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ABSTRACT 
 

We examine theoretically and experimentally how competitive contribution-based group 

formation affects incentives to free-ride. We introduce a new formal model of social 

production, called a “Group-based Meritocracy Mechanism” (GBM), which extends the 

single-group-level analysis of a Voluntary Contribution Mechanism (VCM) to multiple 

groups. In a GBM individuals are ranked according to their group contributions. Based on 

this ranking, participants are then partitioned into equal-sized groups. Members of each 

group share their collective output equally amongst themselves according to a VCM payoff 

function. The GBM has two pure strategy Nash equilibria. One is non-contribution by all; 

this equilibrium thus coincides with the VCM's equilibrium. The second equilibrium is 

close to Pareto optimal. It is asymmetric and quite complex from the viewpoint of 

experimental subjects, yet subjects tacitly coordinate this equilibrium reliably and 

precisely. Extensions of the basic GBM model to incorporate various features of naturally 

occurring group formation are suggested in the conclusion.  
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I. INTRODUCTION 
 

Experimental studies exploring endogenous group formation show that the degree of 

excludability of public goods or team goods (Buchanan, 1965) is not the only factor that 

influences group contributions. The method by which players are assigned to their 

cooperative units might be equally important. Competitive grouping based upon 

individuals' group contributions can significantly increase cooperation and efficiency in a 

variety of experimental environments.1 These results are not too surprising since outside 

the laboratory it is commonly observed that those willing or able to make high team 

contributions tend to select each other and attempt to avoid free-riders.  

This paper introduces the “Group-based Meritocracy Mechanism” (GBM) a basic 

formal model of contribution-based group formation that relies on material self-interest 

only. The GBM can be regarded as a multiple-group extension of the Voluntary 

Contribution Mechanism (VCM, see, e.g. Isaac et al., 1985). The VCM, as the standard 

basic theoretical and experimental model of a social dilemma, applies to a single group and 

bypasses the important question of how groups actually form.  

To our knowledge the GBM is the first formal and complete approach to 

contribution-based group formation2 where cooperation is part of an equilibrium strategy in 

a one-shot game.3 The GBM meets the following minimum requirements for a formal 

model of competitive contribution-based grouping: 1) group membership is competitively 

and solely based on individual contributions, 2) the equilibrium analysis extends across all 

                                                 
1 See Ehrhart & Keser (1999) for an early study. For recent studies see e.g. Ahn et al. (2008), Cabrera et al. 
(2007), Charness & Yang (2009),  Cinyabuguma et al. (2005), Croson et al. (2007), Gächter & Thöni (2005), 
Güth et al. (2007), Page et al. (2006). Maier-Rigaud et al. (2010) provide a recent overview. Contribution-
based grouping also has an impact if players do not even know that they are being grouped (e.g., Ones & 
Putterman, 2007; Gunnthorsdottir et al., 2007). See Gunnthorsdottir (2009) for a comparison of grouping that 
subjects know or do not know about.   
2 Our model differs from Tiebout (1956) in that preferences are homogeneous, and grouping is contribution-
based rather than based on differences in preferences.  
3 It is well known that in infinitely or indefinitely repeated games, cooperation can be sustained as an 
equilibrium through trigger strategies (see, e.g., Axelrod, 1986).  
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players and all groups, since players compete for membership in groups that vary in their 

payoff, 3) in the causal chain, the contribution decision precedes grouping and associated 

payoff. In the current paper, we examine the basic GBM mechanism theoretically and 

experimentally, and find that in the controlled conditions of the laboratory the payoff 

dominant Nash equilibrium (Harsanyi & Selten, 1988) is an accurate predictor of aggregate 

behavior.  

Overview  

In Section II we describe the GBM and its two pure-strategy equilibria. One is 

highly efficient while the other is inefficient but minimizes strategic risk. Applying the 

equilibrium selection principle of payoff dominance (Harsanyi & Selten, 1988) 4 one can 

make a precise prediction about GBM participants’ aggregate behavior: the efficient 

equilibrium should be selected; contribution-based grouping should thus overcome the 

social dilemma within all but one of the groups in the system. Section III describes the 

experimental test of the model. The results in Section IV provide strong empirical support 

for the equilibrium prediction, payoff dominance, and the efficiency-enhancing effects of 

contribution-based grouping. In the aggregate, subjects tacitly coordinate the payoff-

dominant equilibrium even though it is asymmetric and somewhat complex for them. 

Section V compares and contrasts our behavioral findings about equilibrium selection, tacit 

coordination of asymmetric equilibria, and the effect of contribution-based grouping to 

experimental findings from other games. In the concluding Section VI we address the 

limitations of the model, suggest extensions, and speculate about field applications.  

 

                                                 
4 The payoff dominant equilibrium is a collectively rational solution in which each and every player earns 
more than at any alternative equilibrium point (Harsanyi & Selten, 1988, p. 81, 356). Harsanyi & Selten argue 
that since each and every player is better off with such an equilibrium (compare this to a Pareto dominant 
equilibrium where just one player must be better off), a payoff dominant equilibrium should be selected from 
among multiple equilibria even if this requires mutual trust and coordinated expectations to offset any 
strategic risk that might be involved.  
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II. THE GROUP-BASED MERITOCRACY MECHANISM (GBM)  

Group assignment in a GBM is competitively based on individual contributions. 

Within each group, payoffs are determined via a VCM. We first describe this within-group 

(VCM) interaction, then describe the competitive group assignment that distinguishes the 

GBM from the VCM.  

Payoff calculation within groups. n group members decide simultaneously how 

much of their individual endowment w to keep for themselves, and how much to contribute 

to a group account. Contributions to the group account are multiplied by a factor g, which 

represents the benefits from cooperation, before being equally divided among all n group 

members. The rate g/n is the marginal per capita return (henceforth MPCR and denoted by 

m) to each group member from an investment in the group account. As long as 1 > m > 

1/n, the game is a social dilemma: efficiency is maximized if all participants contribute 

fully, but each individual’s dominant strategy is to contribute nothing to the group account.  

Competitive grouping. The VCM models a single group and bypasses the question 

of how the group formed. In a standard experimental VCM the group assignment is 

therefore random. The GBM model in contrast incorporates competitive group membership 

based on individual contributions. Once all N participants have decided their group 

contribution, they get ranked accordingly with ties broken at random. Based on this 

ranking, participants are then partitioned into G equal-sized groups, so that the highest 

ranking n = N/G players are grouped together, then the next n players, and so on. Finally, 

individual earnings are computed by the same method as in a standard VCM and taking 

into account to which group a participant has been assigned.5 The GBM game has two6 

pure-strategy7 equilibria that differ in efficiency.  

                                                 
5  The GBM shares features with a VCM-type treatment by Gunnthorsdottir et al. (2007; see also 
Gunnthorsdottir, 2001) but there are important differences: Gunnthorsdottir et al. explore individual 
tendencies toward reciprocity or defection and create a  purposefully vague and brief version of the VCM into 
which subjects, uninformed of the contribution-based grouping,  project their personality with regard to group 
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1) Equilibrium of non-contribution by all. This equilibrium reflects the fact that the 

GBM’s within-group interaction retains social dilemma properties. With competitive 

grouping added, these properties are however attenuated. Non-contribution by all is no 

longer a dominant-strategy equilibrium as in the VCM, but remains as a best-response 

equilibrium. Note that this equilibrium involves no strategic risk.  

2) The Near-efficient Equilibrium (NEE). The “Near-efficient Equilibrium” 

(henceforth NEE) is payoff dominant (Harsanyi & Selten, 1988, Ch. 3.6), close to Pareto 

optimal, and asymmetric. Almost all players contribute their entire endowment; only z 

players contribute nothing. The exact value of z depends on the MPCR m as well as on n, 

G, and N. However, z is always smaller than the group size n. Hence, the NEE 

asymptotically approaches full efficiency if G gets large.8  

We next provide an intuitive account of the NEE, assuming a continuous strategy 

space. (For a formal analysis see Online Appendix A). We call a subset of players whose 

group contributions are identical a Class. Class C1 is a subset of players containing the c1 

highest contributors; the next class, C2 contains the c2 players who contribute less, and so 

on. We refer to the group containing the highest-ranked contributors as Group 1, to the 

next group as Group 2, and so on; Group G is the last group with the lowest contributors.  

                                                                                                                                                    
contributions. The current study in contrast is designed to test an equilibrium prediction. Therefore, all rules 
of the game are common knowledge.  In a comparison of known and unknown contribution-based grouping 
Gunnthorsdottir (2009) finds that both on the individual and aggregate level, subjects react very differently to 
these distinctly different experimental settings designed to answer different questions.  
6 See the Theorem at the end of this section for borderline cases in which there are one or three.  
7Additionally and depending on the parameters, there exist mixed-strategy equilibria. Their strategy 
frequencies are distinct from the NEE frequencies. Mixed strategies are beyond the scope of this paper since: 
1) Subjects coordinated a pure strategy equilibrium (see Section IV incl. fn. 20 for the results of tests showing 
that subjects do not play mixed strategies). 2) This finding is not surprising since mixed strategies are 
intuitively implausible when pure equilibrium strategies are available and there is no particular need to play 
unpredictably (see, e.g., Kreps, 1990, pp.407-410; Aumann, 1985, p.19). 3) Even in games with a unique 
equilibrium in mixed strategies, proper mixing (both the right proportions of choices and their serial 
independence) is usually beyond regular subjects’ abilities (see e.g., Palacios-Huerta & Volij, 2008; Walker 
& Wooders , 2001; Brown & Rosenthal, 1990; Erev & Roth, 1998).  
8 See Appendix A.2 (online) for comparative statics.  
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(1) Identical positive contribution by all is not an equilibrium since any one player 

would have an incentive to reduce her contribution to zero. Thus, in an equilibrium with 

positive contributions there must be more than one class. 

(2) Group 1 can only contain one class, C1. If it contained two or more classes, any C1 

player would have an incentive to decrease her contribution as long as she remains in 

Group 1. Similarly, c1 must be larger than n and not fully divisible by n else again, any C1 

player could decrease her contribution without affecting her group membership.   

(3) It follows from (1) and (2) that if an equilibrium with positive contributions exists, 

some C1 players are grouped with C2 players in a mixed group.9  

(4) C1 players contribute their full endowment. If they did not, each of them would 

have an incentive to increase her contribution by a small ε in order to avoid the mixed 

group. 

 (5) Having examined Class C1, we now turn to the incentives of C2 players. (3) 

showed that a mixed group of both C1 players and C2 players must exist in an equilibrium 

with positive contributions. Imagine that there are one or more groups below this mixed 

group. There are two cases to consider: a) Class C2 extends beyond the mixed group into 

one or more groups further below. In this case each C2 player has an incentive to increase 

her contribution by ε in order to be with certainty in the mixed group, where she can free-

ride off C1 players. Alternatively b) C2 does not extend beyond the mixed group: in this 

case, each C2 player could decrease her contribution and raise her payoff without affecting 

her group membership. 

                                                 
9 Since C1 players are tied in the ranking by contribution, a random draw determines their exact grouping. 
When calculating her expected payoff a C1 player takes into account that she could end up in the mixed group 
with players who contribute less.   
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 (6) The only situation in which a C2 player has no incentive to either raise or lower 

her contribution as described in (5) is when the only mixed group is Group G, there are 

only two classes, and C2 players contribute nothing.  

 (7) In order to find a point where the system is in equilibrium one needs to determine 

how many c2 = z < n players must be in Class C2 so that expected earnings in both classes 

are such that no player has a unilateral incentive to deviate. The following Theorem 

determines z, and describes the NEE’s existence, as well as its uniqueness as an 

equilibrium with positive contributions.  

Theorem: If m < 
1

1
2 


nNn

nN
, the only equilibrium is if all GBM participants contribute 

nothing. If 
1

1
2 



nNn

nN
m , the GBM has, additionally, a Near-efficient Equilibrium 

(NEE) in which all but z < n players contribute their entire endowment w and only the 

remaining z players contribute nothing. z is the integer between a lower bound l and an 

upper bound u where 

mmnmN

mNN
l





1

:   and  u :=  l + 1 

As the number of groups G increases, the range of MPCRs m for which a NEE exists 

converges to the interval (1/n, 1).  

 Generally, the NEE is the sole equilibrium with positive contributions.10 Only if 

mmnmN

mNN




1
is an integer strictly smaller than n – 1, there exist two equilibria with full 

contributions; the number of full contributors in them differs by one.  

Proof:  Appendix A (online).11  

                                                 
10 More precisely, it is the structure of the equilibrium that is unique; z characterizes a set of equilibria: there 

are 







z

N
combinations in which z players contribute nothing and (N-z) players contribute fully.  

11 Appendix A (online) contains a complete formal analysis of the GBM, comparative statics, and an analysis 
of strategic uncertainty in the NEE. 
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III. EXPERIMENTAL TEST  

If one applies Harsanyi & Selten’s (1988) payoff dominance criterion, the GBM has 

a clear and unique equilibrium prediction:12 The asymmetric NEE will be selected since 

“commonly preferred” (p. 81). Payoff dominance, however, is not the sole method of 

equilibrium selection, nor is it uncontested (see, e.g., Aumann, 1988; Binmore, 1989; 

Carlsson & van Damme, 1993; Crawford & Haller, 1990; Harsanyi, 1995; van Damme, 

2002). Further, whether it is actually borne out empirically depends on the game (see 

Section V.2). It is therefore desirable to complement predictions about equilibrium 

selection with empirical tests. Do GBM participants indeed coordinate the payoff-dominant 

NEE, asymmetric and complex as it is? In order to coordinate a NEE subjects must: 1) 

understand that only corner strategies, that is, full contribution or non-contribution should 

be selected and that intermediate contributions are not payoff-maximizing, 2) at least at 

some level, “know” the MPCR-dependent proportions of the two equilibrium strategies, 

and 3) tacitly coordinate these proportions.  

Subjects and design  

Participants were 96 undergraduates at George Mason University. They were 

recruited from the general student population for a two-hour experiment with payoffs 

contingent upon the decisions they and other participants made during the experiment. 

There were eight sessions of 80 rounds each. In each session there were N = 12 subjects in 

three groups of n = 4. Each subject was endowed with wi  = 100 integer tokens per round.   

In four of the eight sessions the MPCR m = 0.5, in the other four sessions m = 0.3, 

in a balanced design. Since, as stated above, changes in the MPCR affect the exact value of 

z, different MPCR conditions allow 1) a test of the prediction that the proportion between 

non-contributors and full contributors changes with the MPCR, 2) the identification of 

                                                 
12 Since players are symmetric and the NEE is asymmetric, there exists a unique prediction about the 
equilibrium structure, but not about the strategy profile {s1,  s2 , .. sN }. 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

Contribution-based competitive grouping 
10 

possible behavioral MPCR effects unrelated to the equilibrium, similar to what has been 

found in the VCM (see, e.g., Isaac et al., 1984; Isaac & Walker, 1988; Gunnthorsdottir et 

al., 2007) and  3) a test of the robustness of the payoff-dominant equilibrium prediction.  

Experiment equilibria  

Inserting the experimental parameters into the Theorem, it can be verified that 

under MPCR=0.5, z=2;13 a non-contributor earns 200 tokens while a full contributor’s 

expected earnings are 180 tokens. Under MPCR=0.3, z=3; a non-contributor earns 130 

tokens, while a full contributor’s expected earnings are 110 tokens.  

The effect of discretizing the strategy space. The analysis in Section II (and the 

formal analysis in Online Appendix A) assumes a continuous strategy space. If the strategy 

space is discrete, as with experimental tokens, a limited number of additional low-level 

equilibria emerge in the close neighborhood of the equilibrium of non-contribution by all. 

These low-level equilibria are behaviorally indistinguishable from the equilibrium of non-

contribution by all if subjects make even minor errors.14  Note that the structure and 

existence of the NEE is not affected by discretization. 

Procedure 

Participants were seated at computer terminals separated by blinders and made their 

decisions simultaneously, anonymously and privately. Each participant received a $7 show-

up fee, and was privately paid her earnings at the end of the experiment.15  

Investment decision. At the beginning of each round, each subject received 100 

integer tokens to be divided between a group account and a private account. For every 

                                                 
13 Applying the Theorem to our experimental parameters one finds that an equilibrium with positive 
contributions exists for MPCR=0.5 since m > 9/33. The upper and lower bounds of z are 2.33 and 1.33 
respectively, so that z=2. According to the Theorem this NEE is unique since the upper and lower bounds of z 
are fractions. Applying the same process to MPCR = 0.3 one obtains a unique equilibrium with positive 
contributions where z=3. 
14 For details and a list of the low-level equilibria in the current experiment, see Online Appendix B. 
15 The exchange rate between tokens and US Dollars was 1000:1. In one session the exchange rate was 880:1. 
Data from this session were not different from other MPCR=0.5 sessions. The session was therefore included 
in the data analysis.  
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token invested in the private account the return was one token to the investor alone. For 

every token invested in the group account the return was 0.5 or 0.3 tokens (depending on 

the MPCR) to everyone in the subject’s group including herself.   

Group assignment. In each round, after all subjects had made their investment 

decisions, they were ranked according to their group contribution with ties broken at 

random, and then partitioned in three groups of four. Subjects’ earnings were calculated 

based on the group to which they had been assigned. Note that group assignment depended 

only on the subjects’ current contributions in that round, not on contributions in previous 

rounds. Subjects were regrouped according to this criterion in each decision round.  

End-of-round feedback. After each round, a subject’s computer displayed her 

private and group investment in that round, the total investment made by the group she had 

been assigned to, and her total earnings. The screen also displayed an ordered series of the 

current round’s group account contributions by all participants, with a subject’s own 

contribution highlighted so that she could see her relative standing. This ordered series was 

visually split into three groups of four, which further underscored that participants had been 

grouped according to their contributions and that any ties in their ranking had been broken 

at random. Appendix C (online) contains the experimental instructions. 

 

IV. RESULTS 

Result 1  

Observed mean contributions per round correspond to NEE mean contributions. 

Contributions are high and stable over all 80 rounds. The broken lines in Fig. 1 

represent mean NEE contributions (83.3 out of 100 tokens for MPCR=0.5 and 75 out of 

100 for MPCR=0.3). The solid lines show mean group account contributions per MPCR 

and per round. The observed mean contributions closely trace the corresponding NEE 
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value, and reach it as early as Round 2. As predicted, mean contributions under MPCR=0.3 

are significantly16 lower than under MPCR=0.5. Mean contributions over four sessions and 

80 rounds are 70.1 out of 100 possible tokens for MPCR=0.3, and 83.8 out of 100 for 

MPCR=0.5. (See also the top row of Table 1).  

Result 2 

Over all sessions and rounds, strategies that are part of the NEE were predominantly 

selected, and were selected with more precision under MPCR=0.5.  

 The NEE consists of the two corner strategies from among a set of 101 choices. Fig. 

2 displays the overall percentages in which choices occurred. Under both MPCRs, subjects 

predominantly selected corner strategies. The observed proportion of exact corner 

strategies {0, 100} over all rounds and all sessions is 83.1% under MPCR=0.5 and 55.7% 

under MPCR=0.3. (This can be verified by summing up the second and third rows of Table 

1.) The fact that equilibrium behavior under MPCR = 0.3 is less precise can also be directly 

inferred from Fig. 2, which shows that intermediate (non-equilibrium) strategies are 

somewhat more common under MPCR=0.3. Under MPCR=0.3 there are also noticeably 

more choices in the close neighborhood of zero.  

Result 3 

Per round and per session, strategy choice proportions are close to the NEE, but 

exhibit more precision under MPCR=0.5 than under MPCR=0.3. 

The NEE is defined for a single round, and the game was played in twelve-subject sessions. 

In order to examine how closely behavior matches the NEE, in each round of every single 

session, we counted in each session and round the number of individual contributions 

which are in accordance with the NEE prediction. For example, if in a particular round 

under MPCR=0.5 (where in the NEE there are two zero-contributions and ten full 

                                                 
16 Mann-Whitney-U-test: U =0 (n1 = n2 = 4), p=0.014 (1-tailed). The unit of observation is one session. 
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contributions) the observed contributions are (0, 0, 0, 2, 75, 100, 100, 100, 100, 100, 100, 

100), then the number of contributions consistent with the NEE is nine (two of the zero-

contributions and the seven full contributions). In this otherwise very stringent count we 

allow subjects room for minor errors by classifying contributions of ≥ 98 tokens as full 

contribution, and contributions of ≤ 2 tokens as non-contribution. The results are displayed 

in the bottom rows of Table 1 (last column). The proportion of NEE choices defined on a 

per-round and per-session basis is 81.4% under MPCR=0.5 and 55.3% under MPCR=0.3. 

This shows once again that behavior is closer to the NEE under MPCR=0.5.17  

Result 4 

Individual strategies are unsystematic.  

The main purpose of our analysis is to establish whether the NEE is coordinated in the 

aggregate. We leave the in-depth analysis of individual strategies over rounds for future 

investigation.  However, we briefly remark on individual strategies here. In each MPCR 

condition, there are actually 







z

N
 NEE profiles, since each player can either take the role of 

a full contributor or of a non- contributor. As Ochs (1999, p.143) states, once a specific 

configuration of mutual best responses is reached, one might reasonably expect that this 

pattern will be stable over repetitions. Our data indicate the opposite: While the NEE 

organizes aggregate behavior, individual choice paths over rounds are diverse and 

                                                 
17 Mann-Whitney-U-test: U = 0 (n1 = n2 = 4), p = 0.029 (2-tailed). The unit of observation is one session. Yet 
another fact underscoring that under MPCR=0.3 the NEE is realized with less precision is the aggregate 
impact of slightly relaxing the classification of corner strategies as described in Result 3: Under MPCR=0.5 
the aggregate (over all sessions and all  rounds) count of corner strategies increases by only 2.5 percentage 
points if the classification is relaxed this way, from 83.1% to 85.6%; under MPCR=0.3 however it increases 
by 9.5 percentage points, from 55.7% to 65.2%. The main reason for the larger increase under MPCR=0.3 is 
that MPCR=0.3 subjects make a one-token contribution more frequently. See also Fig. 2. 
17 Only 6/96 subjects contributed ≤ 2 tokens in at least 50% of the trials, all under MPCR=0.3 (contributing ≤ 
2 tokens in 75, 65, 54, 43, 43 and 40 trials, respectively). 
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unsystematic. There is no good evidence of a consistent free-rider type,18 and only a 

minority sticks with full contribution.19 Most participants alternate in varying proportions 

between the two equilibrium strategies. There is no evidence that individual strategies 

stabilize with experience, nor is there evidence of mixing.20 Appendix D (online) contains 

graphs of all individual choice paths over trials. 

  

V.  DISCUSSION 

1. Coordinating a complex asymmetric equilibrium   

As mentioned above, the GBM’s asymmetric equilibrium is reliably coordinated in the 

aggregate even though individual choice paths over trials are unsystematic. A related 

phenomenon occurs in Market Entry Games (henceforth MEG) (Gary-Bobo, 1990; Selten 

& Güth, 1982). There too, an asymmetric equilibrium is coordinated apparently “without 

learning and communication” (Camerer & Fehr, 2006, p. 50) while individual-level data 

are unsystematic (see, e.g., Rapoport, 1995; Erev & Rapoport, 1998; Rapoport, Seale & 

Winter, 2002; see Ochs, 1999 for an overview of behavioral results). Kahneman (1988, 

p.12) called this phenomenon “magic”. Note however that the GBM is considerably more 

complex than a MEG since: 1) an MEG’s strategy space is only binary (enter/stay out), and 

both strategies are part of the equilibrium. MEG subjects thus only need to detect the 

correct proportions in order to coordinate their asymmetric equilibrium, while in the 

                                                 
18 Only 6/96 subjects contributed ≤ 2 tokens in at least 50% of the trials, all under MPCR=0.3 (contributing ≤ 
2 tokens in 75, 65, 54, 43, 43 and 40 trials, respectively). 
19 31% of subjects under MPCR=0.5 made a full contribution in at least 70 of the 80 trials. Under MPCR=0.3, 
21% subjects did.   
20 Under the experiment’s parameters, two mixed-strategy equilibria consisting of corner strategies exists for 
MPCR=0.5, where either p(si=100) = 0.883 or p(si=100) = 0.117). None exist for MPCR=0.3. In both 
conditions aggregate behavior is well accounted for by the pure-strategy NEE. While for MPCR=0.5 the pure 
strategy NEE proportion of 83.3% for (si=100) happens to be close to the mixed-strategy equilibrium 
probability of p(si=100)=88.3%, aggregate behavior is clearly closer to the pure strategy equilibrium 
proportions (see Table 1) Further, examining individual-level behavior, even though many subjects change 
their strategy frequently over trials, only 5/48 participants under MPCR=0.5 randomize (individual runs tests, 
normal approximation, p=0.05, 2-tailed) in proportions consistent with p(si=100)=0.883 (individual Chi-
Square tests of goodness of fit, see, e.g., Siegel & Castellan, 1988, p=0.05). (The latter test assumes 
independent random sampling. For the subjects who apparently behave randomly, the test is appropriate.)  
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GBM’s NEE, subjects also need to identify the actual equilibrium strategies among all 

strategies available to them, 2) an MEG’s asymmetric equilibrium is rather obvious to a lay 

person, while the GBM’s Near-efficient Equilibrium probably is not obvious, 3) in the 

GBM the choice among Pareto-ranked equilibria represents an additional dimension along 

which participants must coordinate, a dimension that MEGs do not have. Hence, to our 

knowledge, GBM subjects display more complex coordination and “magic” than hitherto 

observed.   

2. Coordinating a payoff-dominant equilibrium 

Harsanyi & Selten (1988, p. 89, emphasis added) state that, “…[players] should trust 

each other to play [the collectively rational payoff-dominant equilibrium even if it involves 

strategic risk to the individual].” Experimental tests have not always borne this out. See, 

e.g., the much-replicated results from Weakest-link Games (henceforth WLG) (Van Huyck 

et al., 1990; 1991; for overviews see, e.g., Devetag & Ortmann, 2007; Ochs, 1995; 1999), 

or from Step-level VCMs (see, e.g., Isaac et al., 1989; Cadsby & Maynes, 1999). Both 

these games resemble the GBM in that their multiple equilibria are Pareto rankable and the 

payoff dominant equilibrium entails the highest strategic risk. Payoff dominance is weak 

predictor of behavior in these games; subjects often gravitate instead toward a less efficient 

but less risky equilibrium. The GBM however has features that probably facilitate the 

coordination of the payoff dominant equilibrium. These features can impact behavior both 

directly and via mutual expectations:  

(a) Structure. The payoff dominant equilibria of the VCMs, WLGs, and the GBM do 

not all involve the same degree of strategic risk. A contributor’s risk in the NEE (see 

Online Appendix A.3 for a full discussion) is less than in the payoff dominant equilibrium 

of a WLG or a Step-level VCM, where even a small deviation by a single player reduces 

contributor earnings substantially. The NEE is thus relatively attractive to contributors; this 
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in turn may also support a mutual expectation that the NEE will be selected over the secure 

but inefficient equilibrium of non-contribution by all.  

(b) Behavior. Yet another factor supporting this mutual expectation might be the broad, 

well-documented effect that common knowledge of competitive grouping has on behavior. 

In WLGs for example, competitive grouping facilitates the coordination of a Pareto-

superior equilibrium (Croson et al., 2007; Fatas et al., 2006). In VCMs with common 

knowledge of competitive grouping, overall contributions are well above the inefficient 

equilibrium benchmark (Cabrera et al., 2007; Gächter & Thöni, 2005; Page et al., 2005).21 

Subjects are probably familiar with parallels to these widely reported results from outside 

the lab, which would further strengthen their belief in the NEE.  

Self-interested cooperation: Results from the above-mentioned experiments all indicate 

that common knowledge that like-contributors are grouped together reassures 

“cooperators”. We must however be clear on what the terms “contributor” or “cooperator” 

mean in the context of the GBM. As reported in Result 4, the behavior of most GBM 

participants varies over rounds. In light of the substantial literature on type detection in the 

VCM (see, e.g., Chaudhuri, 2007 for an overview) this might be somewhat of a surprise. 

Note however that type detection in the VCM focuses on identifying stable off-equilibrium 

contributors as opposed to those who stick with the sole equilibrium strategy of free-riding. 

In the GBM in contrast, a high proportion of full contributions is part of an equilibrium 

profile supported entirely by material self-interest. 

3. MPCR effects    

The NEE was realized more reliably under MPCR=0.5 than under MPCR=0.3 (see, 

e.g., Fig. 2). Behavioral MPCR effects are well documented (see e.g., Isaac et al., 1984; 

                                                 
21 A growing literature shows that endogenous group formation and ostracism also raise contributions as 
players compete to be accepted by their fellow players (see, e.g. Ahn et al., 2008; Charness & Yang, 2009; 
Cinyabuguma et al., 2005; Croson et al., 2007; Güth et al., 2007; Maier-Rigaud et al., 2010 provide an 
overview of the topic).  
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Isaac & Walker, 1988; Gunnthorsdottir et al., 2007). There are two possible reasons for this 

effect here: 1) The lower the MPCR the less expected individual payoffs differ between the 

NEE and the GBM’s second equilibrium of non-contribution by all. This might render 

subjects more indifferent toward their strategy choices the lower the MPCR, resulting in 

inaccuracy.  2) An “unlucky” full contributor placed in Group G due to the random 

resolution of ties earns only [w * (n-z) * m].  The lower the MPCR the lower this term, as 

(n-z) →1, and m → 1/n, making full contribution more risky when the MPCR is lower. 

Potential contributors may have hedged their bets under MPCR=0.3, which could account 

for the pattern seen in Fig. 2 with intermediate strategies more common under MPCR=0.3.  

 

VI. CONCLUSION 

The Group-based Meritocracy Mechanism (GBM) is a basic model of a system of 

cooperative groups, where individual contributions are observable, group membership is 

competitively based on contributions, and rewards within groups are equally shared 

according to a VCM payoff function. We show theoretically that if grouping is 

competitively based on contribution, high levels of cooperation can be part of an 

equilibrium profile in what would otherwise be a standard social dilemma. Our behavioral 

results demonstrate the predictive and descriptive power of the Nash equilibrium. 

Aggregates of experimental subjects reliably coordinate the mechanism's asymmetric 

"Near-efficient Equilibrium" (NEE) which they could probably neither consciously 

discover nor easily understand. Aggregate behavior conforms to the NEE even though 

individuals vary their behavior over repeated rounds. 

Criticisms and extensions   

Group assignment under naturally occurring circumstances is a complex, multi-

faceted phenomenon. It happens among socially “embedded” (Granovetter, 1985) players, 
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usually under asymmetric information conditions. Reputations that affect migration of 

individuals between groups take time to build (and to destroy). Players usually differ in 

their abilities or willingness to contribute, and contributions are driven by both material 

and non-material incentives. The GBM in contrast is a simple model of contribution-based 

grouping that considers self-interest only, where all players have equal ability to contribute, 

and where re-grouping based on performance happens without error or delay, with all 

players completely informed. The information requirements in the current version of the 

mechanism are thus high, while the environment is simple. However, both the theoretical 

and the experimental version of the GBM can be further extended to increase the model’s 

realism. We consider the following extensions the most urgent: 

Time lags. In the version of the GBM presented in this paper, contribution decisions 

precede and causally influence grouping and earnings as a model of competitive 

contribution-based grouping requires. Yet, mobility is ultimately based on current-round 

performance only. Under naturally occurring circumstances, search costs and switching 

costs, as well as fluctuations in individual performance tend to delay regrouping. Most 

often therefore, a known history of high team contributions is required for a high 

contributor to switch to a team of equally high contributors; conversely, failure to 

cooperate with one’s current group does not lead to regrouping as quickly as would be 

desirable from an efficiency viewpoint. The impact of lags between performance and 

grouping needs to be examined systematically with a dynamic version of the GBM model. 

Unequal endowments. In the current version of the GBM model all players have 

equal ability to contribute. Again, this does not happen under naturally occurring 

circumstances. Note that NEE's structure is not impacted by inequality in endowments as 

long as the number of players with a lower (or even, no) endowment is less than or equal to 

z. Thus, the mechanism in its current form can absorb a few “weak” players. However, an 
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obvious next step is to examine how sensitive the model is to more heterogeneity in the 

endowments.  

Comparison with the VCM. The GBM can be regarded as a system of multiple 

VCMs, where random grouping is replaced by competitive grouping. While we have 

shown that competitive grouping changes the equilibrium structure of the game as well as 

behavior, we have not provided a direct comparison with VCM data here. The robust 

behavior patterns in the standard VCM are however well-documented in the literature, 

allowing at least an informal comparison.22  Nonetheless, a systematic comparison between 

the two mechanisms, with a focus on individual strategies, would be informative.  

Group incentives versus grouping incentives 

Buchanan (1965) pointed to the impact of the degree of excludability of group 

output on cooperation and provision levels. It is also known that targeted group 

compensation systems can induce group members to work both harder and smarter 

(Nalbantian & Schotter, 1997). This paper addressed the question of how any such groups 

might form. Our findings point to the importance of performance-based grouping and 

common knowledge thereof. They also suggest that contribution-based grouping could 

possibly be used as a relatively predictable and precise tool to enforce good citizenship in 

many different contexts especially for small self-regulated local public good providers. 

Competitive group membership in these settings need not necessarily be exogenously 

enforced since contributions can also be tracked through decentralized reputational scoring.  

                                                 
22 See e.g. Ledyard (1995) for a summary of standard VCM experimental results. For a brief comparison of 
behavior in a VCM and a GBM, see Gunnthorsdottir (2009).  
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Table 1 
Strategy choices per session and per MPCR  
 

 
MPCR = 0.5   

Session # 1 2 3 4 Average 1 - 4 
Mean contribution per session 86.1% 83.1% 81.3% 84.9% 83.8%
Total % full contributions per session* 82.3% 76.3% 72.3% 73.3% 76.0%
Total % zero contributions per session* 4.9% 10.9% 7.8% 4.6% 7.1%
%  choices consistent /w NEE** 84.3% 84.9% 78.8% 77.7% 81.4%
 

 

MPCR = 0.3   
Session # 1 2 3 4 Average 1 - 4

Mean contribution per session 65.1% 71.2% 71.7% 72.3% 70.1%
Total % full contributions per session* 19.0% 45.5% 57.8% 57.1% 44.8%
Total % zero contributions per session* 14.2% 10.1% 4.2% 15.2% 10.9%
%  choices consistent /w NEE** 32.8% 55.5% 62.0% 70.8% 55.3%
 

* Exact classification 
**Classification relaxed as described in Result 3.   
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Fig. 1 
Mean group contributions in the Near-efficient Equilibrium (NEE) and observed mean group 
contributions per round 
print in two colors 
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Fig. 2 
Relative frequency at which each strategy was chosen, by MPCR (red horizontal bars are the Near-
efficient Equilibrium percentages of si = 0 and si =100, respectively)  
print in two colors 
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ONLINE APPENDIX A 

 

I. FORMAL ANALYSIS OF THE GBM’S PURE STRATEGY EQUILIBRIA 

 
A.) Definition of the GBM  

A group-based meritocracy (GBM) is defined as a game with N players. Each 

player i = 1, …, N has an endowment w > 0, makes a contribution si  [0; w] to a public 

account, and keeps the remainder (w – si) in her private account. It follows that the 

contribution si fully characterizes a player’s strategy. After their investment decisions, all 

players are ranked according to their public contributions and divided into G groups of 

equal size n (G = N/n). Note that ties are broken at random. The n players with the 

highest contributions are put into group 1; the n players with the next highest 

contributions are put into group 2, and so on. Without loss of generality, let s1  s2  …  

sN, i. e. group 1 consists of players 1 to n, group 2 of players (n + 1) to 2n and so on. 

Payoffs are computed after players have been grouped this way, including the random 

resolution of ties. Each player’s payoff πi consists of the amount kept in her private 

account, plus the total public contribution of all players in the group she has been 

assigned to, multiplied by the MPCR g/n = m  (1/n; 1):  

 

 

B.) Deriving the GBM’s equilibria 

Observation 1: Obviously, the strategy profile s1 = s2 = … = sN = 0 is an equilibrium. 

Since m < 1, no player can profit from contributing a strictly positive amount to the group 

account if all others give zero. 

In the remainder of this section, we derive the alternative Pareto dominant near-

efficient equilibria (NEE), which are asymmetric and more complex. We start by 

assuming that an equilibrium with positive contributions exists and describe its general 

characteristics in Observation 2. This is followed by a theorem that specifies all pure 

 

 


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strategy equilibria, and the criteria for the existence and uniqueness of an equilibrium 

involving positive contributions.  

Observation 2: If an equilibrium with positive contributions exists, each player 

contributes either zero or her entire endowment w. Moreover, the number of players who 

contribute their entire endowment is larger than N – n.  

We break the proof of Observation 2 into four Lemmas and prove each of them 

separately. To start with, consider the case in which some players make strictly positive 

contributions. Let h = maxi {si | i = 1, … N} denote the highest contribution, H = argmaxi 

{si | i = 1, … N} the set of players contributing h (i.e. si = h  i  H), and b = |H| the 

number of players contributing h. 

 

 Lemma 1. If some strategies are positive, then in equilibrium b > n and (b mod n) > 0, 

i.e. a high contributor i  H will be grouped with positive probability with some other 

player(s) who contribute(s) less than she does.  

Proof. Clearly, b < N, else each player would profit from unilaterally changing her 

contribution from h to zero. If b mod n were zero, player i, who at present contributes h, 

could reduce her contribution by a small  and still remain grouped exclusively with high 

contributors. By the same logic, b must be larger than n.  

■ 

 

Lemma 2: When some strategies are positive in equilibrium, the highest contribution h 

cannot be smaller than w. 

Proof: We know from Lemma 1 that a high-contributor i  H is grouped with positive 

probability with at least one player who contributes less than h. Her expected payoff 

Eπi(h) is smaller than w – h + m n h. Assume h were smaller than w and let  := w – h + 

m n h – Eπi(h) ( > 0). Let player i increase her contribution from h to h' := min {h +  / 

(2 (1-m)); w}. Then, player i will be grouped with only high contributors with certainty. 

Denote her expected payoff by Eπi(h').1 

                                                 
1 The weak inequality “” in the second line holds strictly (“>”) if h' = w. If h' = h +  / (2 (1-m)), it holds 
with equality (“=”). 
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Thus, contributing h' rather than h makes player i better off. Consequently, in equilibrium 

the highest positive contribution cannot be smaller than w. 

■ 

 

Lemma 3: When some strategies are positive in equilibrium, there cannot be any player j 

who contributes sj with 0 < sj < w.  

Proof: According to Lemma 2, if some strategies are positive the highest contribution is 

w. Moreover, the number b of players contributing w is larger than n (Lemma 1). Define 

b' := (b mod n) and consider player j whose contribution sj > 0 is the maximum of all 

contributions smaller than w (j  H). Assume first that there are no ties with respect to 

the group membership of player j. Then player j could contribute slightly less and remain 

in that same group with certainty. This cannot be equilibrium. If, on the other hand, we 

allow for player j being tied for group membership, then with probability p she will be in 

a group in which sj is the highest contribution. Only with probability (1-p), will she be in 

a group in which (n-b') players contribute sj and b' players contribute w. Her expected 

payoff is therefore: 

 
 .'')'(

')'()1()(

jjj

jjjjj

swpmbwmbsbnmsw

wbsbnmpmnspswsE




    (1) 

If player j increased her contribution to sj' = min{sj+1/2 pmb' (w-sj)/(1-m); w}, she would 

be in a group with a higher total contribution with certainty. Her alternative payoff 

Eπj(sj') can be estimated with respect to a lower bound by2 

                                                 
2 Again, the weak inequality “” holds strictly (“>”) if sj' = w. 
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  (2) 

The difference Eπj( sj') – Eπ j( sj) is:  

.0)('
2

1
)()'(  jjjjj swpmbsEsE        (3) 

Thus, player j would profit from unilaterally deviating by increasing her contribution sj, 

hence this cannot be an equilibrium.  

■ 

 

Lemma 4: In any equilibrium with positive, contributions, the number z := N – b of 

players contributing zero is smaller than n.  

Proof: It was shown above that in equilibrium (b mod n) > 0. Consequently, ((N – b) 

mod n) > 0 as well. If z were larger than n, then any zero contributor could increase her 

payoff by contributing some small  and become with certainty a member of the mixed 

group, in which some members contribute their entire endowment w. In this case her 

expected payoff is clearly higher than if she were grouped with these same players only 

with some probability p < 1. 

▀ 

Observation 2 follows immediately from Lemmas 1-4.  

 

 

Theorem: If m < 
1

1
2 


nNn

nN
, the only equilibrium of the GBM is if all players 

contribute nothing. If 
1

1
2 



nNn

nN
m , the GBM has, additionally, a near-efficient 

equilibrium (NEE)  in which all but z < n players contribute their entire endowment w 

and only the remaining z players contribute nothing. z is the integer between a lower 

bound l and an upper bound u where 
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1:  

In general, the NEE is the unique equilibrium with positive contributions (and is strict).3 

As the number of groups G increases, the range of MPCRs m, for which a NEE exists, 

converges to the interval (1/n, 1). 

Only if 
mmnmN

mNN




1
is an integer strictly smaller than n – 1, there exist two 

equilibria with full contributions, and the number of full contributors in them differs by 

one.  

Proof. Consider the case in which b (b > N-n) players contribute fully to the group 

account and the remaining z = N – b players contribute zero (z  {1, 2, …, n – 1}). In 

order to identify all equilibria that satisfy the characteristics stated in Observation 2, it 

now remains to show for which b (or z) no full contributor has an incentive to change her 

contribution to zero, and no zero-contributor has an incentive to change her contribution 

to w. Denote the expected payoffs of a full and a zero-contributor by Eπb(w) and Eπz(0), 

and the respective alternative expected payoffs of a full contributor unilaterally deviating 

to zero and a zero-contributor deviating to contributing w by Eπb(0) and Eπz(w). These 

payoffs are as follows: 
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     (4) 

and in all equilibria that involve positive contributions the following must hold: 

 1,...,2,1  nz  and 

                                                 
3 Of course, z actually characterizes a set of equilibria. Even though the structure itself is unique there are 





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


z

N combinations in which z players contribute nothing and (N-z) players contribute fully.  
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
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

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





1

1
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)0()(

2



    (5) 

and 

   
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 
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1

1
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1
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1
1

1

1
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2222

2

mmnmN

mNN
z

mmnmN

mmnN
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mmnNzmmnmN
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mnmzznnznmzmzNmzmnmnzzN

mnnNmznzNmzmn

mnw
zN

nN
wznm

zN
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wznmw

wEE zz



























 

(6) 

Thus, the terms 

mmnmN

mNN
l





1

:          and        
mmnmN

mNN
u





1

1:    , 

respectively, constitute a lower and an upper bound of z.  

Since z  {1, 2, …, n-1}, equilibria with positive contributions only exist if l ≤ n – 1 and 

u ≥ 1.  

The difference u – l between the upper and the lower bound of z is exactly one. Thus, the 

interval [l, u] contains at least one integer; it contains exactly two integers if and only if 

both l and u are (feasible) integers.  

Also note that since m < 1 

.1
1

1
1

1 









mmnmN

NN

mmnmN

mNN
u   (7) 
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Thus, the upper bound u does not impose a restriction on the existence of an equilibrium 

with full contributions. However, for the lower bound l one needs to ensure that 

1

1

1

1
1

2

2












nNn

nN
m

NmnmnmNn

mmnmN

mNN
ln

       (8) 

From (8) we have4 

nnnNn

nN

nNn

nN
m

11

1

1
22









        (9)  

It can therefore be seen that equilibria with positive contributions do not exist for all m > 

1/n (or for all g>1). However, the threshold condition for m is rather weak in the sense 

that the threshold
1

1
2 


nNn

nN
 in (9) converges to 1/n as G →∞. To see this, rewrite 

1

1
2 


nNn

nN
 as 

1

1
22 


nGn

nGn
. Its limit computes to

nnGn

nGn
G

1

1

1
lim

22






. Moreover, if 

the group size n increases, the threshold converges to zero, i.e. 0
1

1
lim

22





 nGn

nGn
n

. So, 

the range of MPCRs for which a NEE exists converges to the interval (0, 1).  

▀ 

To summarize this section, an equilibrium in the GBM has the structure that either 

no player contributes anything to the group account or that z < n players contribute 

nothing and the remaining N – z players contribute their entire endowment. In the latter, 

near-efficient equilibrium (NEE), there is always exactly one mixed group consisting of 

full contributors and non-contributors, while all other groups consist of contributors only. 

This implies that in equilibrium a player who contributes fully will be grouped together 

with non-contributors with some positive probability. 

 

                                                 
4 The inequality is strict because n > 1. 
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II. COMPARATIVE STATICS 

Increases in a society’s size, productivity, and scale 

We now show that the NEE is often more efficient, and never significantly less 

efficient, if the society’s size, scale or productivity is larger. In many such cases the NEE 

asymptotically approaches full efficiency. We report the effects of changes in (a) the 

number of groups, (b) the parameter g (group-based productivity) and (c) the group size 

n. Obviously, if n increases, the MPCR m = g/n and g cannot both be kept constant. Since 

both m and g affect the incentives in a game with some social dilemma properties with 

each parameter affecting a different aspect of the incentives,5 we also examine (d) a 

simultaneous increase of both n and g, which amounts to an increase in n while m is 

constant.                                                                                                                                                               

(a ) Increases in G, the number of groups. The NEE’s relative efficiency 

Nws
N

i
i

1

 increases if more teams of size n join the society, because the number of zero-

contributors z does not grow with G. If G becomes very large, the NEE’s relative 

efficiency asymptotically approaches full efficiency. Formally stated:   

Lemma 5: z is non-increasing in G, and converges quickly to 



 

m

m1 6 as G becomes 

large. 

Proof: The lower bound of z is 

.
11 mmnmnG

mnGnG

mmnmN

mNN
l








      (10) 

The derivative of this lower bound with respect to G computes to 

  
 21

1m-1n

mmnmnG

mmn

Gd

ld




  < 0. Thus, both the lower and the upper bound of z are 

strictly decreasing and the number of zero-contributors cannot be increasing in G. 

Further, reformulate l as follows: 

                                                 
5 g determines the social optimum if all contribute. 1-g/n is the opportunity cost of cooperation. 
6 The symbol  x  refers to the smallest integer which is not smaller than x. 
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.
1

1

1

1
mn

m
G

G

m

m

mmnmnG

mnGnG
l










      (11) 

Obviously, l converges to (1 – m) / m if G . (Recall that the number of non-

contributors is the smallest integer at least as large as l.) 

▀ 

 

(b) Variations in g, the benefit from cooperation. Increasing g (which might be 

interpreted as a society’s collaborative productivity) raises the payoff from contributing 

and eventually lowers z and increases efficiency.7 

Lemma 6: z, the number of zero contributors in a NEE is non-increasing in g and—

depending on g—can be any value of the set {1, 2, … n-1}; 

Proof: Since m = g/n, the lower bound can be reformulated as follows: 

n

g
ggG

gGnG

mmnmN

mNN
l










11

 

The first derivative with respect to g is 
 

0
)1(

2

3







gngngnG

GGn

dg

dl
, i.e., the lower 

and upper bound l and u are strictly decreasing in g. Since u – l = 1, the integer z  [l; u] 

is non-increasing in g. Moreover, if 
1

1
2 



nNn

nN

n

g
m (i.e.,

nnN

nN
g

/1

1




 ), which is 

the lowest m for which a NEE exists (see Theorem), then z = l = (n – 1). If, on the other 

hand, g = n so that m = 1, i.e., both m and g take on their maximum values, then z = u = 

1. Thus, as g grows from 
nnN

nN

/1

1




to n, the number of zero contributors decreases 

from (n – 1) to 1.  

▀ 

 

                                                 
7 If g > n, the dominant strategy equilibrium is that everyone contributes. Also note that certain changes in 
g can affect the existence of equilibria with positive contributions, see the Theorem. 
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(c) Increases in n, the group size (g is constant).  If n increases while all other 

parameters are constant8, the MPCR m = g/n decreases. This means that the opportunity 

cost of cooperation increases while the individual payoff when everybody cooperates, 

g*w, stays the same. The number of zero-contributors z increases with this, but the ratio 

z/n changes very little and converges to a constant. Hence, even if the MPCR g/n 

decreases radically due to an increase in n with no concomitant increase in g, the relative 

efficiency Nws
N

i
i

1

 of the NEE is maintained as n . Formally, 

Lemma 7: Keeping g constant, the number z of zero contributors in a NEE is non-

decreasing in the group size n, and z/n converges to 







 1ggG

G
 as n . 

Proof: The derivative of the lower bound l with respect to n is 

  
 

0
)(1G
2

22






gnnggnG

gngn
G

nd

ld
. Thus, both the lower and the upper bound of z are 

strictly increasing in n, and the number of zero-contributors is non-decreasing in n. The 

ratio l/n can be written as
ngngngG

gnG


 )(

, and 
n

lim  
1

)(







ggG

G

ngngngG

gnG
 so 

the proportion of zero contributors z/n converges to 
1 ggG

G
 as n .  

▀ 

 

(d) Increase in n accompanied by increase in g (constant MPCR).  Here, m = g/n 

is constant as n increases. Thus, the sole contributor does not change as n grows, but the 

individual payoff if everyone in a group contributes grows together with n, so that there 

are returns to scale.8 In this case z, while non-decreasing, quickly converges to a constant. 

Therefore, as n  the relative efficiency Nws
N

i
i

1

 of the NEE asymptotically 

approaches 100%. Formally:  

                                                 
8 Since G is constant, N increases here.  
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Lemma 8: In a NEE, if m is constant, z is non-decreasing in n but with increasing n 

converges quickly to 



 
























m

m

G

G
m

m 1
1

1
 if G is also large. 

Proof: The derivative of l with respect to n is 
 

 
0

1

-1
2

2





mmnmnG

m
G

nd

ld
. Thus, 

both z’s lower bound l and its upper bound u are strictly increasing in n. It follows that 

the integer z is non-decreasing in n. Further, reformulation of l yields: 

G

G
m

m

nG

m

G

m
m

m

mmnmnG

mnGnG
l n

1
1

1
1

1 


 










                                (12) 

 

This concludes the comparative statics section.  

 

III.  STRATEGIC RISK IN THE NEAR-EFFICIENT EQUILBRIUM 

The equilibrium of non-contribution by all is inefficient but secure for all players: 

payoffs can never be negatively affected by deviations of others. In the payoff dominant 

NEE on the other hand, strategic uncertainty impacts full contributors most, while a non-

contributor always earns at least w. The uncertainty is compounded by the fact that one 

among 







z

N
  possible asymmetric strategy profiles needs to be coordinated for this 

particular equilibrium to emerge with precision. The exact size and direction of the 

impact of deviations by others on the earnings of a full contributor in what would 

otherwise be a NEE profile depends on z, n, G, the number of deviators from full 

contribution d where 1 ≤ d ≤ (N-z-1), and the amount of their deviation δ   (0, w].  
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A desirable feature of the GBM as a mechanism is that depending on d and δ, the 

impact of downward deviations by others on the expected earnings of full contributors is 

often only mildly negative, sometimes even positive. Fig. A.1 illustrates this with an 

example where w=100, n=10, N=100, MPCR=g/n=m=0.3, δ = 50 or δ = 100, and d 

ranges from 1 to (N – z - 1). The figure illustrates that the impact of strategic uncertainty 

in a NEE on the payoffs of those who contribute fully is mitigated by competitive 

stratification, even if d becomes large. This fact should facilitate the coordination of the 

payoff-dominant equilibrium in practice since it reduces full contributors’ “fear” 

(Rapoport & Eshed-Levy, 1989) of being taken advantage of.  
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Fig. A.1 (reproduce on the web in color) 
Impact of deviations on a remaining full contributor’s payoff if  N=100, n=10, and 
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ONLINE APPENDIX B 

THE GBM WITH A DISCRETE STRATEGY SPACE 

Many social contributions, such as effort, can be considered continuous. Even 

monetary contributions, often considered discrete, can nowadays be micro-payments. 

However, in experiments contributions are in integer tokens so that the strategy space is 

discrete. With a discrete strategy space the GBM has additional low-level asymmetric 

pure strategy equilibria consisting of zero contributions and very low contributions. They 

thus closely resemble the equilibrium of non-contribution by all. The number and 

structure of these low-level equilibria is MPCR dependent. While a formal theoretical 

proof is complicated, experimenters can identify these equilibria for their specific 

experimental setups by using simulations. Here, we provide an intuitive account of these 

low-level equilibria and identify the discrete equilibria in our experimental setup.  

Reasons for the emergence of low-level equilibria in the discrete case. While the 

results reported here are from a brute-force exploration of the strategy space, the reason 

for the existence of such low-level equilibria, and for their increased number the lower 

the MPCR, is intuitive: In the continuous version of the GBM, changing one’s 

contribution by a small ε is essentially costless yet impacts group membership. Changing 

one’s contribution by one unit token, however, is not costless. Hence, if the strategy 

space is discrete there can emerge stable configurations in which it is not profitable for a 

participant to unilaterally change his contribution by an entire unit token only to switch 

groups. This tends to occur if the groups’ team products are similar. Team products are 

more similar with lower group contributions in all groups or with a lower MPCR. Tables 

B.1 and B.2 list all discrete-case pure strategy equilibria in our experiments, and the 

associated earnings. As expected, there are more low-level equilibria under MPCR = 0.3 

(Table B.2) than under MPCR = 0.5 (Table B.1). The near-efficient equilibrium (NEE), 

which hold in both the discrete and continuous case, is included in Rows 16 (MPCR = 

0.3) and 20 (MPCR = 0.5), both shaded in grey. It is obvious that the low-level equilibria 

are very distinct from the NEE, and resemble the equilibrium of non-contribution by all.  
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Table B.1 

Equilibria for N=12, n=4, wi=100, and MPCR=0.5. Discrete integer strategy space.  

(Equilibria in shaded rows exist in both the discrete and the continuous case) 

 

  
Strategy Configuration (s12, s11, …, s1) 

(Expected payoff per strategy in parentheses) 
 

 
Efficiency* 

 

17 (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) 
(100.00) 

0.0 % 

18 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 
(101.00)  (100.80) 

0.7% 

19 0, 0, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 
(102.00)  (101.60) 

1.5% 

20 0, 0, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100 
(200.00)  (180.00) 

83.3% 

 

* Nws
N

i
i

1

 

where w is each individual’s endowment, and N is the total number of players in the 
system 
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Table B.2 

Equilibria for N=12, n=4, wi=100, and MPCR=0.3. Discrete integer strategy space.  

(Equilibria in shaded rows exist in both the discrete and the continuous case) 

 
  

Strategy Configuration (s12, s11, …, s1) 
(Expected payoff per strategy in parentheses) 

 

 
Efficiency * 

 

1 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 
(100.00) 

0.0% 

2 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1 
(100.10) (100.02) 

0.4% 

3 0, 0, 0, 0, 0, 0, 0,  2, 2, 2, 2, 2 
(100.39) (100.78) 

0.8% 

4 0, 0, 0, 0, 0, 0, 0, 3, 3, 3, 3, 3 
(100.40)  (100.06) 

1.3% 

5 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1 
(100.30)  (100.10) 

0.7% 

6 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 2 
(100.30)  (100.20)  (100.22) 

1.1% 

7 0, 0, 0, 1, 1, 1, 2, 2, 2, 2, 2, 2 
                              (100.30)  (100.30)  (100.28) 

1.2% 

8 0, 0, 0, 2, 2, 2, 2, 2, 2, 2, 2, 2 
(100.60)  (100.20) 

1.5% 

9 0, 0, 0, 2, 2, 2, 2, 4, 4, 4, 4, 4 
(100. 60)   (100.40)   (100.44) 

2.3% 

10 0, 0, 0, 2, 2, 2, 2, 5, 5, 5, 5, 5 
(100.60)   (100.62)   100.40) 

2.7% 

11 0, 0, 0, 3, 3, 3, 3, 3, 3, 3, 3, 3 
(100.90)  (100.30) 

2.3% 

12 0, 0, 0, 4, 4, 4, 4, 4, 4, 4, 4, 4 
(101.20)  (100.40) 

3.0% 

13 0, 0, 0, 5, 5, 5, 5, 5, 5, 5, 5, 5 
(101.50)  (100.50) 

3.8% 

14 0, 0, 0, 6, 6, 6, 6, 6, 6, 6, 6, 6 
(101.80)  (100.60) 

4.5% 

15 0, 0, 0, 7, 7, 7, 7, 7, 7, 7, 7, 7 
(102.10) (100.70) 

5.3% 

16 (0, 0, 0, 100, 100, 100, 100, 100, 100, 100, 100, 100) 
(130.00)  (110.00) 

75.0% 

 
* Nws

N

i
i

1

    

where w is each individual’s endowment, and N is the total number of players in the 
system 
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ONLINE APPENDIX C 

 

EXPERIMENTAL INSTRUCTIONS 
 

 
This is an experiment in the economics of group decision-making.  You have already 
earned $7.00 for showing up at the appointed time. If you follow the instructions closely 
and make decisions carefully, you will make a substantial amount of money in addition to 
your show-up fee.  
 
There will be many decision-making periods. In each period, you are given an 
endowment of 100 tokens.  You need to decide how to divide these tokens between two 
accounts: a private account and a group account.  
 
Each token you place in the private account generates a cash return to you (and to you 
alone) of 1 cent.  
 
Tokens that group members invest in the group account will be added together to form 
the group investment. The group investment generates a cash return of 2 cents per token. 
These earnings are then divided equally between group members. Your group has 4 
members (including yourself).  
 
Returns from the group investment are illustrated in the table below.  The left column 
lists various amounts of group investment; the right column contains the corresponding 
personal earnings for each group member.  
 
Returns from the Group Investment 
 
Total investment by Return to each group 
your group member  
 (From group investment) 
 

    0     0 
   20   10 

  40   20 
  60   30 
100   50 
150   75 
200 100 
300 150 

 400 200 
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Example: 
Assume that, in a specific period, your endowment is 100 tokens. Assume further that 
you decide to contribute 50 tokens to your private account and 50 tokens to the group 
account. The other group members together contribute an additional 250 tokens to their 
group accounts. That makes the group investment 300 tokens, which generates 600 cents 
(300 * 2 = 600). The 600 cents are then split equally among the 4 group members. 
Therefore, each group members earns 150 cents from the group investment (600/4=150). 
In addition to earnings from the group account, each member gets 1 cent for every token 
invested in his/her private account. As you invested 50 tokens in the private account, your 
total profit in this period is 150 + 50 = 200 cents.  
 
Each period proceeds as follows: 
First, decide on the number of tokens to place in the private and in the group account, 
respectively.  Use the mouse to move your cursor to the box labeled “Private Account”. 
To make your private investment, click on the box and enter the number of tokens you 
wish to allocate to this account.  Do likewise for the box labeled “Group Account” 
Entries in the two boxes must sum to your endowment. To submit your investment click 
on the “Submit” button.  You will then wait until everyone else has submitted his or her 
investment decision. 
 
Second, once everyone has submitted his or her investment decision, you will be assigned 
to a group with 4 members (including yourself).  This assignment will proceed in the 
following manner: participants' contributions to the group account will first be ordered 
from the highest to the lowest. Then the four highest contributors will be grouped 
together. Participants whose contributions ranked from 5-8 will form another group. 
Finally, the four lowest contributors will form the third group. Any ties that may occur 
will be broken at random. Experimental earnings will be computed after you have been 
assigned to your group. Thus, your contribution to the group account in a specific round 
affects which group you are assigned to in that round. 
 
Third, you will receive a message with your experimental earnings for the period. This 
information will also appear in your Record Sheet at the bottom of the screen. The record 
sheet will also show the group account contributions by all participants in the experiment, 
including yours, in ascending order. Your contribution will be highlighted.  
 
A new period will begin after everyone has acknowledged his or her earnings message. 
 
After the last period, you will receive a message with your total experimental earnings 
(sum of earnings in each period). 
 
This is the end of the instructions. 
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ONLINE APPENDIX D 
 

Individual decision paths over 80 rounds 
 
 
 
 

In the title of each graph, the first number shows the MPCR, the second number identifies 
the session. Individuals’ mean token earnings per round over 80 rounds are reported in 
brackets. 
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