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Abstract In many auctions the valuation structure involves both private and
common value elements. Existing experimental evidence (e.g. Goeree and Of-
ferman (2002)) demonstrates that first-price auctions with this valuation struc-
ture tend to be inefficient, and inexperienced subjects tend to bid naively and
fall prey to the winner’s curse. In this paper, we compare first-price auctions
with an alternative auction mechanism: the least-revenue auction. This auction
mechanism shifts the risk regarding the common value of the good to the auc-
tioneer. Such a shift is desirable when ex post negative payoffs for the winning
bidder results in unfulfilled contracts, as is often the case in infrastructure con-
cessions contracts. We directly these two auction formats within two valuation
structures: 1) pure common value and 2) common value with a private cost.
We find that, relative to first-price auctions, the winner’s curse is significantly
less prevalent in least-revenue auctions regardless of valuation structure. As a
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result revenue in first-price auctions is higher than in least-revenue auctions,
contrary to theory. Further, when there are private and common value com-
ponents, least-revenue auctions are significantly more efficient than first-price
auctions.

Keywords Auctions · Winner’s curse · Allocative Efficiency · Bidding

JEL Classification D44 C72

1 Introduction

For reasons of tractability, theorists typically make strong assumptions about
the valuation structure of auctions. In particular, each bidder typically pri-
vately observes a signal, and her valuation of the available object is assumed
to be a function of her signal, and possibly other unobserved signals. This ba-
sic framework is used to model auctions with a variety of valuation structures.
In these models, the symmetric equilibrium bid function maps a bidder’s one
dimensional signal into bids.

However, in many auctions a bidder’s valuation may have both private
and common value components. That is, a bidder’s valuation may be multi-
dimensional. Auctions for infrastructure concession contracts can be modeled
as having both private and common value components. The winner of such an
auction receives the revenue generated by the contract (e.g. tolls from highway
concessions, energy transmission tolls over a high-power grid, etc.) which has a
common value Bain and Polakovic (2005); Flyvbjerg et al (2005). However, the
winning bidder also incurs the cost of fulfilling the contract (e.g. building the
highway, constructing the infrastructure for power lines, etc.). If bidders’ costs
of providing the infrastructure differ, these costs may represent an independent
private value component of the valuation structure.

In auctions with common value components, it is well known that bidders
are prone to the winner’s curse. That is, bidders bid such that they guarantee
themselves negative payoffs in expectation.1 In this paper we experimentally
consider auctions with an uncertain common value and private costs, and
compare them to auctions with an uncertain common value and a common cost
which is common knowledge. We compare these two valuation structures in a

1 In the context of infrastructure concession contracts, the winner’s curse might be used
as a justification or as a reason to renegotiate the contract. Guasch (2004) reports that
over 50% of concession contracts for transportation infrastructure are renegotiated. Athias
and Nuñez (2008) find evidence that is consistent with bidders displaying more strategically
opportunistic behavior in auctions for toll-road concessions in weaker institutional settings,
pressumably due to a higher probability of contract renegotiation. The intuition is that
when auctioneers face commitment and contract enforcement problems, winning bidders
find it easier to say (truthfully or not) that they have fallen prey to the winner’s curse
and renegotiate better terms. In this sense, it is plausible that removing the common value
risk to bidders might reduce the justification to renegotiate due to low realized values of
concession contracts.
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standard first-price sealed-bid auction, and in an alternative auction format,
the Least-Revenue Auction (LRA).2

In an LRA, bidders simultaneously make sealed-bid offers which consist
of the minimum amount (from the common value of the good) the bidder is
willing to accept upon winning the auction.3 Thus, the winner implicitly pays
the difference between the realized common-value of the good and the offer.
This mechanism renders private information bidders may hold regarding the
common value of the good strategically irrelevant. Thus, in a purely common-
value auction equilibrium bids are not a function of the private common-value
signals that the bidders observe prior to placing their bids. The game is, in
effect, a game of complete information. Similarly, in auctions with private
and common values, the equilibrium bid function of an LRA maps bidders’
private costs into bids, ignoring privately observed estimates of the common
value. The LRA mechanism, in effect, transforms an auction with private and
common values into an auction with purely private values.

It is important to note that in an LRA, uncertainty regarding the com-
mon value of the good is borne by the auctioneer rather than by the bidders.
An LRA represents a contract in which the price the winning bidder pays is
contingent on the realized value of the good; the auctioneer guarantees the
winning bidder that she will earn her bid (provided the winning bid does not
exceed the common value of the good). This transfer of risk may be desirable,
and provides the original motivation for LRAs: Engel et al (1997, 2001) first
proposed the Least Present Value of Revenue Auction (LPVRA), in which
bidders submit the smallest present value of revenue they would require for
a contract in which they build, operate and then transfer a highway to the
government at the conclusion of the contract term. In an LPVRA, the dura-
tion of a contract is contingent on the stream of revenue which is generated
by tolls collected on the highway. In particular, the contract lasts until the
winning bidder obtains the present value (at a pre-determined discount rate)
of the toll revenue that she bid. This flexible-term contract shifts most of the
risk resulting from uncertain traffic patterns to the government, relative to a
standard fixed-term contract. Engel et al (1997) estimates that the value of
switching to LPVR auctions is about 33% of the value of the infrastructure in-
vestment. More generally, by eliminating ex ante uncertainty regarding payoffs
conditional on winning the auction LRAs and LPVRAs reduce the ability of
winners to attempt to renegotiate the contract on the grounds that the value
of the good is less than expected. That is, the winning bidder is no longer able
to claim that she fell victim to the winner’s curse, and needs to renegotiate in
order to fulfill the contract.

2 This auction format follows the spirit fo the Least Present Value of Revenue Auction
proposed in Engel et al (1997, 2001). We adopt the name least-revenue auction to reflect
this similarity. However, we will, for resons of comparability, use the term revenue to refer
to auctioneer’s payoff.

3 To put it in the context of Engel et al (2001), the future cash flows of toll revenue are a
common unknown value, and bids consist of present value of toll revenue required by bidding
firms.
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It is important to note that in both the LRA and the LPVRA, the winning
bidder does not have an incentive to maintain the value of the good because
winning the auction guarantees the winning bidder her bid, and no more. That
is, the benefits of maintaining or improving the value of the good ex post do
not accrue to her. Monitoring the ex post behavior of the winning bidder, or
imposing an enforceable contract, would be necessary to mitigate this problem.
If neither of these are possible, LRAs and LPVRAs may not be ideal.

Our work differs from that of Engel et al (2001) in at least two important
ways. First, their focus is on optimal risk-sharing contracts and not on bidding
behavior or auction performance. Second, we allow for the possibility of private
costs, and we analyze the common value of the good as the realization of a
random variable in a single period rather than as a stream of revenue over time
(with a high or low realized value in each period). However, the underlying
intuition is the same. As such, the main contribution of this paper is to formally
analyze and experimentally test bidding behavior and auction performance in
an enviroment consistent with the motivation underlying LPVRAs. Although
Chile has implemented LPVRAs on more than one occassion Vassallo (2006),
to the best of our knowledge this is the first formal and empirical analysis of
the allocative properties of this auction format and bidding behavior within
it.

In addition, our paper contributes to the small but growing literature
regarding auctions with private and common values Goeree and Offerman
(2002); Boone et al (2009). The theoretical analysis of such auctions begins
with Goeree and Offerman (2003). We rely on this analysis predictions in our
experimental design. Goeree and Offerman (2002) (henceforth GO) present
experimental evidence that first-price auctions with private and common val-
ues tend to be inefficient. The intuition behind this inefficiency is that subjects
have to combine the information of two signals (the private value and the sig-
nal regarding the common value). If subjects were to ignore the common value
signal, the auction would be fully efficient. This is precisely what the LRA
offers. Ignoring the common-value signal presents a coordination problem for
auction participants in a standard auction with private and common values.
The LRA avoids this coordination problem by rendering common-value signals
strategically irrelevant.4

Auctions with purely common value have been studied extensively in the
experimental literature. It is typically observed that inexperienced bidders are
prone to fall victim to the winner’s curse. This observation is robust across
numerous auction mechanisms, and these results cannot be explained by risk
aversion, limited liability of losses or a non-monetary utility of winning.5 This
paper provides, to the best of our knowledge, the first attempt to link analysis

4 GO also show that increasing competition (i.e. the number of bidders) exogenously
or reducing the uncertainty (i.e. the variance) of the common value increases efficiency.
Our results regarding LRAs are consistent with this finding, since LRA’s eliminate the
uncertainty regarding the common value of the good.

5 See Kagel and Levin (2002) for an introduction to this literature.
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of the winner’s curse in auctions with only common values to auctions with
both private and common value structures.

Our most dramatic result is a stark decrease in the prevalence of the win-
ner’s curse in LRAs relative to first-price auctions. Indeed, inexperienced bid-
ders in LRAs very rarely fall victim to the winner’s curse. Since these bidders
do not face any uncertainty regarding their payoff conditional on winning the
auction, this is perhaps not surprising. We also find that, when the value of the
good has both private and common value components, there is a significant
increase in efficiency in LRAs relative to first-price auctions. This is impor-
tant because, as previously mentioned, efficiency is low in first-price auctions
with this valuation structure. Thus, we demonstrate that in this environment
increases in efficiency and a reduction of the winner’s curse can be obtained
by changing the auction mechanism. These findings support the use of LRAs
or LPVRAs as a way to allocate concession contracts for infrastructure.

Contrary to theory, LRA generates less revenue than first-price auctions,
regardless of valuation structure. This is largely due to the fact that bidders
in first-price auctions tend to overbid aggresively, often to the point of guar-
anteeing negative profits in expectation. Correspondingly, bidders are better
off in an LRA than in a first-price auction.

The remainder of the paper is organized as follows. Section 2 provides the
theoretical background. Section 3 describes our experimental design. Section
4 provides our results. Section 5 contains the conclusion. Appendix A contains
derivations of theoretical predictions. Appendix B contains a sample set of
instructions.6

2 Theoretical Predictions

A set of risk neutral players N ≡ {1, ..., n} compete for a good with a common
but uncertain value, V , by simultaneously placing bids. Prior to placing her
bid, bidder i ∈ N privately observes a signal vi regarding the value of the good.
Each of these signals is an independently drawn realization of the random
variable v, which is distributed according to F and has support [vL, vH ]. The
value of the good is the average of the signals. That is, V =

∑
i∈N

vi

n . Also,
bidder i faces a cost ci that must be paid if she wins the auction and obtains
the good; bidders know their cost prior to placing bids, but may not know the
value of cj where j 6= i. Bidder i ∈ N chooses a bid, bi ∈ R+in an attempt
to obtain the good. Bidders are not budget constrained; the strategy space of
each player is R+. The vector of bids is b ≡ b1, ..., bn. Further, b−i ≡ b/bi and
N−i ≡ N/i.

6 The instructions used are in Spanish. The sample instructions found in Appendix B
have been translated into English. The remaining instructions are available upon request.
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2.1 First-Price Auctions with Private and Common Values

In a first-price auction with private and common values (FP-PC), costs are
private information. In particular, each ci, where i ∈ N, is an independent draw
of the random variable d which is distributed according to G with support
[cL, cH ]. Thus, the value of the good has both private and common value
components. To ensure that all bidders will participate in the auction, it is
assumed that cH < vL. The net value of the good to bidder i is thus V − ci.
Note that each bidder privately observes two separate pieces of information
regarding this net value, and that these pieces of information are independent.
This information structure is analyzed in Goeree and Offerman (2003), and
they demonstrate that the one dimensional summary statistic si = vi

n − ci can
be used to map both pieces of information into equilibrium bids in a first-price
auction. We denote the random variable from which these summary statistics
are (independently) drawn as s, and the corresponding distribution function
as FS . The symmetric equilibrium bid function is

ρ (si) =
n− 1

n
E (v|s ≤ si) + E (y1|y1 ≤ si) ,

where y1is the highest si of the other n−1 bidders. That is, y1 = maxj∈N−i

vj
n −

cj .

The expected profit of bidder i who observes si isΠFP−PC
i (si) =

∫ si
sL
FS (x)

n−1
dx.

Integrating over ΠFP−PC
i (si) yields the ex ante expected profit of bidder i:

E
(
ΠFP−PC

i (si)
)

= 1
n (E (Y1)− E (Y2)), where Y1 is the first order statistic

of the n draws of s, and Y2 is the corresponding second order statistic.
To find the expected revenue in an FP-PC auction we first note that the

winner’s net value of the good is W = E (V ) − E (E (c|s = Y1)). Subtracting
the ex ante expected payoffs of the bidders yields the expected revenue of the
auction RFP−PC = W − (E (Y1)− E (Y2))7.

2.1.1 Winner’s Curse

It has been widely observed that inexperienced bidders in common value auc-
tions fall victim to the winner’s curse. That is, bidders are prone to bidding
such that they guarantee themselves negative expected profits. According to
this definition, a bidder falling victim to the winner’s curse is bidding above the
expected value of the good, conditional on winning the auction. The propen-
sity of bidders to fall victim to the winner’s curse in this environment, where
there are common and private components of the net value, was observed by
GO and is of interest in this study. We say that a bidder has fallen victim to
the winner’s curse if she has bid above the break-even bidding threshold, thus
guaranteeing that she has negative expected profit. Note that this definition
implies that a bidder can fall victim without actually winning the auction.

7 For proof of these assertions, see Goeree and Offerman (2003).
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This break-even bidding threshold is defined as

TFP−PC (si) = si +
n− 1

n
E (v | s ≤ si) .

2.1.2 Naive Bidding

In the symmetric Nash equilibrium of an FP-PC auction, winning the auction
conveys information about the unknown common value of the good. In partic-
ular, since the equilibrium bid function is monotonically increasing, the bidder
with the highest si will win the auction. If a bidder does not take the informa-
tion that winning conveys into account, but otherwise adheres to the predicted
Nash equilibrium bidding strategy, we call her (following GO) a naive bidder.
The naive bidding strategy for FP-PC auctions is given by:

η (si) =
n− 1

n
E (v) + E (y1|y1 ≤ si) .

2.2 First-Price Auctions with Common Values

In a first-price auction with common values (FP-C), ci = E(c) ≡ c̄, and this
is common knowledge. Since the cost that the winning bidder will have to pay
is common knowledge and the same for each potential winner, these auctions
effectively are purely common value. Such auctions have been widely studied
in the literature. However, the presence of the (common) cost differentiates
our work from the bulk of the literature. The symmetric equilibrium of this
auction can be obtained by suitably specializing the results of Milgrom and
Weber (1982).8 The symmetric equilibrium bid function is

β (vi) =
n− 1

n
E (v|v ≤ vi) +

1

n
E (z1|z1 ≤ vi)− c̄,

where z1is the highest signal of the other n−1 bidders. That is, z1 = maxj∈N−ivj .

The expected profit of bidder i who privately observes vi, is ΠFP−C
i (vi) =∫ vi

vL
F (x)

n−1
dx.

Taking the expectation of ΠFP−C
i (vi) yields the ex ante expected profit

of bidder i, which is E
(
ΠFP−C

i

)
= 1

n (E (Z1)− E (Z2)), where Z1 is the first
order statistic of the n draws of v, and Z2 is the corresponding second order
statistic. Subtracting the ex ante expected payoffs of the bidders yields the
expected revenue of the auction RF−PC = E (V )− (E (Z1)− E (Z2)).

8 The derivations of the symmetric equilibrium bid function, equilibrium bidder profits,
equilibrium auctioneer revenue, and the winner’s curse threshold are found in Appendix A.



8 Aycinena, Baltaduonis, and Rentschler

2.2.1 Winner’s Curse

In an FP-C auction, a bidder falls victim to the winner’s curse if she bids above
the expected value of the good, conditional on winning the auction. When
the symmetric equilibrium bidding function is monotonically increasing, as it
is here, this is equivalent to bidding above the expected value of the good
conditional on having the largest signal. Notice that bidding equal to this
conditional expected value is a break-even bidding strategy. The functional
form of this threshold is

TF−PC (vi) =
vi
n

+
n− 1

n
E (v|v ≤ vi) .

2.2.2 Naive Bidding

When the valuation structure of a first-price auction is pure common values,
winning the auction conveys information that, as discussed above, is often
ignored by bidders. The naive bid function, in which bidders ignore this infor-
mation but otherwise bid according to the Nash equilibrium bidding function,
is given by:

ζ (vi) =
n− 1

n
E (v) +

1

n
E (z1|z1 ≤ vi)− c̄.

2.3 Least-Revenue Auctions with Private and Common Values

In a least-revenue auction with private and common values (LR-PC), bidders
simultaneously submit bids, the lowest of which wins the auction. Bids consist
of the minimum amount (which would come from the common-value of the
good) that a bidder is willing to accept, given that she wins the auction. The
winner obtains the minimum of the realization of V and her bid. If the winning
bid is less than the realized common value, the winning bidder implicitly pays
the difference between the common-value and her bid. Recall that we assume
cH < vL. This implies that the common value will always be sufficient to cover
a bidder’s cost.

When there are common and private values, the valuation structure is
exactly the same as in FP-PC auctions. However, the price the winning bidder
pays is contingent on the realized value of V . Provided her bid does not exceed
V , the uncertainty regarding the common-value of the good does not affect the
winning bidder’s payoff. As a result, the private information that each bidder
holds regarding V is strategically irrelevant. Since bidders each face a cost
(should they win the auction) which is an independent draw from a common
distribution, the problem that each bidder faces is strategically equivalent to
a first-price independent private value procurement auction. The equilibrium
bid function then maps ci into R+. For bidder i who privately observes ci this
equilibrium bid function is
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ζ (ci) = E (zn−1|zn−1 ≥ ci)

where zn−1 is the smallest of n− 1 draws of c.
The expected profit of bidder i who observes ci isΠLR−PC

i (ci) =
∫ cH
ci

(1−G (t))
n−1

dt.

Integrating over ΠLR−PC
i (ci) yields the ex ante expected profit of bidder

i, ΠLR−PC
i =E

(
ΠLR−PC

i (ci)
)
. The expected revenue in LR-PC auctions is

RLR−PC = E (V )− nΠLR−PC
i .

2.3.1 Winner’s Curse

In an LRA, the realization of V is not relevant to the payoff of the bidder and
the common-value signal does not enter into the equilibrium bid function. As
such, the standard interpretation of the winner’s curse, bidding in a common-
value auction that guarantees negative expected profits by failing to take into
account the information that is provided by having the highest signal, does
not apply under this auction format.9 However, for comparison purposes, we
continue to call bidding, where expected profits conditional on winning are
negative, the winner’s curse.

In LR-PC auctions, any bid which is above the privately observed cost
will guarantee the bidder positive profit upon winning the auction. Similarly,
any bid that drops below the cost will guarantee negative profits. Thus, the
break-even bidding threshold for a bidder in an LR-PC auction is

TLR−PC (ci) = ci.

2.4 Least-Revenue Auctions with Common Values

In a least-revenue auction with common values and a common cost (LR-C),
the game is, in effect, one of complete information. The unique equilibrium of
this game is to bid c̄. To see this, note that if any bidder were to bid below
c̄, they would earn negative profits upon winning. For any bid bi > c̄, bidder
j ∈ N−i would have an incentive to bid bj ∈ (c̄, bi) and earn a positive profit.
Notice that the equilibrium profit of bidder i is zero, and does not depend on
vi. Further, the equilibrium revenue in this game is RLR−C = E (V )− c̄.

2.4.1 Winner’s Curse

Clearly, if a bidder were to bid less than c̄, then her expected payoff would be
negative. Thus, the break-even bidding threshold in LR-C auction is equal to
the Nash equilibrium.

9 Notice that winning does not convey any additional information about the value of the
good. As such, the concept of naive bidding is also inaplicable in the context of LRAs.
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Table 1 Summary of experimental design

First-price auctions Least-revenue auctions

Common and private value 4 sessions 4 sessions
Common value 4 sessions 4 sessions

3 Experimental Design

In every experimental session, twelve participants are randomly and anony-
mously matched into groups of three. In each round, every group participates
in an auction. Each bidder submits a bid. The bidder who submits the win-
ning bid obtains the good (ties are broken randomly). The other bidders receive
payoffs of zero. Participants are randomly and anonymously re-matched after
each round. This process is repeated for thirty rounds.10

In each auction the value of the good to each bidder is the difference be-
tween the common value and the cost the bidder faces if she were to win the
auction. The common value of the good has an uncertain value. Each bidder
i ∈ {1, 2, 3} privately observes a signal, vi, regarding this common value. Each
of these signals is an independent draw from the uniform distribution with sup-
port [100, 200] . The common value, V , is the average of the private signals.

That is, V = 1
n

∑3
i=1 vi. The realized value of the good is not observed by bid-

ders before placing their bids, although bidders know the cost they must pay
if they win the auction beforehand. The distribution from which the signals
are drawn is common knowledge.

We employ a 2x2 between-subject design which varies the auction format
and the valuation structure (This design is illustrated in Table 1).

1. First-price auctions with private and common values (FP-PC): In addition
to the private signal that bidders observe regarding the common value of
the good, each bidder privately observes the cost she must pay if she were to
win the auction. Each of these costs is an independent draw from a uniform
distribution with support [0, 50]. These costs represent the private value
portion of the valuation structure. The auction format in this treatment is
a standard first-price sealed-bid auction.

2. First-price auctions with common values (FP-C): In this treatment each
bidder faces the same cost if she were to win the auction. This cost is equal
to the expected value of the cost distribution in the FP-PC treatment
(c̄ = 25). The auction format in this treatment is a standard first-price
sealed-bid auction.

3. Least-revenue auctions with private and common values (LR-PC): In ad-
dition to the private signal that bidders observe regarding the common
value of the good, each bidder privately observes the cost she must pay if
she were to win the auction. Each of these costs is independently drawn

10 One of the first ten periods is randomly selected to be paid. Each of the remaining 20
periods are paid. In the analysis that follows, data from the initial ten periods is not utilized.
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from a uniform distribution with support [0, 50]. These costs represent the
private value portion of the valuation structure. The auction format in this
treatment is an LRA.

4. Least-revenue auctions with common values (LR-C): In this treatment each
bidder faces the same cost if they were to win the auction. This cost is equal
to the expected value of the cost distribution in the FP-PC treatment
(c̄ = 25). The auction format in this treatment is an LRA.

In each of these four treatments, the valuation structure of the auction is
common knowledge. That is, if a bidder observes a signal, this fact, as well as
the distribution from which the signal is drawn, is common knowledge. At the
conclusion of each auction each bidder observes V , all bids, her earnings from
the auction, and the price paid by the winner.

All sessions were run at the Centro Vernon Smith de Economı́a Exper-
imental at the Universidad Francisco Marroqúın, and our participants were
primarily matriculated undergraduates of the institution. The sessions were
computerized using z-Tree Fischbacher (2007). Participants were separated by
dividers such that they could not interact outside of the computerized inter-
face. They were provided with instructions and were also shown a video which
read these instructions aloud. Each participant then individually answered a
set of questions to ensure understanding of the experimental procedures. We
elicited risk attitudes using a measure that closely mirrors Holt and Laury
(2002).11 We varied the order in which subjects participated in the risk at-
titude elicitation procedure and the series of auctions. Each session lasted
approximately one and a half hours. In half of the sessions, each participant
began with a starting balance of Q62.5 (1Quetzal ≈ US$0.125) to cover any
losses; in the other half participants began with a starting balance of Q125. At
the end of all thirty rounds, each participant was paid her balance, as well as
a show-up fee of 20 Quetzales. If the balance of a participant became negative,
she was permitted to continue provided she invested her show-up fee. If the
show-up fee was also lost, she was permitted to continue, and received a pay-
ment of zero.12 Within the reported sessions, there were two participants who
went bankrupt (≈ 1% of participants) before the end of the experiment. The
bids, signals and values were all denominated in Experimental Pesos (EP),
which were exchanged for cash at a rate of 4E$ = Q1 ≈ US$0.125. The
average payoff was Q105, with a minimum of Q0 and a maximum of Q165.

11 Our risk attitude elicitation task differs from Holt and Laury (2002) in that, instead of
choosing between two lotteries, subjects choose between a certain amount and a lottery.
12 If more than one participant went bankrupt then the data from the session was not

included in the reported analysis. We excluded the data from five sessions. In two of these,
multiple subjects went bankrupt. In the remaining three, we were unable to complete all 30
auctions.
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4 Results

4.1 Efficiency Levels

When the valuation structure is pure common value, any allocation of the
good is efficient. As such, efficiency is not a concern in this valuation structure.
When there are private costs, however, allocating the good to the bidder with
the lowest cost is the efficient allocation.

Interestingly, when there are private and common value components in the
first-price auction (FP-PC), the equilibrium allocation may not be efficient
Goeree and Offerman (2003). This is because the equilibrium bid function is
monotonically increasing in the summary statistic si = vi

n − ci. A bidder may
have a high cost relative to the other bidders in the auction, but if she also
has a relatively high common-value private signal (such that si = vi

n − ci is
larger than those of the other bidders) she is predicted to win the auction,
which would result in an inefficient allocation.

However, in LR-PC auctions, equilibrium bids are monotonically decreas-
ing in ci. This implies that, in equilibrium, the bidder with the lowest cost will
win with certainty. As such, the predicted efficiency level is 100%. This points
to an important property of the LR-PC auction. Namely, by rendering the
common value component strategically irrelevant, inefficiency concerns that
arise in valuation structures with private and common values are, in theory,
eliminated. That is, LR-PC auctions are predicted to be more efficient than
FP-PC auctions.

Following GO, we define efficiency as

normalized efficiency =
cmax − cwinner

cmax − cmin
,

where cwinner is the private cost of the winning bidder and cmax(cmin) is the
maximal (minimal) private cost of the three bidders. This can be interpreted
as the realized proportion of the difference between the most efficient and least
efficient allocation.

Table 2 contains average efficiency levels in FP-PC and LR-PC auctions in
ten period blocks, as well as aggregated across all twenty periods. Note that
efficiency levels are considerably higher using the LRA format. In fact, effi-
ciency is significantly higher in LR-PC than in FP-PC (robust rank order test,
U = −4.484, p = 0.029). Figure 1 illustrates this difference by comparing the
observed efficiency level to two benchmarks: the efficiency level predicted by
equilibrium bidding behavior, and the efficiency level resulting from a random
allocation of the good. Notice that in FP-PC auctions, the predicted efficiency
level is much larger than that of the random allocation, while still being less
than 100% efficient. Observed efficiency falls between predicted efficiency and
that of a random allocation. While observed efficiency is much higher in LR-
PC auctions than in FP-PC auctions, contrary to theory LR-PC auctions are
not perfectly efficient. Figure 2 sorts the data into the first and last 10 periods.
The difference in efficiency between LR-PC and FP-PC auctions can be largely
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Fig. 1 Efficiency in FP-PC and LR-PC auctions
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Fig. 2 Efficiency in FP-PC and LR-PC auction in the first and last ten periods

attributed to the fact that the uncertainty regarding the common value of the
good has been shifted to the auctioneer in the LRAs.

4.2 Revenue

The effect of valuation structure and auction format on revenue ranking is of
particular interest. Table 3 contains summary statistics regarding observed and
predicted revenue in all four treatments aggregated over all twenty periods.
Notice that, contrary to theory, FP-PC auctions, on average, generate the
highest revenue, while LR-C auctions generate the least revenue.
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Table 2 Summary statistics for efficiency

FP-PC LR-PC

Efficiency Measure Periods 1-10 Periods 11-20 All Periods Periods 1-10 Periods 11-20 All Periods

Obseved 0.660 0.652 0.656 0.849 0.879 0.864
(0.413) (0.411) (0.411) (0.301) (0.271) (0.286)

Random Allocation 0.504 0.484 0.494 0.504 0.484 0.494
(0.102) (0.084) (0.094) (0.102) (0.084) (0.094)

Nash Bidding 0.878 0.839 0.858 1.000 1.000 1.000
(0.258) (0.297) (0.278) (0.000) (0.000) (0.000)

Notes: Table contains means with standard deviations in parentheses.

50 100 150 200

LR−PC

LR−C

FP−PC

FP−C

Auctioneer Revenue

Observed Nash

Fig. 3 Observed and predicted auctioneer revenue

Figure 3 compares observed revenue to predicted revenue. Note that in
first-price auctions (under both valuation structures) and in LR-PC auctions,
observed revenue is, on average, higher than the theoretical predictions. Fur-
ther, note that in LR-C auctions, theory is, on average, a good predictor of
observed revenue. That is, when bidders hold strategically relevant private
information, revenue tends to exceed equilibrium predictions. When they do
not, revenue is largely in line with predictions.

We find that valuation structure does not significantly affect revenue in
first-price auctions (robust rank order test, U = 0.000, n.s.).13 This result
runs counter to the theoretical prediction that revenue is lower when there are

13 n.s. indicates that the test is not significant at conventional levels.
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Table 3 Revenue and bidder payoffs

Variable FP-C FP-PC LR-C LR-PC

Observed Revenue 135.492 138.634 124.267 132.024
(17.379) (23.300) (14.975) (17.070)

Predicted Revenue 116.319 120.367 124.558 124.028
(9.170) (8.858) (14.832) (15.241)

Observed Profits -3.645 -3.105 0.097 0.565
(11.365) (14.683) (0.896) (6.570)

Predicted Profits 2.452 9.043 0.000 4.398
(2.838) (16.140) (0.000) (4.905)

Fraction of Auctions with Positive Payoffs 0.250 0.341 0.984 0.834
(0.434) (0.475) (0.124) (0.372)

Notes: Table contains means with standard deviations in parentheses.

private and common values as opposed to a pure common value structure in
first price auctions. However, in LRAs the private and common value valua-
tion structure generates more revenue than the pure common value valuation
structure (robust rank order test, n.d., p < 0.001). This is largely due to the
fact that in LR-PC auctions the winning bidder is predicted to have the lowest
cost, and the lowest cost is predicted to be below c = 25.

Theory predicts that LRAs will generate more revenue than first-price auc-
tions in both valuation structures. This is due to the fact that LRAs render the
privately observed common value signal observed by bidders strategically irrel-
evant. As a result, bidders earn smaller information rents in LRAs than they
do in first-price auctions. However, we find that, contrary to theory, revenue
is lower in LRAs than in first-price auctions, regardless of valuation struc-
ture. When there are private and common value components, this difference
is marginally significant (robust rank order test, U = −1.568, p = 0.1). On
the other hand, in pure common value auctions this difference is highly signif-
icant (robust rank order test, n.d., p < 0.001).14 This result is due to the fact
that bidders in first-price auctions tend to bid significantly above Nash pre-
dictions.15 As a result, the revenue generated by first-price auctions is higher
than predicted by theory. This is in contrast to LRAs in which bidders are
much less likely to bid such that revenue increases relative to theory.

4.3 Bidder Profits

Bidder profits are, of course, closely related to revenue. As such, our results
regarding bidder profits closely resemble those of revenue. Table 3 contains
summary statistics of bidder payoffs in all four treatments. Figure 4 compares
observed bidder profits to predicted bidder profits in all four treatments. No-
tice that in all treatments except LR-C bidders are, on average, worse off than

14 When the lowest observation from one treatment is higher than the highest observation
of the other treatment, the test statistic of the robust rank order test is undefined. We
denote this highly significant case as n.d.
15 This observed tendency to overbid is analyzed formally below in section 4.5.
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Fig. 4 Observed and predicted bidder profits

predicted by theory. In the case of LR-C auctions, theory is an excellent pre-
dictor. Also, note that in first-price auctions bidders are, on average, earning
negative profits. This is in stark contrast to bidder profits observed in LRAs,
in which bidders, on average, earn weakly greater than zero.

Theory predicts that bidders will be better of when there are private and
common values than they would be in pure common value environments be-
cause the privately observed costs earn positive information rents. Contrary
to this prediction, we find that valuation structure does not significantly affect
payoffs in first-price auctions (robust rank order test, U = −0.776, n.s.) or in
LRAs (robust rank order test, U = −1.033, n.s.).

We also find that bidders are better off in LRAs. When there are private
and common values, this result is marginally significant (robust rank order
test, U = −1.568, p = 0.1). However, this result is highly significant in the
pure common values environment (robust rank order test, n.d., p < 0.001).
The intuition underlying this result mirrors the analogous finding for revenue.
Namely, in first-price auctions bidders tend to substantially overbid relative
to Nash predictions, often resulting in negative payoffs. In first-price auctions
bidders must estimate the common value of the good, conditional on winning.
By eliminating the uncertainty regarding bidder profit conditional on winning,
LRAs eliminate the need for bidders to estimate this conditional expected
value. A bidder in a LRA need only bid above her cost to ensure positive
profits.
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Table 4 Prevalence of the winner’s curse (proportion of bids)

Variable FP-C FP-PC LR-C LR-PC

Prevalance of winner’s curse 0.475 0.447 0.005 0.085
(0.500) (0.497) (0.072) (0.280)

Prevalence of winner’s curse 0.691 0.650 0.016 0.166
among winning bids (0.463) (0.478) (0.124) (0.372)

Notes: Table contains means with standard deviations in parentheses.

4.4 Winner’s Curse

In auctions with pure common values, the winner’s curse is prevalent, par-
ticularly among inexperienced bidders such as those who participated in the
experimental sessions for this paper. GO provide evidence that the winner’s
curse (bidding above the break-even threshold) is also prevalent in first-price
auctions with private and common values. We replicate both these results,
and compare them to the LRA format. Table 4 contains summary statistics
of the prevalance of the winner’s curse in all four treatments. Notice that,
regardless of valuation structure, bidding above the break-even threshold is,
on average, dramatically less prevalent in LRAs. Nonparametric tests confirm
these results; bidding above the break-even threshold is significantly lower in
LRAs than in first-price auctions with private and common value components
(robust rank order test, U = 11.314, p < 0.001), as well as in the pure common
value environment (robust rank order test, U = 11.314, p < 0.001). Figure 5
illustrates this result by showing the proportion of bids above the break-even
bidding threshold for all four treatments. Figure 6 breaks this into five period
blocks. Notice that bidding above the break-even threshold is almost entirely
eliminated in LR-C auctions. The relative dearth of bidding above the break-
even threshold in LRAs is largely attributable to the fact that the uncertain
common value of the good does not translate into uncertainty regarding bid-
der profits. Indeed, conditional on winning the auction, there is no uncertainty
regarding bidder profits in LRAs. The risk regarding this uncertain value has
been completely shifted to the auctioneer.

We also find that the valuation structure does not significantly affect the
prevalence of the winner’s curse in first-price auctions (robust rank order test,
U = 1.016, n.s.) or in LRAs (robust rank order test, U = −1.206, n.s.).
This is not surprising because, holding the auction format constant, moving
from the pure common-value environment to the private and common value
environment does not change the level of uncertainty the bidder faces regarding
the net value of the good.

4.5 Bids Relative to Theory

We now turn to comparing observed bidding behavior directly with theoretical
predictions. In first-price auctions, we define overbidding as bidding above
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Table 5 Observed bids relative to Nash and Naive bids

Variable FP-C FP-PC LR-C LR-PC

Observed Bids 14.085 111.929 34.160 29.959
(27.243) (32.455) (24.606) (18.064)

Nash Bids 102.532 104.936 25.000 33.357
(15.568) (19.739) (0.000) (9.927)

Naive Bids 119.346 114.961 - -
(6.227) (12.287)

Notes: Table contains means with standard deviations in parentheses.

the Nash equilibrium predictions. For comparability purposes, in LRAs we
refer to bidding below the Nash equilibrium as overbidding. This is becasue
by bidding below the Nash equilibrium, a bidder in an LRA is indicating
that, upon winning the auction, they are willing to pay a higher implicit price
than the respective Nash equilibrium bid. Table 5 contains summary statistics
regarding observed bids, Nash equilibrium bids, and for first-price autions
(where the defined naive bidding strategy is applicable), naive bids. Of note
is the fact that, on average, bidders overbid relative to the Nash equilibrium
in every treatment except LR-C. In first-price auctions this overbidding is, on
average, less than the naive bidding strategy.

Figure 7 illustrates how observed bids in FP-C auctions compare to the
Nash predictions, the naive bidding strategy, and the winner’s curse threshold.
Notice that bids tend to be well in excess of the equilibrium prediction. Indeed,
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bids well above the break-even bidding threshold, and above the naive biding
strategy are common. In these FP-C auctions, we find that bids are greater
than Nash predictions (sign test, w = 41, p < 0.001).16 Further, FP-C bids
are less than the naive bidding stategy (sign test, w = 32, p = 0.015).

Figure 8 provides the analogous graph for FP-PC auctions. Overbidding
relative to Nash predictions, as well as bidding in excess of the winner’s curse
threshold, is also common in this enviroment. As in FP-C auctions, we find
that bids in FP-PC auctions are greater than Nash predictions (sign test,
w = 39, p < 0.001) but less than the naive bidding stategy (sign test, w = 30
, p = 0.056).

Figure 9 illustrates observed bidding behavior in LR-C auctions against the
Nash predictions as well as the break-even bidding strategy. Of note is the fact
that overbidding (bidding below the Nash equlibrium) is largely nonexistant
in this environment. In LR-C auctions, we find that bidders are underbidding
relative to Nash predictions (sign test, w = 47, p < 0.001). This result could be
an attempt to signal collusion at higher prices or it could be due to throwaway
bids -bidders rebelling against competing for meager profits.

16 The unit of observation used in the sign test is the individual participant. That is, the
averge bid of a participant over all periods is compared with the average Nash equilibrium
bid or the average naive bid. This unit of observation was used for all non-parametric tests
regarding observed bidding relative to theory.
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Figure 10 compares observed bids in LR-PC auctions to Nash predictions
and the winner’s curse threshold. In stark contrast to what is observed in first-
price auctions, bidding such that expected profits are negative in expectation
is almost non-existent. In LR-PC auctions, we find that bidders are overbid-
ding relative to Nash predictions (sign test, w = 38, p < 0.001). That is,
bidders are bidding more aggresivley than predicted by the Nash equilibrium.
This is consistent with observed bidding behavior in first price auctions with
independent private values.

4.6 Estimated Bid Functions

When estimating bid functions for the four treatments, we employ a random
effects (at the individual level) specification, and cluster the standard errors
to allow for intra-session correlation.17 We control for the statistic upon which
equilibrium bids are based as well as experience (ln (t+ 1)).18 In LRAs, we also
control for vi, to test the hypothesis that the privately observed common-value
signal does not enter into the bid function. We also estimate specifications

17 As a robustness check, we also estimated bid functions with dummies for subjects who
went bankrupt, and a dummy indicating whether or not a bankruptcy occurred in the
session. These results are available upon request.
18 Recall that the equilibrium bid of LR-C bidders does not depend on the private infor-

mation held by bidders.
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Fig. 8 Bidding in FP-PC auctions

which control for gender (Fi = 1 if the bidder is female, 0 otherwise), the
interaction of gender and experience Fi · ln (t+ 1). We also control for the
order of the risk attitude elicitation procedure (Oi), whether or not bidders
started with an endowment of E$500 (Ei), the number of safe choices in the
risk elicitation procedure (Ri), and subject dummies.19

Table 6 contains the estimated bid functions for FP-C auctions. Several
things are worth noting. First, the common value signal is, unsurprisingly,
highly significant and positive in all specifications. Second, subjects do not
seem to be reducing their bids over time, as evidenced by the insignificant
coefficients on ln (t+ 1). Notice that when we control for gender and the in-
teraction between gender and ln (t+ 1) the respective coefficients are insignif-
icant (although when we only control for gender, the coefficient is positive and
significnat). This is in contrast to the result of Casari et al (2007), which finds
that women tend to initially overbid more than men, but also learn to reduce
their bids faster than men in first-price common-value auctions.

19 A subject is defined as the sequence of draws of vi and, if applicable, ci that a participant
faced, as well as the sequence of unobserved draws that her opponents faced. That is, in
each session we utilized the same set of (once random) draws as the other sessions. Thus,
exactly one participant in each session observed each sequence of random draws. The dummy
variable for a subject is equal to one for the set of participants who observed that sequence,
and zero for the other participants.
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Table 7 contains the estimated bid functions for the FP-PC auctions.20

Of interest is the fact that the coefficient on si is highly significant in all
specifications, and approximently equal to one. Note that in the most inclusive
specification the interaction between gender and ln (t+ 1) is significant and
positive, and that gender is (marginally) significant. This indicates that women
are initially bidding less than men, but that as they gain experience they
increase their bids more than men. This result is in stark contrast to that of
Casari et al (2007).

Table 8 contains the estimated bid functions for LR-C auctions. As ex-
pected, the common-value signal is not significant. Also, the coefficient for
ln (t+ 1) is highly significant, and positive. That is, bidders are moving away
from equilibrium, on average, as they gain experience. This may be an at-
tempt by some bidders to send signals in order to tacitly collude with other
bidders on a higher price. Since bidders were randomly and anonymously re-
matched every period, it would have been extremely difficult for this type of
coordination to happen. At the same time, it would have been a very low-cost
strategy, given the low profits observed in this auction. Alternatively, it might
have been a case of throw-away bidding in which bidders simply express their

20 The equilibrium bid function for FP-PC auctions is not predicted to be linear. However,
for some values of si this bid fuction cannot be seperated into linear and nonlinear parts.
We report linear bid functions, which we find to be a better fit for the data than nonlinear
specifications. As such, the reported regressions should not be interpreted as an explicit test
of the equilibrium bidding strategy.
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Table 6 Estimated Bid Functions for FP-C Auctions

(1) (2) (3) (4)

vi 0.595*** 0.594*** 0.594*** 0.595***
(0.033) (0.033) (0.033) (0.035)

ln (t+ 1) -4.135 -4.135 -3.527 -3.529
(2.638) (2.639) (4.352) (4.386)

Fi 2.488** 5.498 3.408
(0.959) (9.356) (9.353)

ln (t+ 1) · Fi -1.327 -1.326
(4.007) (4.037)

Ri -1.55
(0.955)

Ei -4.899*
(2.361)

Oi 3.431+
(2.032)

Subject Dummies No No No Yes
- - - -

Constant 34.547*** 33.416*** 32.043** 28.714*
(9.285) (8.958) (10.870) (14.515)

Observations 960 960 960 960

Notes: Standard errors (in parentheses) clustered to allow for intra-session correlation.
+p < 0.10, ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Table 7 Estimated bid functions for FC-PC auctions

(1) (2) (3) (4)

si 1.091*** 1.091*** 1.091*** 1.091***
(0.071) (0.071) (0.068) (0.069)

ln (t+ 1) -1.361 -1.361 -2.716 -2.715
(1.869) (1.870) (1.926) (1.941)

Fi 1.045 -8.171 -14.357+
(5.252) (7.309) (8.138)

ln (t+ 1) · Fi 4.062** 4.061**
(1.331) (1.341)

Ri 4.276*
(1.897)

Ei 3.586*
(1.708)

Oi 2.938
(1.984)

Subject Dummies No No No Yes
- - - -

Constant 87.952*** 87.604*** 90.659*** 64.064***
(6.336) (5.081) (5.227) (6.808)

Observations 960 960 960 960

Notes: Standard errors (in parentheses) clustered to allow for intra-session correlation.
+p < 0.10, ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Fig. 10 Figure 10: Bidding in LR-PC auctions

frustration over competing for extremely low profits, conditional on winning.
Additionally, in the most inclusive specification, the interaction between gen-
der and ln (t+ 1) is significant and negative. This implies that over time, the
bids of male participants are increasing, and moving away from equilibrium.
Once again, however, gender alone is not significant.

Table 9 contains the estimated bid functions for LR-PC auctions. Notice
that, as predicted, the private cost observed by bidders is highly significant.
Interestingly, the only significant coefficient is that of ci. In particular, we find
no significant gender effects, or learning.

5 Conclusion

In this paper we experimentally examine first-price and LRAs in two environ-
ments: one with private and common values, and other with pure common
values only. In an LRA, a bidder’s bid consists of the fixed amount of rev-
enue from the common value of the good the bidder is willing to accept upon
winning the auction. The lowest of these bids wins the auction. The winning
bidder then incurs her cost.

Note that the uncertainty regarding the common value of the good is borne
by the auctioneer in LRAs. The concept of such a risk sharing arrangement
for infrastructure concession contracts has been theoretically studied in the
past Engel et al (1997, 2001). Theory predicts that the allocative efficiency
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Table 8 Estimated bid functions for LR-C auctions

(1) (2) (3) (4)

vi 0.008 0.008 0.01 0.009
(0.028) (0.027) (0.028) (0.028)

ln (t+ 1) 3.750*** 3.750*** 7.110*** 7.111***
(1.135) (1.135) (2.074) (2.090)

Fi -7.657 5.911** 5.853
(6.796) (2.134) (3.791)

ln (t+ 1) · Fi -5.980* -5.979*
(2.458) (2.475)

Ri 5.818***
(0.582)

Ei -0.513
(5.665)

Oi -5.225
(5.505)

Subject Dummies No No No Yes
- - - -

Constant 24.396*** 28.698*** 20.847*** 3.634
(3.011) (4.938) (1.573) (7.330)

Observations 960 960 960 960

Notes: Standard errors (in parentheses) clustered to allow for intra-session correlation.
+p < 0.10, ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Table 9 Estimated bid functions for LR-PC auctions

(1) (2) (3) (4)

vi 0.007 0.007 0.007 0.007
(0.012) (0.012) (0.012) (0.012)

ci 0.865*** 0.863*** 0.863*** 0.868***
(0.038) (0.039) (0.039) (0.037)

ln (t+ 1) 0.353 0.353 0.276 0.274
(0.234) (0.235) (0.322) (0.322)

Fi -4.938 -5.432 -8.424
(3.696) (4.235) (5.273)

ln (t+ 1) · Fi 0.218 0.219
(0.241) (0.242)

Ri 0.170
(0.491)

Ei -4.651
(2.831)

Oi 0.276
(1.137)

Subject Dummies No No No Yes
- - - -

Constant 6.533*** 8.337*** 8.505** 7.261***
(1.784) (2.504) (2.641) (1.576)

Observations 960 960 960 960

Notes: Standard errors (in parentheses) clustered to allow for intra-session correlation.
+p < 0.10, ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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of LRAs will be higher than in first-price auctions. Despite this advantage, a
caveat regarding the general applicability of this format is in order: LRAs do
not provide any incentive for the winner to invest in maintaining and enhancing
the value of the good. This problem is mitigated if the ex-post value of the good
is independent of the ex-post performance of the winning bidder. Alternatively,
if the value of the good depends on easily monitored ex-post performance, a
contract can be created which rewards and/or penalizes the winner contingent
on ex-post performance.

This paper is the first to examine, both theoretically and experimentally,
allocative efficiency, bidding behavior and auction performance in LRAs. This
paper is also, to the best of our knowledge, the first direct comparison of
bidding behavior in first-price auctions with these two valuation structures. We
do not find any significant effect of the valuation structure on the prevalence
of the winner’s curse, the revenue generated, or bidder profits. This result is
surprising, given that theory predicts that the additional private information
held by bidders when there are private and common value components of the
valuation structure will lower revenue and make bidders better off. This is
important, because it shows that the general observations from pure common
value auctions are robust and carry over to this valuation structure.

Perhaps the most interesting result is that, when there are private and
common values, there are large increases in efficiency to be obtained by moving
from a first-price auction to an LRA. The intuition underlying this result is
clear: when there are private and common values, a bidder puts some weight
on her common value signal when deciding her bid, while the efficiency is
entirely determined by the private cost. As a result, the winning bidder may
not have the lowest private cost, and thus the allocation may be inefficient.
In an LRA, however, the common value signal is strategically irrelevant, and
thus does not introduce inefficiency as in first-price auctions. This is, in effect,
a limiting case of the finding in GO that a reduction in uncertainty regarding
the common value component of the good reduces inefficiency.

The other noteworthy result is that, regardless of the valuation structure,
bidding above the break-even threshold is significantly less prevalent in LRAs
than in first-price auctions. Again, the intuition is due to the reduction of
uncertainty in LRAs. In particular, in LRAs bidders do not need to estimate
the expected common value of the good conditional on winning the auction
in order to determine their expected profit. This is an important practical
advantage, as it allows bidders to focus on their cost, as opposed to the uncer-
tain common value and accounting for the information conveyed by winning
the auction. Given the high rate of reported bankruptcy in infrastructure con-
cessions allocated via traditional auction mechanisms (and the renegotiation
that subsequently occurs), this result suggests that the use of LRAs may be
preferred by policymakers.
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A Derivation of Equilibria

Derivation of the Equilibrium in FP-C Auctions

Consider bidder i who privately observes vi. The other bidders j 6= i are bidding according to
the differentiable and monotonically increasing bid function β (vj). Bidder i bids as though
her signal were z. Her expected profit is then

Π (vi, z) = F (z)n−1

(
vi

n
+
n− 1

n
E (v|v ≤ z)− β (z)− c

)
.

The first order condition associated with this problem is

(n− 1)F (z)n−2 f (z)

(
vi

n
+
n− 1

n
E (v|v ≤ z)− β (z)− c

)
+

+F (z)n−1

(
n− 1

n

∂E (v|v ≤ z)
∂z

− β′ (z)
)

= 0.

In equilibrium, it must be the case that z = vi. Utilizing this, we are left with an
ordinary differential equation:

(n− 1)F (vi)
n−2 f (vi)

(
vi

n
+
n− 1

n
E (v|v ≤ vi)− β (vi)− c

)
+

+F (vi)
n−1

(
n− 1

n

∂E (v|v ≤ vi)
∂vi

− β′ (vi)
)

= 0.

The initial condition is β (vL) = vL − c. Notice that the above differential equation can
be written as

d

dvi

(
F (vi)

n−1

(
β (vi)−

n− 1

n
E (v|v ≤ vi)

))
= (n− 1)F (vi)

n−2 f (vi)
(vi
n
− c
)
.

Integrating both sides leaves us with(
F (vi)

n−1

(
β (vi)−

n− 1

n
E (v|v ≤ vi)

))
=

∫ vi

vL

(n− 1)F (t)n−2 f (t)

(
t

n
− c
)
dt.

Simplifying this yields the equilibrium bid function

β (vi) =
n− 1

n
E (v|v ≤ vi) +

1

n
E (z1|z1 ≤ vi)− c,

where z1 is the highest signal of the other n− 1 bidders. That is, z1 = maxj∈N−i
vj .

Derivation of the Equilibrium in LR-PC Auctions

Consider bidder i who privately observes ci The other bidders j 6= i are bidding according to
the differentiable and monotonically decreasing bid function ζ (cj). Bidder i bids as though
her signal were z. Her expected profit is then

Π (ci, z) = (1−G (z))n−1 (ζ (z)− ci) .

The first order condition associated with this problem is

− (n− 1) (1−G (z))n−2 g (z) (ζ (z)− ci) + (1−G (z))n−1 (ζ′ (z)) = 0.
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In equilibrium, it must be the case that z = ci. Utilizing this, we are left with an ordinary
differential equation

− (n− 1) (1−G (ci))
n−2 g (ci) (ζ (ci)− ci) + (1−G (ci))

n−1 (ζ′ (ci)) = 0.

The initial condition is ζ (cH) = cH . Notice that the above differential equation can be
written as

d

dvi

(
(1−G (ci))

n−1 (ζ (ci))
)

= − (n− 1) (1−G (ci))
n−2 g (ci) ci.

Integrating both sides leaves us with

(1−G (ci))
n−1 (ζ (ci)) =

∫ cH

ci

(n− 1) (1−G (t))n−2 tg (t) dt.

Simplifying this yields the equilibrium bid function

ζ (ci) = E (zn−1|zn−1 ≥ ci) ,

where zn−1is the smallest of n− 1 draws of d.

B Instructions

A translated version of the instructions for the LR-PC treatment are below. Instructions for
the remaining treatments are available upon request.

These instructions will explain how to earn money during this experiment, based on
your decisions and the decisions of others. We recommend that you read carefully because
your earnings may be affected if you do not understand the instructions.

If you have any questions regarding these instructions, please raise your hand and we
will answer your question privately.

From now on, participants will only interact via computers. If you talk, laugh, exclaim
out loud, etc., we will end the experiment and ask you to leave without payment. Monetary
amounts in the experiment are denominated in Experimental Pesos (E$). At the end of the
experiment, Experimental Pesos will be exchanged for Quetzales at a rate of Q1=E$4. The
profits obtained during the experiment will be paid privately and in cash (Quetzales).

This experiment consists of a series of periods. The computer will act as a seller and
participants will act as potential buyers of a good which has the same VALUE to all par-
ticipants. For each seller there will be 3 potential buyers. All potential buyers will have a
COST of obtaining the good, which will likely be different for each person.

You can make money if: 1) you make the lowest REQUEST and 2) the AMOUNT
received is more than the COST of obtaining the good.

Each period, groups of 3 potential buyers are chosen randomly. Potential buyers can
obtain a good that has a VALUE. This VALUE is the same for all potential buyers and
represents how much the good being sold in that period is worth.

However, no one will know the VALUE of the good before the period begins.
At the beginning of the period each potential buyer will receive his own ESTIMATE of

the VALUE. The ESTIMATE of the VALUE will be a number chosen at random between
100 and 200 (inclusive).

All numbers in this range have the same probability of being selected to be the ES-
TIMATE of the VALUE. Each ESTIMATE of the VALUE is independent from the ESTI-
MATES of the VALUE of other potential buyers and those of other periods.

In other words, in each period you will have an ESTIMATE of VALUE which is likely to
be different from the ESTIMATES of VALUE of other potential buyers and ESTIMATES
of VALUE in other periods.

Each period, the VALUE of the good will be the average of the ESTIMATEs of VALUE
of the 3 potential buyers. Since all ESTIMATEs of VALUE are between 100 and 200, the
actual VALUE will be in this interval as well, and will be the same for all 3 potential buyers.
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For example, if your ESTIMATE of VALUE is 182.60 and the ESTIMATES of the
other 2 potential buyers are 109.42 and 167.31, the VALUE of the good (for any of the 3
participants) would be 153.11.

(182.60 + 109.42 + 167.31)/3 = 153.11

Each potential buyer will have a COST of obtaining the good. This COST will likely
be different for each potential buyer. This COST is only incurred by the buyer of the good,
and is paid in addition to the PRICE of the good.

Each period, the COST to each buyer is assigned at random. All COSTs between E$0
and E$50 (inclusive) are equally likely to be assigned. Your COST does not depend on
COSTs of other participants or the COSTs in other periods.

In other words, in each period you will have a COST (between E$0 and E$50) which will
likely be different than the COST of other potential buyers and different from the COST(s)
you had in previous periods.

When the period begins, each potential buyer will know his ESTIMATE of the VALUE
of the good as well as his COST. Each potential buyer can then REQUEST an AMOUNT
from the VALUE of the good. The person who makes the lowest REQUEST will buy the
good. He will pay the difference between the VALUE and his REQUEST. In case of a tie
between two or more REQUESTS, the buyer will be determined at random.

In other words, the buyer will get the AMOUNT of the VALUE of the good he RE-
QUESTED (net of the price paid to the seller). The AMOUNT obtained by the buyer cannot
be larger than the VALUE of the good. Whenever the REQUEST is less than the VALUE
of the good, the buyer will get that AMOUNT. If the REQUEST is larger than the VALUE
of the good, the AMOUNT obtained by the buyer will equal the VALUE.

At the end of the period, your screen will display the REQUESTS of all buyers (ranked
from lowest to highest), as well as the VALUE of the good, the AMOUNT obtained by the
buyer, and your PROFIT.

For the person with the lowest REQUEST, the PROFIT will be:

AMOUNT - COST = PROFIT

All others will have PROFIT: 0

Notice that the buyer will earn money if the AMOUNT is more than his COST. Also
notice that the buyer will lose money if the AMOUNT is less than his COST.

For example, if you make a REQUEST of 34 and it is the lowest REQUEST, you will
buy the good. If the VALUE is 163 in that period and your COST is 24, your PROFIT will
be: 34 - 24 = 10

If your REQUEST is not the lowest, then you do not purchase the good and your
PROFIT is 0. For example, if you REQUEST 42 and this is not the lowest REQUEST, you
will not purchase the good and will have a PROFIT of 0 in that period.

Each period groups are randomly reassigned. That is, you will likely NOT interact with
the same people every period.

Moreover, you will never know the identity of the other participants in your group nor
will they know yours.

At the beginning of the experiment, all participants will receive an endowment of E$500.

If at any point during the experiment you have a loss greater than your balance, you
cannot continue in the experiment. Please wait quietly until the end of the experiment to
receive your participation payment.

At the end of the experiment, while we prepare your payments, you will be asked to
quietly fill out a short questionnaire.

Summary: You and two other people will be potential buyers for a good that the com-
puter will be selling.

Each period, you will make a REQUEST to try to buy the good.

The potential buyer with the lowest REQUEST buys the good. When the REQUEST is
lower than the VALUE, the buyer will obtain the AMOUNT he REQUESTED. The buyer
will also pay the COST of obtaining the good.

Whoever buys the good will make money if his REQUEST is larger than his COST.
PROFIT (did buy the good) = AMOUNT – COST PROFIT(did not buy the good) = 0.
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