) = EµEθ u
(

1
n

∑n
i=1 fi

)
(10)

' Eµ u
(

1
n
Eθ
∑n

i=1 fi
)

(11)

' Eµ u
(

1
n
Eθ f

)
' Eµ V

(
θ, 1

n
f
)

< V
(
θ̄
µ)
,

where the last inequality follows from the strict concavity of u.

Proof of Proposition 3.1: We first note that since we are optimizing a

concave function, it suffices to show that the Euler and transversality con-

ditions are satisfied. Applying u−1 to both sides of u(c∗t ) = Et[u(c∗t+k)] and

substituting in (5), we can express the evolution of wealth as:

wt+1 = (1 + r)

[
wt + ft −

r

1 + r
w − r−1CE(rf |θ)

]
= wt + (1 + r)ft − (1 + r)r−1CE(rf |θ),

implying

ct+1 =
r

1 + r
[wt + (1 + r)ft − (1 + r)r−1CE(rf |θ)] + r−1CE(rf |θ)

=
r

1 + r
wt + rft − CE(rf |θ) + r−1CE(rf |θ)

= ct + rft − CE(rf |θ).

Under CARA, certainty equivalents are independent of wealth, so the last

equation implies that ct+1 has a time-t certainty equivalent of ct, which we

argued earlier is equivalent to the Euler equation.

To get the formula for the evolution of consumption, note that θ does

not change in time (this is the key property of lack of uncertainty) so we can

deduce from equation (6) that

ct+1 − ct =
r

1 + r
(wt+1 − wt)
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after which substituting for wt+1 according to equation (5) and ct from equa-

tion (6) gives (7). It shows that consumption, which is linear in wealth, can

grow only linearly so long as f is bounded, so wealth also grows at most

linearly also and the transversality condition limt→∞(1 + r)−twt is satisfied

with probability 1.

Next, we establish the concavity of the value function under risk. Note

that for any lottery over two outcomes, we have:

u−1(λu(rf1) + (1− λ)u(rf2)) ≥ ru−1(λu(f1) + (1− λ)u(f2)) (12)

This observation, along with the previous proposition, allows us to show:

Proposition A.1 For known θ,

1. Optimal consumption is convex in θ.

2. Value is concave in θ for any r < 1.

To illustrate the meaning of this proposition, assume that under distri-

bution θ0 an asset returns 0 for sure, under θ1 it returns 1 for sure, and thus

under θ2 = .5θ0 + .5θ1 the asset returns 0 or 1 each period according to a

series of i.i.d. coin flips. With zero wealth, optimal consumption under θ0 is

simply 0, with value u(0), and under θ1 is 1, with value u(1). The first point

then states that consumption under θ2 is less than .5; this is because there is

a small precautionary saving to mitigate against the risk of the next coin flip.

However, value under θ2 is greater than the average of u(0) and u(1); this is

driven by consumption smoothing, as θ2 ensures many independent coin flips

and entails much less long-run risk than a lottery between θ0 and θ1. There

are two countervailing forces on the value, as taking a convex combination of

θs increases the need for precautionary savings but mitigates against long-

run risk. The CARA utility allows us to say that the second force dominates

for r < 1. When r << 1 as usual, the second force is much stronger and it

is reasonable to think that the CARA form is not essential to this claim. It

is interesting to note that if we allow r > 1, the precautionary-savings effect

dominates, as discounting is fast and long-run risk is unimportant (mostly

the current period matters.)
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Proof of Proposition A.1: Applying Proposition 3.1, the first item re-

duces to the statement that the certainty equivalent of a compound lottery

is less than the average of the certainty equivalents of the nodes. That is,

CE(rf |λθ1 + (1− λ)θ2) = u−1E[u(rf)|λθ1 + (1− λ)θ2]

= u−1 (λE[u(rf)|θ1] + (1− λ)E[u(rf)|θ2])

= u−1 (λu(CE(rf |θ1)) + (1− λ)u(CE(rf |θ2)))

≤ λCE(rf |θ1) + (1− λ)CE(rf |θ2)

where the last step follows from u being increasing and concave (take u of

both sides to get the definition of concavity). Along with Proposition 3.1

this yields the first statement.

For the second statement, use V (θ) as shorthand for V (θ, 0). By earlier

results,

V (θ) = u(r−1CE(rf |θ)) = u(r−1u−1E(u(rf)|θ)).

Now observe that

V (λθ1 + (1− λ)θ2) = u(r−1CE(rf |λθ1 + (1− λ)θ2))

= u(r−1u−1(E[u(rf)|λθ1 + (1− λ)θ2]))

= u(r−1u−1(λE[u(rf)|θ1] + (1− λ)E[u(rf)|θ2]))

= u(r−1u−1(λu(ru−1V (θ1)) + (1− λ)u(ru−1V (θ2))

≥ λV (θ1) + (1− λ)V (θ2)

where the last step uses (12). This shows concavity of V in θ for w = 0. For

general w, equations (3.1) and (6) show that

V (θ, w) = e−a
r

1+r
wV (θ)

which implies the result.

Proof of Lemma 3.2: The Bellman equation tells us

V (µ,w) = (1− δ)u(c∗(µ,w)) + δE[V (µ|f, (1 + r)(w − c∗(µ,w) + f))]

26



and we showed earlier that V (µ,w) = u(c∗(µ,w)), so the Bellman equation

reduces to

u(c∗(µ,w)) = E[u(c∗(µ|f, (1 + r)(w − c∗(µ,w) + f)))]

and when we substitute the form in the lemma, this reduces algebraically to

the Bellman equation for w = 0. This proves the result.

Proof of Proposition 3.3: The first inequality (in its weak form) is simply

the statement that information about θ has a non-negative value. Since the

utility being optimized is strictly concave, optimal plans are unique and it is

strict whenever plans differ under the two beliefs.

The second inequality follows from the first, given our earlier result that

V (µ,w) = u(c∗(µ,w)) and the fact that u is increasing and concave. (Assume

it is false, apply u to both sides, then apply concavity to contradict the first

inequality.)

The final statement follows from expressing µ as a convex combination

of point masses θi, applying convexity of V with respect to µ, then applying

concavity of V with respect to θ (Proposition A.1).
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