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1 Introduction

This paper proposes a multivariate time-varying framework for modelling and forecasting

cross-market correlations, where innovations are assumed to follow the Asymmetric Multi-

variate Laplace (AML) distribution introduced by Kotz et al. (2003). A good understanding

of the dynamic properties of cross-market correlation (or dependence across markets) is vital

to assess the level of integration between international markets, both for investment pur-

poses and for increasing the capacity to produce reliable forecasts (Engle, 2009). Modelling

the dynamics of volatilities of returns from �nancial assets has been one of the work horses

in the development of �nancial econometrics over the last years (Bollerslev, 2001; Engle,

2001). Nonetheless, until recently, most of the advances in the �eld have been developed

essentially in univariate cases. Bollerslev (2009) provides "an encyclopedic type reference

guide to the long list of ARCH acronyms that have been used in the literature". The growth

in techniques for modelling the dynamics of covariances and correlations has lagged consid-

erably behind that in modelling time-varying volatility. One of the main reasons for this

uneven expansion is the problem posed by the so-called �curse of dimensionality�, which

is related to the estimation of unrestricted multivariate GARCH (MGARCH) models in

high-dimensional settings. Bauwens et al. (2006) and Silvennoinen and Teräsvirta (2009a)

provide comprehensive surveys on MGARCH models.

Among the alternative MGARCH speci�cations, the dynamic conditional correlation

(DCC) model proposed by Engle (2002) and Tse and Tsui (2002) has proved particularly

suitable in providing a parsimonious, �exible and feasible model that signi�cantly reduces

the �curse of dimensionality�. In this framework, the dynamic variance-covariance matrix of

conditional returns is speci�ed as a function of univariate variances and linear correlations.

When the model is estimated by maximum likelihood, the DCC approach allows the log-

likelihood function to be split into two parts, the �rst is used to estimate the parameters of

the univariate volatilities while the second the correlations. By using this two-step estimation

technique, large systems can be consistently estimated with limited computational costs and
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without imposing too many restrictions. Hafner et al. (2005), Silvennoinen and Terasvirta

(2009b), Engle and Colacito (2006), Pelletier (2006), Palandri (2009), and Audrino and

Trojani (2011) propose interesting developments of this framework.

A vital assumption of the DCC model is that standardized residuals are normally distrib-

uted. The assumption of Gaussian innovations does not allow to embody the modelling of

skewness and excess kurtosis, which are two important features of �nancial data. There are

two strands of literature that drop the normality assumption. The �rst uses nonparametric

and semiparametric methods of investigations. For the univariate case, the main contri-

butions relate to Engle and González-Rivera (1991), Drost and Klaassen (1997), González-

Rivera (1997), González-Rivera and Drost (1999). There are also a few papers studying the

multivariate case, such Hafner et al.(2005), Long and Ullah (2005) and Hafner and Rombouts

(2007). However, in this case the estimation remains feasible only when a small number of

assets is considered. The second strand of contributions uses thick-tailed distributions to im-

prove e¢ ciency, as, for the univariate case, in Bollerslev (1987), Baillie and Bollerslev (1989),

Nelson (1991). Fiorentini et al. (2003) propose to relax normality using the multivariate

Student-t distribution; Bauwens and Laurent (2005) adopt a multivariate skewed-Student-t

distribution to �t a DCC (1,1) model using a small number of assets. However, because

of the presence of the degrees of freedom, the use of multivariate Student-t distributions

invalidates the two stage approach, which is a crucial feature of the DCC approach. Thus,

both nonparametric/semiparametric methods and thick-tailed distributions do not overcome

the limits of the standard assumption of normally distributed returns.

Our paper is in the spirit of Mencia and Sentana (2005, 2009, 2010) who use a General-

ized Hyperbolic (GH) distribution in a model where the variance matrix dynamics follow a

conditionally heteroskedastic single factor model and the conditional variance of the factor

obeys a univariate GQARCH (1,1) process. This framework allows for �exible tail modelling,

but at the cost of limiting the inclusion of rich dynamics for the conditional variance matrix

due to �curse of dimensionality�. For the case of highly parameterised speci�cation, such as

for instance the asymmetric generalised DCC model (AGDCC), the estimation using the GH
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distribution is extremely di¢ cult. Note that both the AML and the normal distributions

are nested into the GH as detailed in Kotz et al. (2003) and Kozubowski et al. (2010).

In this paper we relax the assumption of Gaussian distributed returns for DCC models

by allowing for AML distributed returns, able to capture leptokurtosis and asymmetry. In

the univariate context, the Laplace or double-exponential distribution has been widely used

in modelling �nancial data. See for instance Madan and Seneta (1990), Madan et al. (1998),

Linden (2001), Heyde and Kou (2004), Komunjer (2005). To the best of our knowledge,

this is the �rst paper that proposes the use of the AML distribution to model �nancial

returns in a MGARCH setting. This multivariate distribution has desirable properties such

as additivity and �niteness of moments, and a density function with a closed-form that makes

the maximum likelihood estimation method easy to implement. Thus, the AML distribution

is more suited than stable Paretian distributions for modelling �nancial data1. The AML

distribution belongs to the subclass of geometric stable distributions, a characteristic that

in the case of the AML distribution can be used to model linear combinations of random

variables with univariate symmetric Laplace distributions. Further, the AML distribution is

a location-scale mixture of normals and therefore enjoys the �exibility of mixtures of normals.

This feature is extremely important as it allows to use this distribution in the computation,

for instance, of the parametric-VaR of portfolios of �nancial assets, characteristic that was

thought exclusive of the Pareto-stable distribution and in particular of its most widely used

limiting case, such as the normal distribution2. The empirical applications in this paper

indicate that the AML distribution �ts the data better than the multivariate Gaussian

counterpart. Thus, the distinguishing features of the AML distribution overcome many

drawbacks of the existing literature and allow for more reliable inference.

The remainder of the paper is organized as follows. In Section 2, we present the theoretical

1Pareto stable distributions allow for skewness and excess kurtosis, but they have in�nite second moments,
which prevent the traditional estimation of, for example, market risk using variances of returns and lower-
order dependence using correlation measures between returns.

2The property that linear combination of multivariate AML distributiions are AML is going to be useful
"only" for the one-day ahead VaR computation if one uses a GARCH model for the variance. For more than
one-day ahead one would need to compute the VaR through simulations. Basel II ask 10-day ahead VaR
computations. We wish to thank Denis Pelletier for bringing this point to our attention.
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framework of DCC models with AML distributed standardised residuals. In Section 3, we

introduce the minimum contrast estimator of Pfanzgal (1969) and its maximum likelihood

extension. In Section 4, we introduce the AGDCC models with AML innovations, providing

in Section 4.1 condition for consistency of the MLE for MGARCH models when an AML

distribution is assumed for standardised residuals. In Section 5, we provide the proof of

consistency of the MLE parameter estimates in the AGDCC (and its nested models). We

also prove strict stationary of DCC models. In Section 6, we report the results from an

empirical application using a sample of 21 FTSE All-World stock indices and 13 bond return

indices. We also report estimates of in-sample risk management measures to evaluate, by

means of a backtesting analysis, the performance of the normal versus the AML distribution

in the estimation of the variance-covariance matrices. Section 7 concludes.

NOTATION. We use "�" to denote the Hadamard product, "k�k" the Euclidean norm

of a vector, "!" the ordinary limit, "D="equality in distribution "a:s:= " almost sure equality,

"a:s:!" almost sure convergence; " d�!" convergence in distribution, and " p�!" convergence in

probability.

2 Dynamic Conditional CorrelationModels with Asymmetric Multivariate Laplace
Distribution

Consider the n�dimensional zero-mean return process rt 2 Rn, t = 1; :::; T

rt = H
1=2
t (�) "t; (1)

Ht = var(rtj
t�1)

where � is the set of parameters to estimate, 
t�1 is the information set at time t � 1, and

"t is an i.i.d. process with unit variance. In the DCC setting, Ht is modelled directly as a

function of dynamic univariate variances and dynamic linear correlations

Ht = DtRtDt (2)
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where Dt 2 Rn�n is a diagonal matrix with elements
p
hit; i = 1; :::; n; t = 1; ::; T , and Rt is

de�ned as

Rt = (Q
�
t )
�1Qt (Q

�
t )
�1 (3)

where Q�t is a diagonal matrix of the form

Q�t = (Diag Qt)
1=2 (4)

and

Qt =

 
1�

qX
i=1

ai �
pX
j=1

bj

!
Q+

qX
i=1

ai"t�i"
0
t�i +

pX
j=1

bjQt�j: (5)

Here, Q 2 Rn�n is the unconditional variance-covariance matrix of "t, Rt 2 Rn�n is a

conditional correlation matrix, and �i and �j are positive-scalar parameters satisfying the

constraints
Xq

i=1
�i +

Xp

j=1
�j < 1, where q corresponds to the number of autoregressive

shock lags, p corresponds to the number of persistence lags. Speci�cation (3) ensures that Rt

is a valid correlation matrix, while (2) and (5), in addition to the condition of stationarity,

ensure that Ht is positive de�nite. The decomposition in (2) and (5) is particularly appealing

because it allows for a two step estimation procedure that makes feasible the estimation of

high-dimensional processes.

Speci�cation (5) can be enriched by allowing for asymmetries in conditional correlations

as well as for asset-speci�c correlations, as proposed by Cappiello et al. (2006). We re-

fer to this general model as the Asymmetric Generalised Dynamic Conditional Correlation

(AGDCC henceforth) (p,q,s) model, where in addition to q and p de�ned above, s corre-

sponds to the number of asymmetric shock lags. Thus, speci�cation (5) can be augmented

as follows:

Qt = Q�
qX
i=1

AiA
0
i �Q�

pX
j=1

BjB
0
j �Q�

sX
k=1

GkG
0
k �N (6)

+

qX
i=1

AiA
0
i � "t�i"0t�i +

pX
j=1

BjB
0
j �Qt�j +

sX
k=1

GkG
0
k � �t�k�0t�k
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A;B; and G 2 Rn�n are diagonal parameter matrices with elements aii; bii and gii respec-

tively; �t = I ["t < 0] � "� with I [:] an indicator function taking value 1 if the argument is

true and 0 otherwise, and �N = E(�t�
0
t). Qt is positive-de�nite if

Q�
qX
i=1

AiA
0
i �Q�

pX
j=1

BjB
0
j �Q�

sX
k=1

GkG
0
k �N (7)

is positive de�nite, which for the scalar ADCC simpli�es to the constraints a2+ b2+�g2 < 1,

where � is the maximum eigenvalue
h
Q
�1=2

NQ
�1=2

i
(see Cappiello et al. 2006, p. 544)

The AGDCC(p; q; s) model nests the following speci�cations:

- DCC(p; q) when G = 0 and A;B are scalars.

- ADCC (p; q; s) when A;B and G are scalars.

- GDCC (p; q) when G = 0.

For the ADCC and the GDCC models, equation (6) is respectively:

Q
ADCC(p;q;r)
t =

 
1�

qX
i=1

ai �
pX
j=1

bj

!
Q�

 
sX
k=1

gk

!
N

+

qX
i=1

ai
�
"t�i"

0
t�i
�
+

pX
j=1

bjQt�j +
sX
k=1

gk
�
�t�k�

0
t�k
�
; (8)

Q
GDCC(p;q)
t = Q�

qX
i=1

AiA
0
i �Q�

pX
j=1

BjB
0
j �Q+

qX
i=1

AiA
0
i � "t�i"0t�i

+

pX
j=1

BjB
0
j �Qt�j: (9)

All models can be estimated in two stages. In the �rst stage, univariate volatilities are

estimated by assuming zero correlations. In the second stage, correlations are estimated once

standardised residuals are obtained. In the paper, we refer to the process in the �rst stage

as AGDCC�, and to the process in the second stage as AGDCC�.

Asymmetric Multivariate Laplace Distribution. An important assumption of the

DCC model is that standardized residuals are normally distributed. Under the assumption
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of normality, Quasi Maximum Likelihood Estimator (QMLE) can be employed to get feasible

and consistent though ine¢ cient DCC coe¢ cients of conditional correlations (Bollerslev and

Wooldridge, 1992). Nevertheless, where time-varying volatilities are estimated by assuming

a normal-GARCH process for the innovations, even for correctly speci�ed models, statisti-

cally signi�cant levels of skewness and excess kurtosis can still be found. This feature has

important implications not only for the econometric properties of parameter estimates, but

also for the use of these models in �nancial applications such as portfolio allocation, VaR

and Expected Shortfall analyses.

In this paper, we propose to estimate conditional correlations assuming that the inno-

vations follow the asymmetric Laplace distribution proposed by Kozubowski and Podgorski

(2001) as a subclass of geometric stable distributions. In particular, we adopt the multivari-

ate generalisation of the asymmetric Laplace laws in Kotz et al. (2003).

In the geometric stable model, the return rf(p) is considered to be the sum of smaller

returns r(i) over the period of time f(p) which is a stopping time random variable with

geometric probability function P (f(p) = j) = p(1� p)j�1; j = 1; 2; :::. The geometric stable

distribution can be approximated to a normalised geometric stable model sum when the p

parameter of the stopping time function f(p) approaches zero. More formally, the random

vector r has a geometric stable distribution in Rn if and only if, as p! 0

a(p)

f(p)X
i=1

�
�(p) + r(i)

� d! r; (10)

where
�
fr(d) =

�
r
(d)
1 ; :::; r

(d)
n

�0
; d � 1

�
is a sequence of i.i.d. random vectors in <n indepen-

dent of f(p); a(p) > 0; �(p) 2 Rn. Kozubowski and Podgorski (2001) show that when each

vector in r has mean mi; i = 1; :::n; a variance �ij; i = 1; :::n; j = 1; :::n; and for a(p) =
p
p

and �(p) = m
�p
p� 1

�
; the random variable r de�ned in (10) has an AML distribution

with the characteristic function

	(t) =
1

1 + 1
2
t0Ht� it0m

(11)
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where t 2 Rn; and H 2 Rn�n is a positive-de�nite matrix.

The density function of the n�variate AML distribution allowing for time dependency

in Ht and rt is given by

f(r) =
2 exp

�
r0tH

�1
t m

�
(2�)n=2 jHtj1=2

�
r0tH

�1
t r

0
t

2 +m0H�1
t m

�v=2
Kv

�q
(2 +m0H�1

t m)(r
0
tH

�1
t r

0
t)

�
(12)

where v = (2� n)=2 and Kv(u) is the modi�ed Bessel function of the third kind de�ned by

Kv(u) =
(u=2)v�(1=2)
�(v+1=2)

R1
1
e�ut(t2 � 1)v�1=2dt; u > 0; v � �1=2. The vector m is the location

parameter and the matrix H is the scale parameter of this distribution. Note that m � Hb

where b 2 Rn:

A very important characteristic of the AML distribution is that it is unimodal with mode

equal to zero. Thus, the m parameter does not only determine the mean of the distribution,

but also its level of asymmetry. When m = 0, i.e. b = 0, the distribution is symmetric and

it collapses, as it can clearly be seen in equation (11), to the elliptical case (see discussion

in Johnson and Kotz, 1972), which is the distribution used in all models with zero mean

residuals.

As shown in Kotz et al. (2003), AML distributions can also be obtained as a limiting

case of the GH distribution, introduced by Barndor¤-Nielsen (1977). These are location-

scale mixtures of normal distributions, i.e. if we assume that w has a GH distribution in Rn

then

r
D
= �+m� + �1=2Z (13)

where Z � Nn(0; H); �2 Rn; and � is a generalised inverse Gaussian (GIG) variable with

parameters �; 
; and �, i.e. � � GIG(�; 
; �), where � and 
 are shape parameters, and

� scale parameter. AML distributions appear when � = 0 and when � is not GIG(�; 
; �)

but standard exponential, i.e. � � EXP (1). Note that the limiting case GIG(1; 0; 2)

is equivalent to EXP (1), just as the multivariate normal is a limiting case of the GH

distribution (see Kotz et al. 2003, and Kozubowski et al. 2010).
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The representation of the AML distribution as a location-scale mixture of normal distri-

butions is given by

r
D
= m� + �1=2Z (14)

where in this case � � EXP (1): From this it can easily be seen that E(r) = m and

V ar(r) =H + mm0: This is of particular importance for the estimation of the MGARCH

model. Contrary to the Gaussian case, the variance of a random variable with AML distrib-

ution does not coincide with the scale parameter of the distribution. Note that V ar(r) =H

only when the distribution is elliptical, i.e. when m = 0.

In contrast with the majority of GH distributions, the AML distribution in the special

case m = 0 is stable, just as the normal. This condition implies an important property

necessary for the modelling of �nancial portfolios known as the additivity property, which

is basically the concept that a linear combination of independent random variables with

stability index � is also stable with the same parameter � (see Khindanova et al. 2001):

Pareto stable distributions are stable under random summation. Formally, the random

variable r is said to be Pareto stable if for any ai > 0; i = 1; :::; d; there exist a constant

c = d1=� and ud 2 Rn for any d � 2 such that

a1r
(1)+:::+adr

(d) D= cr+ ud (15)

where r(1); :::; r(d) are independent copies of r: In an alike way Laplace laws are stable, but

under geometric summation instead of random summation. To be able to preserve stability

we have to constrain the normalising constants a(p) and �(p) in (10) to

a(p) = �
p
p; �(p) = 0 (16)

The �rst condition implies that for the case of the AML distribution � = 2: This is the same

� value of the normal distribution which is the only Pareto-stable distribution with a �nite

second moment. The second condition �(p) = 0 implies m = 0.

In the next section, we introduce the consistent minimum contrast estimator and its

extension to maximum likelihood estimator to estimate multivariate ARCH models under

normality of innovations.
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3 Consistency of minimum contrast estimates and its maximum likelihood ex-
tension.

Let us assume that frt; t = 1; :::; Tg is a multivariate ARCH process

rt = ��(rt�1) + ��(rt�1)"t; (17)

where rt�1 = (rt�1; rt�2; :::)
0
, �� is a measurable function from (Rd)n ! Rd, �� is a measur-

able function from (Rd)n
Rd, � is a vector of parameters that belong to a parameter space

�, and "t � i:i:d:(0; R); where R is a square matrix.

The conditional covariance matrix of the error ��(rt�1)"t is de�ned as

Ht(�) = ��(rt�1)R��(rt�1)
0:

In what follows we will refer to �0 as to the true (population) value of �:

Consider now the following assumptions:

P1. � is a compact (closed and bounded) and convex parameter space.

P2. The stochastic process frt; t = 1; :::; Tg is strictly stationary and ergodic.

P3. The function F (�0; �) = E�0(f(r1; �)), has a unique �nite minimum at �0, where f

is a real valued measurable function continuous in �:

P4. 8� 2 �; E�0(inf(f�(�; �); 0)) > �1; where f�(�; �) = infff(rt; �0); �0 2 B(�; �)g

where B(�; �) is a ball of center � and radius �.

Assumption P1 requires the knowledge of bounds of the true parameter value. As dis-

cussed in Newey and McFadden (1994), this assumption can be relaxed if the instability of

FT (rt; �), contrast process such that FT (rt; �) = T�1
PT

t=1 f(rt; �), when � is unbounded is

not extreme. Assumption P3 secures identi�cation, i.e., the existence of a unique minimum

of F (�0; �) when this is evaluated at the true parameter value. Assumption P2 in conjunc-

tion with Assumption P4 secure uniform convergence of FT (rt; �) to F (�0; �), condition that

is also required for consistency (Newey and McFadden, 1994).

10



Consistency of the MLE estimator under Assumptions P1-P4 has been proved by Pfanzgal

(1969) as a special case of a more general class of estimators known as "minimum contrast

estimators". We report the result here in the following lemma:

Lemma 1 Let (
;z; P ) be a probability space, � 2 � and FT (rt; �) be a contrast process

such that FT (rt; �) = T�1
PT

t=1 f(rt; �). Under assumptions P1-P4, the minimum contrast

estimator b� a:s! �0:

4 Estimating AGDCC Models with AML Distributed Standardised Residuals

We turn now to the estimation of DCC models employing AML distributions. The likelihood

function LAML
T (�), with � the set of parameters to estimate, assuming a AML distribution

for the conditional returns is proportional to

LAML
T (�) / =

TX
t=1

�
r0tH

�1
t m�

1

2
ln jHtj+ (18)

v

2

�
ln(r0tH

�1
t rt)� ln(2 +m0H�1

t m)
�

+ ln

�
Kv

�q
(2 +m0H�1

t m)(r
0
tH

�1
t rt)

���
:

From Ht � DtRtDt; equation (18) can be written as

LAML
T (�) =

TX
t=1

�
r0t(DtRtDt)

�1m� 1
2
ln j(DtRtDt)j (19)

+
v

2

�
ln(r0tD

�1
t R

�1
t D

�1
t rt)� ln(2 +m0(DtRtDt)

�1m)
�

+ ln

�
Kv

�q
(2 +m0(DtRtDt)�1m)(r0tD

�1
t R

�1
t D

�1
t rt)

���
The m parameter cannot be estimated in the �rst step because of zero mean properties of

data. Thus, assume Rt = In and m = 0 and let us denote with � the set of parameters in

the matrix of variances Dt. The �rst stage likelihood function is

LAML
T (�) =

TX
t=1

�
�1
2
ln
��D2

t

��+ v
2

�
ln(r0tD

�2
t rt)� ln(2)

�
(20)

+ ln

�
Kv

�q
2(r0tD

�2
t rt)

���
11



Contrary to the normal case, LAML
T (�) cannot be expressed as the sum of n-log-likelihood

functions, i.e. the parameters in � have to be estimated maximizing one single log-likelihood

function. This, however, does allow to continue to use the two-step estimation technique

although it does extend the computing time for estimation, unless we use normal distribution

for the �rst stage.

De�ning "t = r0tD
�1
t and "�t = m

0D�1
t , the second-stage log-likelihood is given by

LAML
T (' j b�) =

TX
t=1

�
"tR

�1
t ("�t )

0 � 1
2
ln jRtj + (21)

v

2

�
ln("tR

�1
t "

0
t)� ln(2 + "�tR�1t ("�t )

0)
�

+ lnKv

�q
(2 + "�tR

�1
t ("�t )

0)("tR
�1
t "

0
t)

��
where ' is the set of parameters in Rt.

The computation of (20) and (21) is feasible but it may be computationally demand-

ing. An alternative is the numerical solution suggested in Kotz et al. (2003). In this case,

maximum likelihood estimation method yields consistent and asymptotically e¢ cient para-

meter estimates when the assumed distribution is correctly speci�ed. The use of a �exible

distribution like the AML is in this regard very important.

From the minimum contrast estimator of Pfanzgal provided in Lemma 1, we adapt the

framework of Jeantheau (1998) to the case of AML innovations and in Section 4.1 below, we

provide condition for consistency of the MLE for MGARCH models when an AML distribu-

tion is assumed for standardised residuals. In Section 5, we provide the proof of consistency

of the MLE parameter estimates in the AGDCC and its nested models.

4.1 Consistent MLE under AML innovations

We now prove that b� is consistent for the case of AML-MLE.

12



Consider the negative log-density of the AML distribution,

f(rt; �) =
1

2
log(detHt(�))� (rt0H�1

t (�)m) (22)

��
2

�
log(rt

0H�1
t (�)rt)� log(2 +m0H�1

t (�)m)
�

� log
�
K�

�q
(2 +m0H�1

t (�)m)(rt
0H�1

t (�)rt)

��
where K�(�) is the modi�ed Bessel function of the second kind (also called modi�ed Bessel

function of the third kind. See Bowman, 1958, and Relton 1965).

We now adapt Lemma 1 to the MLE case in a similar spirit to Jeantheau (1998). This

requires specialising Assumptions P1-P4 as follows:

Assumption 1. � is a compact, convex parameter space, where � 2 �:

Assumption 2. The process de�ned by (17) is strictly stationary and ergodic.

Assumption 3. There exists a constant [c > 0] such that det(Ht(�)) � c for all t; and

� 2 �:

Assumption 4. 8� 2 �; E�0 (jlog(det(Ht(�))j) < 1 , where �0 denotes the true para-

meter value.

Assumption 5. The function Ht(�) is such that 8� 2 �;8�0 2 �; Ht(�) = Ht(�0) )

� = �0:

Assumption 6. The function Ht(�) is a continuous function of the parameter �:

Assumption 7. Ht(�) is positive de�nite all 8� 2 �:

In what follows, we show how for the speci�c case where the log-density of rt is given by

(22), the four assumptions listed by Pfanzgal (1969) can be replaced by Assumptions 1 to 7.

The following lemma shows under what conditions P4 can be replaced by Assumption 3:

Lemma 2 Let rt be de�ned by f(rt; �) as in (22). Then, Assumptions 3, 4 and 7 imply that

P4 holds.

Proof. By Assumption 7,H�1
t (�) will be positive de�nite and by Assumption 3 FT (rt; �) >

log(c): Also, in view of that the highest eigenvalue Ht(�) is bounded from above, the log-

13



likelihood has a lower bound. Given that the probability that all elements in rt are zero is

zero we have,

K�

�q
(2 +m0H�1

t (�)m)(rt
0H�1

t (�)rt)

�
<1 (23)

Note that Assumption P4 is necessary to ensure that the minimum of the log-density

function does exist. Assumption 3 is much more easy to verify and Lemma 2 provides the

connection between the two.

We need the following Lemma to show that P3 (identi�cation condition) holds for the

case when the AML distribution is assumed.

Lemma 3 If Assumptions 1-5 hold, and if f(rt; �) is the density function of "t; then FT (rt; �)
a:s:!

F (�0; �) and F (�0; �) has a unique optimum at �0:

Proof. The �rst part of the Lemma follows from the strict stationarity and ergodicity

of the process {rtg (Assumption 2) and the ergodic theorem. To prove that FT (�0; �) has a

unique �nite optimum in �0; �rst by the concavity of the logarithm function and by Jensen�s

Inequality we have that

E�0

�
log

�
L (Ht(�);m(�); rt)

L (Ht(�0);m(�0); rt)

��
� logE�0

��
L (Ht(�);m(�); rt)

L (Ht(�0);m(�0); rt)

��
(24)

where L (Ht(�0);m(�0); rt) is the likelihood function evaluated at the true parameter value,

and L (Ht(�);m(�); rt) is the likelihood function evaluated at any other parameter value in

the compact (Assumption 1) parameter space �: From

E�0

�
L (Ht(�);m(�); rt)

L (Ht(�0);m(�0); rt)

�
=

Z �
L (Ht(�);m(�); rt)

L (Ht(�0);m(�0); rt)

�
L (Ht(�0);m(�0); rt) dr

=

Z
L (Ht(�);m(�); rt) dr = 1; (25)

we can rewrite equation (24) as

E�0

�
log

�
L (Ht(�);m(�); rt)

L (Ht(�0);m(�0); rt)

��
� 0 (26)
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and

E�0 (logL(Ht(�);m(�); rt)) � E�0 (logL (Ht(�0);m(�0); rt)) : (27)

The equality holds if and only if Ht(�) = Ht(�0) and m(�) = m(�0): Therefore, from As-

sumption 5, we have F (�0; �) = F (�0; �0) if and only if � = �0:

The following theorem provides the proof of consistency of parameter estimates using the

AML-MLE

Theorem 1 Under Assumptions 1-7, the AML-Maximum Likelihood Estimator (AML-MLE)

for the multivariate heteroskedastic model (17) is consistent, b� p! �0.

Proof. The MLE is a minimum contrast estimator when the maximization is taken over

the negative-log-likelihood function. The consistency of a minimum contrast estimator was

proven by Pfanzgal (1969) under Assumptions P1-P4 in Lemma 1. Assumptions 1-2 replace

Assumptions P1-P2. For a process frt; t = 1; :::; Tg following the dynamics of process (17)

and parameters estimated by AML-MLE, we have that Assumption P4 holds if Assumption

3, 4 and 7 hold (Lemma 2), and that Assumption P3 holds if Assumptions 3-5 hold (Lemma

3) hold.

5 Consistency of MLE for AGDCC Models with AML Innovations

In the previous section, we provided the conditions for consistency of the AML-MLE for a

general multivariate ARCH models. We now apply this result to the speci�c case of the

AGDCC model; we verify under what conditions Assumptions 1-7 hold in the case of this

particular multivariate ARCH model. As already mentioned in Section 2, we refer to the

process de�ned by the �rst-step estimation as AGDCC�, and to the process de�ned by the

second-step estimation as AGDCC�:

5.1 AGDCC � model

In this section, we apply the result of consistency derived in Section 4.1 to the particular

case when the multivariate ARCH process is of the type AGDCC�.
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5.1.1 Stationarity

In order to evaluate under what conditions Assumption 2 (strict stationarity) is valid, and

given that for this process R = In, we write (3) as

rit =
p
hit"it; i = 1; :::; n (28)

hit = wi +

qX
j=1

�ijr
2
it�j +

pX
k=1

�ikhit�k (29)

We can rewrite equation (2) as

Ht =

264 h1;t : : : 0
...

. . . 0
0 : : : hn;t

375 (30)

Let us de�ne diagH 0
t = [h1t; :::; hnt]

0 as the vector containing the diagonal elements of Ht:

Following speci�cation (29) we can write

diagHt =

0B@ wi
...
wn

1CA+ qX
j=1

Nj

0B@ r21;t�j
...

r2n;t�j

1CA+ pX
k=1

MkdiagHt�k (31)

where Nj and Mk 2 Rn�n, and where we assume that all coe¢ cients are positive. Strict

stationarity is stated in the following lemma:

Lemma 4 Let us assume that �0 is such that det(In �
Pn

i=1 (Ni �Mj)�
i) has its roots

outside the unit circle. Then, the CCC model of Bollerslev (1990) has a unique, strictly

stationary and ergodic solution.

Proof. See Jeantheau (1998, pp.73-76).

This result is very useful as it shows how for the CCC model strict stationarity follows

from covariance stationarity. Covariance stationarity can be easily veri�ed in this case by

checking the roots in det(In �
Pn

i=1 (Ni �Mj)�
i):
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5.1.2 Identi�cation

The next step is to verify conditions for identi�cation. To do this it is convenient �rst to

rewrite equation (29) as

P (L)

0B@ h1;t(�)
...

hn;t(�)

1CA =

0B@ wi
...
wn

1CA+Q(L)
0B@ r21;t

...
r2n;t

1CA (32)

where L is the backshift operator, and P and Q are two matrices with polynomial coe¢ cients

such that P (L) = In �
Pp

i=1 �iL
i and Q(L) =

Pq
i=1 �iL

i where In is the identity matrix.

For multivariate GARCH processes, the condition of identi�cation is intimately related to

the so-called minimal condition in multivariate time series analysis. To provide the results,

let us consider the following de�nition �rst:

De�nition.

(a) A polynomial matrix M(L) with degree dij ; i.e. Mij(L) =
Pdij

l=0 aij;lL
l; is column

reduced if and only if det(aij;dj) 6= 0: We de�ne also dj(M) = sup
i
dij

(b) Denote by M � P the set of matrices with polynomial coe¢ cients. A square matrix

M(L) 2 M � P is unimodular if and only if its determinant is independent of L and non

zero.

(c) Let A;B 2 M � P such that det(A) 6= 0 and det(B) 6= 0: The matrix D 2 M � P is

called the greatest common left divisor of A and B if and only if every left divisor of D is

also a left divisor of A and B, and if and only if left divisor of A and B is also a left divisor

of D.

(d) Two matrices A;B 2M �P are coprime if and only if any of their greatest common

left divisor is unimodular.

Then, a minimal multivariate GARCH process is de�ned as follows

Lemma 5 The multivariate GARCH (p,q) speci�cation given in (32) is minimal if

1. P (0) = Id and Q(0) = 0

2. det(P ) 6= 0 and det(Q) 6= 0
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3. P and Q are coprime.

4. 8j; 1 � j � d; dj(P ) = dj � p and dj(Q) = dj � q:

5. P or Q is column reduced.

This is not the case for MGARCH models because the greatest common left divisor is

not unique for polynomial matrices. This is the reason way the notion of "column-reduced"

matrix must be introduced in De�nition (d).

We now introduce two additional assumptions:

Assumption 8. There exist two strictly positive constants c1 and c2 such that all the

wi elements in (29) are greater than c
1=n
1 and det(R) � c2

Assumption 9. The formulation at �0 for the model (28)-(29) is minimal.

Assumption 8 identi�es primitive conditions in relation to the existence of a positive

bound for the determinant of the conditional variance-covariance matrix Ht(�) when this is

de�ned as in (29), and it also allows us to verify more easily conditions stated in Assumption

3. Assumption 9 is related to the identi�cation condition stated in Assumption 5.

The following theorem establishes consistency of the AGDCC � model estimated by AML-

MLE.

Theorem 2 Under Assumptions 1-9, the use of the AML-MLE for the AGDCC� model

de�ned by (28) and (29) provides consistent parameter estimates.

Proof. In Lemma 4, we showed that the AGDCC� process in strictly stationary and

ergodic when it is covariance-stationary. This satis�es Assumption 2. By de�nition �i and �i

are positive, therefore by Assumption 8 we have det(Dt) � c1=2 and det(Ht) � c1c2 > 0; sat-

isfying Assumption 3. Because (29) is weakly stationary, we know that E0(hi;t) < +1. By

Jensen�s inequality, we have that E0(log(hi;t)) < +1: This entails that E0(log(det(Ht))) <

1:Further, given that fromAssumption 8E0(log(det(Ht))) > �1; thusE0(jlog(det(Ht))j) <

+1; satisfying Assumption 4. Jeantheau (1998, Proposition 3.4, p. 79) proved that under a

weakly stationary solution for the process and under Assumption 8, Ht in the CCC model
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is given such that 8� 2 �;8�0 2 �; Ht(�) = Ht(�0) ) � = �0; satisfying Assumption 5.

Finally, Assumption 6 holds.

Some remarks regarding Theorem 2 follow. For a positive-de�nite matrix A, we have

jAj > 0: Secondly, Assumption 9 is necessary in order to satisfy identi�cation, avoiding the

case where two (or more) representations of (32) are equivalent. Two V ARMA representa-

tions are equivalent if P (L)�1Q(L) results in the same operator 	(L) (Dufour and Pelletier,

2008). We need the minimal condition to avoid that the elements of P (L) and Q(L) cancel

out when we take P (L)�1Q(L) in (32).

5.2 AGDCC� Model

So far we have proved consistency of parameter estimates involved in the �rst-stage process

AGDCC �, involving the conditional variances. This is an important step given that para-

meters estimated in the second-stage are inconsistent if the residuals in the �rst-stage are

standardised by inconsistent conditional variances. In this section, we proceed with the

analysis of consistency of parameters estimated in the second-step estimation. We �rst de-

rive the conditions for the strict stationarity of the AGDCC� process. Then, we introduce

the concept of top-Lyapunov exponent and how it helps to de�ne the existence of a strict-

stationarity solution for the AGDCC� process. In addition, we generalise this result for the

models nested in the AGDCC� process, namely the GDCC� (p; q), ADCC� (p; q; s), and

DCC�(p; q) processes reported in Appendix A. Further, we modify Lemma 5 to account for

the new dynamics introduced. Finally, a theorem provides consistency for the entire process.

First, we verify the main conditions required for consistency, i.e. strict-stationarity and

identi�cation. Equations (1)-(3) for the case of the AGDCC� process can be written as

follows

rt = g(Dt; Rt; "t) (33)

Rt = �(Qt) (34)

where g and � are measurable functions.
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5.2.1 Stationarity

In order to prove the strict stationarity of AGDCC�, we make use of that for any process

Zt = f(�t); where f(�) is a measure preserving function, if the process �t is strictly stationary

then Zt is also strictly stationary. This entails that we need to prove the strict-stationarity

of equation (6) in order to obtain the strict stationary of the AGDCC� process.

Equation (6) can be written as

Ut = FUt�1 + Ct; t = 1; :::; T (35)

where

Ut =

266664
Qt
:
:
:

Qt�p�1

377775 (36)

F =

26666664
B1B

0
1 B2B

0
2 : : : Bp�1B

0
p�1 BpB

0
p

[Id] [0] : : : [0] [0]
[0] [Id] : : : [0] [0]
: : : : : : :
: : : : : : :
[0] [0] : : : [Id] [0]

37777775 (37)

Ct =

266666664

n
Q�

Pq
i=1AiA

0
i �Q�

Pp
j=1BjB

0
j �Q�

Pr
k=1GkG

0
k �N

+
Pq

i=1AiA
0
i � "t�i"0t�i +

Pr
k=1GkG

0
k � �t�k�0t�k

	
0
:
:
0

377777775
(38)

where the sup-products (BiB0i �Qt�1) ; i = 1; :::; p in FUt�1 are Hadamard. Note that Ut 2

Rn; B 2 Rn�n; and that Ct 2 Rn�n. This is a valid representation in the sense that a

stationary solution is independent of the future at any given time.

The necessary and su¢ cient conditions for strict stationarity of generalised autoregressive

processes of the form Ut = FtUt�1 + Ct; were derived by Bougerol and Picard (1992). They

de�ne the strict stationarity of stochastic recurrence equations in terms of a metric measure
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of the autoregressive component Ft called the Lyapunov exponent: for the process Ut =

FtUt�1 + Ct; the top Lyapunov exponent, when E
�
log+ kF1k

�
<1, is de�ned by


 = inf(n�1E[log kF1:::Ftk]; n 2 N) (39)

where k�k is the operator norm on Rn: In our case the process for Ut is more simple (the

coe¢ cient F is a constant) and the top Lyapunov exponent can be de�ned as 
 = log �(F )

where �(M) = max
1�i�n

j�ij is the spectral radius of the matrix M 2 Rn�n and �1; :::; �n are the

eigenvalues of M .

Bougerol and Picard (1992) provide the strictly stationary solution of stochastic recur-

rence equations in terms of their top Lyapunov exponent. For the convenience of the reader,

we formulate the argument in Lemma 6 below:

Lemma 6 Let us suppose that the stochastic recurrence equation Ut = FtUt�1 + Ct; t =

1; :::; T , with an Ft i.i.d. coe¢ cient is irreducible and that E
�
log+ kF1k

�
<1 and E[log+ kC1k] <

1: Then Ut has a non-anticipative strictly stationary solution if and only if the top Lyapunov

exponent 
 is strictly negative.

Proof. See Bougerol and Picard (1992).

The process considered by Bougerol and Picard (1992) is more general than the process

in (35), where the coe¢ cient matrix F is constant, rather than Ft as an i.i.d. sequence. For

a F constant matrix of a speci�c form, we have the following corollary to Lemma 6

Corollary 1 Consider the autoregressive process Ut = FUt�1 + Ct; t = 1; :::; T given by

266664
ut
:
:
:

ut�p�1

377775=
26666664
f1 f2 : : : fp�1 fp
1 0 : : : 0 0
0 1 : : : 0 0
: : : : : : :
: : : : : : :
0 0 : : : 1 0

37777775

266664
ut�1
:
:
:
ut�p

377775+
266664
ct
0
:
:
0

377775 (40)

If E[log+ kC1k] <1 , E(U2t ) <1 and Ut has a non-anticipative weakly stationary solution,

then this solution is also strictly stationary.
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Proof. If Ut has a weakly stationary solution then fi > 0;8i; i = 1; :::; p;
Pp

i=1 fi < 1 and

the spectral radius of F is �(F ) < 1: For a constant matrix F , we know that 
 = log �(F )

and therefore 
 < 0. If we add the condition E(U2t ) <1 then the result follows.

Corollary 1 shows that as in the case of the process AGDCC� covariance stationarity is

enough to secure strict stationarity. For the AGDCC� process the connection relies on the

behaviour of the Lyapunov exponent associated to the process; when the roots in 1�
Pp

i=1 fi

are outside the unit circle, the Lyapunov exponent is strictly negative.

We now use the results of Corollary 1 to provide the conditions for the strict stationary

of the AGDCC� model.

Lemma 7 Consider the matrix � = In�
Pq

i=1AiA
0
i�
Pp

j=1BjB
0
j�
Pr

k=1GkG
0
k. The process

rt that follows the AGDCC�(p; q; s) model is strictly stationary if � is a positive-de�nite

matrix.

Proof. If � is a positive-de�nite matrix then the AGDCC�(p; q; s) process is weak

stationary. The matrix F in (37) is constant and of the form (40), and also E(jQtj2) < 1

almost surely because E (j"tj2) < 1 and E(j�tj2) < 1: From Corollary 1, Qt is strictly

stationary and thus rt is strictly stationary.

This result provides the conditions for the strict stationarity of the AGDCC� process,

the most general form of the DCC models. In Lemma 10 in Appendix A, we report the

extension of Lemma 7 to the nested DCC, ADCC, and GDCC models.

We turn now to the last step of our analysis to prove the identi�cation of the parameter

estimates present in the AGDCC� process.

5.2.2 Identi�cation

Let us rewrite (6) as

P (L) �Qt = Q�
qX
i=1

AiA
0
i �Q�

pX
j=1

BjB
0
j �Q (41)

�
sX
k=1

GkG
0
k �N +Q(L) � "t"0t + S(L) � �t�0t
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where S(L) =
Ps

k=1GkG
0
kL

k. We have now three matrices with polynomial coe¢ cients, and

the equivalence of representations explained in the previous section can take place in the

two pairs P (L)�1Q(L) and P (L)�1S(L):

In order to accommodate the new matrix S in (41), we extend the de�nition of minimal

speci�cation presented in Lemma 5 as follows:

Lemma 8 The multivariate GARCH (p,q) speci�cation given in (41) is minimal if

1. P (0) = Id , Q(0) = 0 and S(0) = 0

2. det(P ) 6= 0 , det(Q) 6= 0 and det(S) 6= 0

3. P and Q are coprime or(and) P and S are coprime

4. 8j; 1 � j � d; dj(P ) = dj � p; dj(Q) = dj � q; and dj(S) = dj � r:

5. P or Q is column reduced, and P or S is column reduced

Lemma 9 Let (P1; Q1) de�ne a minimal formulation of a multivariate GARCH (p,q) model,

such that there exists a weakly stationary solution denoted "t; then, if "t is also a solution of

another model written with (P2; Q2), there exists j, such that dj(P2) > dj(P1) or dj(Q2) >

dj(Q1).

Proof. See Jeantheau (1998, p.79)

Lemma 9 (Proposition 3.3 in Jeantheau, 1998) states that if two processes have the

same stationary solution, then the supremes of the degrees of the matrices with polynomial

coe¢ cients P1 and P2 or Q1 and Q2 cannot be both equals. Lemma 9 is useful to prove the

validity Theorem 3 below, which establishes consistency of the AGDCC� model estimated

by AML-MLE.

Theorem 3 Under the assumption that the formulation at �0 for the model (6) is minimal,

the AML-MLE for the AGDCC model de�ned by (6) is consistent, �̂
p! �0.

Proof. In Lemma 7, we proved the strict stationarity of the process, satisfying Assump-

tion 2. If the process is strictly stationary and all parameters are greater than zero then
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det(Qt) � c where c > 0; satisfying Assumption 3. For Assumption 4, we can apply the same

argument as in Proof of Theorem 2: de�ning Qi;t as the diagonal element of Qt; covariance

stationary implies E0(Qi;t) < 1, Jensen�s inequality yields E0(log(Qi;t)) < +1; and given

that det(Qt) � c we get E0(jlog(Qi;t)j) <1: To verify Assumption 5, consider �rst that for

Qt;0 = Qt (�0)

we have that (6) is

Qt;0 = Q�
qX
i=1

Ai;0A
0
i;0 �Q�

pX
j=1

Bj;0B
0
j;0 �Q�

sX
k=1

Gk;0G
0
k;0 �N (42)

+

qX
i=1

Ai;0A
0
i;0 � "t�i"0t�i +

pX
j=1

Bj;0B
0
j;0 �Qt�j;0 +

sX
k=1

Gk;0G
0
k;0 � �t�k�0t�k

If Qt = Qt;0 then

0 =

qX
i=1

Mi � "t�i"0t�i +
pX
j=1

Mq+j �Qt�j +
sX
k=1

Mq+p+k � �t�k�0t�k (43)

�
qX
i=1

Mi �Q�
pX
j=1

Mq+j �Q�
sX
k=1

Mq+p+k �N

where Mi = Ai;0A
0
i;0 � AiA0i;Mq+j = Bj;0B

0
j;0 � BjB0j; and Mq+p+k = Gk;0G

0
k;0 � GkG0k: We

must prove that all terms are equal to 0: First, (43) yields

M1 � "t�1"0t�1 = U (44)

where U is a Ft�2-measurable matrix. Lemma 3.1 in Jeantheau (1998, page 78) implies that

both M1 and U are equal to 0: From M1 = 0; we have

Mq+1 �Qt�j = �
qX
i=1

Mi � "t�i"0t�i �
sX
k=1

Mq+p+k � �t�k�0t�k (45)

+

qX
i=1

Mi �Q+
pX
j=1

Mq+j �Q+
sX
k=1

Mq+p+k �N:

Now, whenMq+1 is di¤erent from zero we have that if P is column reduced thenMq+1 det(�dj) 6=

0 because of De�nition (a). From Lemma 9, we have that the left term of (45) must have
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at least one column j with dj(P ) lags, but this contradicts (45) as the right term (45) which

has only dj(P ) � 1 lags. Therefore, it must be Mq+1 = 0: The same same demonstration

holds if Q is column reduced. The proof is complete by iterating the same demonstration

for M2;Mq+2;M3; :::;Mq+p;Mq+p+1; :::;Mq+p+r and show that all terms are equal to zero.

Note that Theorem 3 provides weak consistent results which is good enough for our

purposes. However, under mildly stronger assumptions strong consistency can also be proved

(Pfanzgal, 1969).

6 Empirical Application

The application reported in this section is intended to provide evidence about the appro-

priateness of the use of the AML-DCC type speci�cations compared to the normal-DCC

models. We focus on speci�cation tests for the distribution of standardised residuals and on

the features of parameter estimates.

We consider shares indices of 21 countries listed in the FTSE All-World Indices and

bond indices of 13 countries constructed by Datastream. We refer the interested reader to

Cappiello et al. (2006) for a detailed description of the data3. The frequency is weekly

and spans over the period 08/01/1987-07/02/2002 (785 observations). The 21 countries of

the share indices are: Australia, Austria, Belgium, Canada, Denmark, France, Germany,

Hong Kong, Ireland, Italy, Japan, Mexico, Netherlands, New Zealand, Norway, Singapore,

Spain, Sweden, Switzerland, United Kingdom, and the United States. The 13 countries of

the bond indices are Austria, Belgium, Canada, Denmark, France, Germany, Ireland, Japan,

Netherlands, Sweden, Switzerland, and the United Kingdom. Weekly returns for bonds and

shares were calculated through log di¤erences using Friday to Friday closing prices

rit = log

�
Pit
Pit�1

�
; i = 1; :::n (46)

where Pit is the price of assets i at time t: We estimate the four models described above:

AGDDC (1,1,1), GDCC(1,1), ADCC(1,1,1), and the DCC(1,1). Table 1 reports the parame-

ter estimates of the joint GJR-GARCH (1,1) processes for the univariate volatilities which
3We wish to thank Kevin Sheppard for providing us with the dataset.
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were calculated to include a mean intercept. The asymmetry parameter was only signi�cant

in 4 out of the 21 equity indices, and only 1 of the 13 bond indices, while the average per-

sistence4 was 0.95 for both groups. In the case of Japan Fixed Income, it would appear that

a GARCH model might not be appropriate, which a visual inspection of the autocorrelation

plot of the square and absolute residuals con�rmed.

[Insert Table 1 here]

To evaluate the multivariate distributions we implemented the visual diagnostic pro-

posed in Kawakatsu (2006). The idea is based on the fact that if rt � N(0; Ht); then

rtH
�1
t r

0
t has a �

2(n) distribution. Although we do not know the distribution of rtH�1
t r

0
t

when rt � AML(m;Ht), we generated an empirical distribution in order to perform the

comparison. We found that when comparing the quantile-quantile plots of the AML and

Normal models against the empirical distribution, the former provided for a better �t. To

reinforce our �ndings about the inconvenience of the assumption of multivariate normality,

we also performed the omnibus test of Doornik and Hansen (2008). Multivariate normal-

ity was overwhelmingly rejected for the raw and standardized data after �tting the normal

DCC, ADCC, GDCC, and AGDCC models. All p�values are � 0, and thus we do not report

them in the paper, but they are available upon request. Before estimating the models for

the conditional correlation, we evaluated the constancy of correlation performing the LM

test of Tse (2000). We overwhelmingly reject the null of constant correlation with a p-value

= 0:000, and in this case too we do not report the results, available upon request. Estimates

for the AGDCC models for the multivariate normal and Laplace distributions are reported

in Tables 2 - 3, respectively5.

[Insert Tables 2-3 here]

Panel A of Table 4 reports the results by log-likelihood and the BIC and AIC information

criteria, respectively.

4In the GJR-Normal model persistence is equal to �+ � + 0:5 � 
.
5Estimates for the DCC, ADCC, GDCC are not reported but available upon request.
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[Insert Table 4 here]

It is clear that the increase in likelihood from the scalar DCC to the AGDCC under both

distributions is signi�cant at the 1% level indicating that the more generalized model with

asymmetric e¤ects favors the data, while the increased likelihood across comparable models

under the AML distribution is signi�cant at the 1% level suggesting a better �t to the data

once tail dependence is taken into account.

In Table 5, we report estimates of in-sample risk management measures such Value-

at-Risk (VaR), Tail Risk (Wong, 2010, TR), and Expected Shortfall (ES). Though we have

considered alternative portfolios, in this paper we only report results for a portfolio composed

of 75% stocks and 25% bonds. We then proceed to evaluate the results by means of a

backtesting analysis.We compare the performance from the use of both Normal and AML

distributions in the estimation process of the variance-covariance matrices. We estimate two

conditional variance matrices Ht using an AGDCC (1,1,1) model with �rst stage normal and

second stage normal and a second AGDCC (1,1,1) model with �rst stage normal and second

stage AML. For the univariate volatilities speci�cation we selected a GJR-GARCH(1,1)

speci�cation.

In the estimation of the risk quantiles, we employed the normal and asymmetric Laplace.

The backtesting results of our exercise for the risk measures are reported in Table 5. Note that

all backtesting analyses are based on observations from 201 to 785 in order to be able to apply

the Filtered Historical Simulation (FHS), as proposed by Barone-Adesi et al. (1999) (see

also Christo¤ersen 2009), we needed to exclude the �rst 200 weekly log-returns. Therefore,

to allow a fair comparison between alternative methodologies, we carried out all the tests on

the same sample. The unconditional (UC) test supports the AGDCC-AML model at any

quantile. In terms of clustering of VaR violations (IND), there is evidence that the best option

is again the AGDCC-AML at both 5% and 1% quantiles. When we consider the conditional

(CC) test, where the number and clustering of VaR failures are jointly considered in a single

test, the result is again in favour of the AGDCC-AML model for every quantile. Table 5

also reports the backtesting results for the TR measure. In this case too AGDCC-MVN is
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dominated by the AGDCC-AML models. Since TR is a parameteric test, the FHS cannot

be used. Finally, in the last rows of Table 5, the results for the ES backtest are reported.

There is mixed evidence, with AGDCC-AML model at 1% while AGDCC-MVN is chosen at

5% quantile.

[Insert Table 5 here]

Figure 1 reports the graphs of a geographical aggregation in four groups (Europe, Europe

non EMU, Americas, and Australasia) of time varying correlations from the AGDCC-ML

model, showing the common spikes around the 1987 and 1998 crashes. Finally, Figures 2-4

provide a visual inspection of the time varying correlations in the equity and �xed income

across selected countries of the four groups.

[Insert Figures 1-4 here]

7 Conclusions

In this paper we proposed a multivariate asymmetric generalised dynamic conditional cor-

relation GARCH model, where returns are assumed to follow the asymmetric multivariate

Laplace distribution. This multivariate distribution is able to capture leptokurtosis and

asymmetry, it has desirable properties such as additivity and �niteness of moments, and a

density function with a closed-form that makes the maximum likelihood estimation method

easy to implement. We proved that maximum likelihood estimation provides consistent es-

timate of parameters of AGDCC-AML models. We also proved the strict stationarity of the

AGDCC model and its nested versions. The empirical validity of the AGDCC-AML model

is tested by �tting 21 FTSE All-World stock indices and 13 bond return indices of Cappiello

et al. (2006). We also report estimates of in-sample risk management measures (VaR, TR,

and ES) for a portfolio composed of 75% stocks and 25% bonds. We evaluated the results

by means of a backtesting analysis, by comparing the performance from the use of both nor-

mal and AML distributions in the estimation process of the variance-covariance matrices.
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Overall, we provide clear evidence that the AML distribution overwhelmingly outperforms

the case in which we assume normality of innovations.

There are several extensions to the results in this paper worth considering. The empiri-

cal validity of AGDCC-AML model may be tested using data at higher frequency. Further,

to estimate the risk quantiles, alternative (to normal and AML) distributions, such as the

Student-t, the generalised Pareto, the asymmetric power (Komunjer, 2007), can also be em-

ployed. In addition, it would interesting to explore whether the results in this paper may be

extended to the broader class of GH distributions. Another important issue is to explore the

ex-ante forecasting advantage in using a dynamic model instead of unconditional measures,

which call for the need of simulation based approaches. These interesting developments are

beyond the scope of the present paper, but they are the object of ongoing research.
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Appendices

Appendix A (Extension of Lemma 7 to the GDCC, ADCC, DCC models)

Lemma 10 The GDCC� (p; q), ADCC� (p; q; s), and DCC�(p; q) processes are strictly sta-

tionary if they are weakly stationary.

Proof. For the GDCC� (p; q) process we have that the vector in (38) is substituted by

Ct =

266664
Q�

Pq
i=1AiA

0
i �Q�

Pp
j=1BjB

0
j �Q+

Ps
i=1AiA

0
i � "t�i"0t�i

0
:
:
0

377775 (47)

The matrix � is in this case given by
�
Id �

Pq
i=1AiA

0
i �
Pp

j=1BjB
0
j

�
: As in Lemma 7,

E[log+ kC1k] <1 as E ("t"0t) <1:The conditions for E
�
log+ kFk

�
<1 and 
 < 0 are the

same as for the AGDCC� (p; q; s) model. For the ADCC� (p; q; s) process; relations (37)

and (38) are

F =

26666664
b1 b2 : : : bp�1 bp
1 0 : : : 0 0
0 1 : : : 0 0
: : : : : : :
: : : : : : :
0 0 : : : 1 0

37777775 (48)

Ct =

266666664

n�
1�

Pq
i=1 ai �

Pp
j=1 bj

�
Q� (

Ps
k=1 gk)N

+
Pq

i=1 ai
�
"t�i"

0
t�i
�
+
Ps

k=1 gk
�
�t�k�

0
t�k
�	

0
:
:
0

377777775
(49)

For the DCC� (p; q) process, F is given as in (48) and the Ct vector is

Ct =

2666664

�
1�

Pq
i=1 ai �

Pp
j=1 bj

�
Q+

Pq
i=1 ai

�
�t�i�

0
t�i
�

0
:
:
0

3777775 (50)
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In these cases � is not a matrix but a scalar. For the ADCC� (p; q; r) process � = 1 �Pq
i=1 ai �

Pp
j=1 bj �

Ps
k=1 gk and for the DCC

� (p; q) process � = 1 �
Pq

i=1 ai �
Pp

j=1 bj:

The conditions for weak stationarity are respectively
Pq

i=1 ai+
Pp

j=1 bj + �
Ps

k=1 gk < 1 andPq
i=1 ai +

Pp
j=1 bj < 1: Again E[log+ kC1k] < 1 as E ("t"0t) < 1 and E(�t�

0
t) < 1. The

result follows from Corollary 1.

Appendix B (The AGDCC model with positive de�nite constraints for the in-
tercept).

The AGDCC model of Cappiello et at (2006) models the multivariate dynamics as

Qt = 
+ A
0"t�1"

0
t�1A+B

0Qt�1B +G
0�t�1�

0
t�1G;

where 
 is the variance targeting intercept introduced in order to reduce the dimensionality

of the problem. The intercept equation is given by 
 = ( �Q�A0 �QA�B0 �QB�G0 �NG) which

for the diagonal version simpli�es to 
 = �Q � (ii0 � a0a � b0b) � �N � g0g. Unlike the scalar

case, checking for positive de�niteness of Qt would require checking the eigenvalues of the

intercept matrix. In the context of optimization, we could explicitly (direct method) include

a nonlinear constraint of positive eigenvalues, though this would make the problem highly

nonlinear and would not be able to handle the case of complex values. A popular method is

to implicitly constrain the optimization (indirect method) by checking for positive and real

eigenvalues in the main optimization and then �kick�the optimizer when these conditions are

not met. This method, related to the exterior penalty function method, has numerous well

documented problems, including creating a high degree of non-linearity and possibly non-

smoothness and local optima. Additionally, for boundary cases this also creates instability

in the evaluation of numerical derivatives (particularly in relation to standard error calcula-

tion) as the so called �kick�creates a discontinuity in the function. In one-stage optimization

one would usually make use of the gradient and hessian at the optimal solution returned by

the solver. However, for the case of the 2-stage DCC (and variants) we cannot do this and

must usually resort to numerical derivatives, perturbing the �rst stage GARCH parameters

to obtain the second stage partitioned standard error matrix for the DCC parameters. As a
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result, it is not unfathomable that the numerical evaluation of the scores based on �rst stage

results lead to an unstable and singular matrix which cannot be inverted. In this context, we

propose an alternative method based on a well known property of positive de�nite matrices.

De�nition A1. A Matrix M is positive de�nite if and only if there is a positive de�nite

matrix B > 0, with B2 =M .

The matrix B is called the "square root" of M. This matrix B is unique, but only under

the assumption B > 0. In terms of the optimization problem, we can include the following

constraint to ensure the positive de�niteness of the intercept 
, B2 � 
 = 0. If 
 has a

"square root" then it is positive semi-de�nite. One therefore models the lower triangular part

of B which creates an added N(N�1)=2+N parameters in the optimization problem. Since

modelling these additional parameters and also imposing a constraint given these parameters

is equivalent to optimizing N(N � 1)=2 + N parameters, then we might as well just forget

about variance targeting and model the intercept directly, as CC
0
with diagonal elements of

C restricted to be positive in order to ensure uniqueness (Billio et at, 2006), hence requiring

N(N � 1)=2 +N parameters without any additional constraints.
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Table 1: Parameter estimates and p-values from the first stage univariate GARCH.

Equity Fixed Income

ω α γ β ω α γ β
Australia 0.00003 0.0831 0.0188 0.8639

[ 0.626] [ 0.207] [ 0.802] [ 0.000]
Austria 0.00003 0.1098 0.0416 0.8286 0.00002 0.0630 0.0000 0.8700

[ 0.156] [ 0.017] [ 0.431] [ 0.000] [ 0.083] [ 0.030] [ 0.999] [ 0.000]
Belgium 0.00001 0.0629 0.0046 0.9200 0.00001 0.0509 0.0123 0.8955

[ 0.283] [ 0.008] [ 0.894] [ 0.000] [ 0.157] [ 0.015] [ 0.559] [ 0.000]
Canada 0.00004 0.0746 0.1858 0.7703 0.00001 0.0349 0.0811 0.8521

[ 0.188] [ 0.080] [ 0.253] [ 0.000] [ 0.098] [ 0.285] [ 0.067] [ 0.000]
Denmark 0.00004 0.1018 0.0248 0.8289 0.00001 0.0405 0.0340 0.9126

[ 0.297] [ 0.016] [ 0.716] [ 0.000] [ 0.194] [ 0.028] [ 0.178] [ 0.000]
France 0.00003 0.0492 0.0491 0.8850 0.00001 0.0554 0.0263 0.8788

[ 0.091] [ 0.088] [ 0.240] [ 0.000] [ 0.111] [ 0.038] [ 0.329] [ 0.000]
Germany 0.00000 0.0633 0.0000 0.9341 0.00001 0.0558 0.0000 0.8857

[ 0.551] [ 0.003] [ 1.000] [ 0.000] [ 0.090] [ 0.038] [ 1.000] [ 0.000]
HK 0.00029 0.0810 0.3068 0.5965

[ 0.049] [ 0.063] [ 0.099] [ 0.000]
Ireland 0.00002 0.0856 0.0000 0.9040 0.00000 0.0435 0.0039 0.9448

[ 0.471] [ 0.270] [ 1.000] [ 0.000] [ 0.182] [ 0.005] [ 0.816] [ 0.000]
Italy 0.00012 0.0895 0.0092 0.7982

[ 0.047] [ 0.031] [ 0.796] [ 0.000]
Japan 0.00003 0.0359 0.1292 0.8779 0.00003 0.1068 0.0104 0.7906

[ 0.286] [ 0.113] [ 0.003] [ 0.000] [ 0.182] [ 0.832] [ 0.997] [ 0.208]
Mexico 0.00029 0.0860 0.1660 0.7287

[ 0.139] [ 0.070] [ 0.204] [ 0.000]
Netherlands 0.00006 0.1199 0.1316 0.7169 0.00002 0.0563 0.0000 0.8671

[ 0.025] [ 0.045] [ 0.319] [ 0.000] [ 0.317] [ 0.062] [ 1.000] [ 0.000]
NZ 0.00005 0.0768 0.0000 0.8800

[ 0.539] [ 0.345] [ 1.000] [ 0.000]
Norway 0.00004 0.1028 0.0000 0.8628

[ 0.714] [ 0.370] [ 1.000] [ 0.000]
Singapore 0.00012 0.0690 0.1865 0.7668

[ 0.000] [ 0.046] [ 0.003] [ 0.000]
Spain 0.00008 0.1196 0.0646 0.7780

[ 0.402] [ 0.033] [ 0.580] [ 0.000]
Sweden 0.00006 0.0755 0.0770 0.8365 0.00000 0.0249 0.0359 0.9408

[ 0.065] [ 0.055] [ 0.199] [ 0.000] [ 0.335] [ 0.326] [ 0.140] [ 0.000]
Switzerland 0.00001 0.0066 0.0000 0.9819 0.00000 0.0000 0.0000 0.9999

[ 0.376] [ 0.738] [ 1.000] [ 0.000] [ 0.951] [ 1.000] [ 1.000] [ 0.000]
UK 0.00000 0.0392 0.0000 0.9533 0.00000 0.0222 0.0000 0.9744

[ 0.076] [ 1.000] [ 0.036] [ 0.000] [ 0.353] [ 0.006] [ 1.000] [ 0.000]
USA 0.00003 0.0000 0.2427 0.8110 0.00000 0.0000 0.0539 0.9299

[ 0.430] [ 0.125] [ 1.000] [ 0.000] [ 0.457] [ 1.000] [ 0.189] [ 0.000]

Notes to Table 1: Values in bold denote 5% significance level.

The GJR-GARCH model: σ2
t−1 = ω + βσ2

t−1 + αε2t−1 + γε2t−1It−1, where It−1 =
{

0,εt−1>0

1,otherwise



Table 2: Parameter estimates and p-values from the Asymmetric Generalized DCC
(AGDCC) Model with Multivariate Normal Distribution.

Equity Fixed Income

a b g a b g
Australia 0.0175 0.9684 - 0.0495

[ 0.662] [ 0.000] [ 0.015]
Austria 0.0296 0.9670 - 0.0882 0.0332 0.9786 - 0.0189

[ 0.253] [ 0.000] [ 0.204] [ 0.168] [ 0.000] [ 0.119]
Belgium 0.0659 0.9576 - 0.2016 0.0527 0.9767 - 0.0336

[ 0.030] [ 0.000] [ 0.001] [ 0.190] [ 0.000] [ 0.099]
Canada - 0.0108 0.9712 - 0.2229 0.0528 0.9430 - 0.1273

[ 0.768] [ 0.000] [ 0.000] [ 0.113] [ 0.000] [ 0.033]
Denmark 0.0318 0.9719 - 0.0961 0.1025 0.9773 - 0.0674

[ 0.488] [ 0.000] [ 0.041] [ 0.077] [ 0.000] [ 0.091]
France 0.0804 0.9529 - 0.1779 0.0854 0.9768 - 0.0541

[ 0.066] [ 0.000] [ 0.000] [ 0.115] [ 0.000] [ 0.039]
Germany 0.0122 0.9663 - 0.0483 0.0685 0.9779 - 0.0421

[ 0.070] [ 0.000] [ 0.000] [ 0.205] [ 0.000] [ 0.123]
HK - 0.0082 0.9889 - 0.0150

[ 0.551] [ 0.000] [ 0.206]
Ireland 0.0796 0.9550 - 0.0517 0.0615 0.9747 - 0.0313

[ 0.010] [ 0.000] [ 0.580] [ 0.075] [ 0.000] [ 0.140]
Italy 0.0758 0.9720 - 0.2416

[ 0.262] [ 0.000] [ 0.000]
Japan 0.0496 0.9871 - 0.0688 0.1117 0.9959 - 0.0640

[ 0.400] [ 0.000] [ 0.193] [ 0.201] [ 0.000] [ 0.135]
Mexico - 0.0005 0.9709 - 0.1226

[ 0.991] [ 0.000] [ 0.197]
Netherlands 0.0209 0.9676 - 0.0537 0.0574 0.9771 - 0.0337

[ 0.043] [ 0.000] [ 0.000] [ 0.150] [ 0.000] [ 0.257]
NZ - 0.0004 0.9861 - 0.0261

[ 0.991] [ 0.000] [ 0.104]
Norway 0.0219 0.9643 - 0.0596

[ 0.714] [ 0.000] [ 0.317]
Singapore - 0.0111 0.9940 - 0.1274

[ 0.884] [ 0.000] [ 0.093]
Spain 0.1315 0.9430 - 0.2382

[ 0.013] [ 0.000] [ 0.000]
Sweden 0.0085 0.9539 - 0.0995 0.0543 0.9778 - 0.0818

[ 0.685] [ 0.000] [ 0.000] [ 0.000] [ 0.000] [ 0.000]
Switzerland 0.0162 0.9493 - 0.0539 0.0588 0.9803 - 0.0301

[ 0.032] [ 0.000] [ 0.000] [ 0.137] [ 0.000] [ 0.035]
UK 0.1017 0.9468 - 0.1124 0.0508 0.9765 - 0.0100

[ 0.002] [ 0.000] [ 0.092] [ 0.000] [ 0.000] [ 0.788]
USA 0.0117 0.9625 - 0.1553 0.0433 0.9761 - 0.1229

[ 0.539] [ 0.000] [ 0.000] [ 0.208] [ 0.000] [ 0.264]

Notes to Table 2: Values in bold denote 5% significance level.
The AGDCC Model: Qt = Ω + aa′ ◦ εt−1ε

′
t−1 + gg′ ◦ ηt−1η

′
t−1 + bb′ ◦Qt−1, where ◦ denotes the

Hadamard operator.



Table 3: Parameter estimates and p-values from the Asymmetric Generalized DCC
(AGDCC) Model with Asymmetric Multivariate Laplace Distribution.

Equity Fixed Income

a b g a b g
Australia 0.0257 0.9701 - 0.0502

[ 0.608] [ 0.000] [ 0.383]
Austria 0.0314 0.9723 - 0.0822 0.0325 0.9801 - 0.0172

[ 0.445] [ 0.000] [ 0.406] [ 0.161] [ 0.000] [ 0.176]
Belgium 0.0636 0.9605 - 0.1963 0.0528 0.9790 - 0.0327

[ 0.290] [ 0.000] [ 0.005] [ 0.181] [ 0.000] [ 0.245]
Canada - 0.0043 0.9676 - 0.2244 0.0394 0.9471 - 0.1280

[ 0.905] [ 0.000] [ 0.000] [ 0.479] [ 0.000] [ 0.184]
Denmark 0.0339 0.9766 - 0.0886 0.0818 0.9800 - 0.0541

[ 0.499] [ 0.000] [ 0.325] [ 0.100] [ 0.000] [ 0.151]
France 0.0836 0.9561 - 0.1651 0.0836 0.9788 - 0.0523

[ 0.048] [ 0.000] [ 0.000] [ 0.112] [ 0.000] [ 0.121]
Germany 0.0126 0.9698 - 0.0489 0.0689 0.9805 - 0.0428

[ 0.172] [ 0.000] [ 0.002] [ 0.200] [ 0.000] [ 0.097]
HK - 0.0071 0.9844 - 0.0193

[ 0.677] [ 0.000] [ 0.530]
Ireland 0.0738 0.9535 - 0.0588 0.0588 0.9779 - 0.0308

[ 0.013] [ 0.000] [ 0.668] [ 0.143] [ 0.000] [ 0.235]
Italy 0.0778 0.9698 - 0.2385

[ 0.188] [ 0.000] [ 0.003]
Japan 0.0499 0.9889 - 0.0714 0.1072 0.9965 - 0.0644

[ 0.394] [ 0.000] [ 0.456] [ 0.304] [ 0.000] [ 0.066]
Mexico - 0.0035 0.9698 - 0.1185

[ 0.926] [ 0.000] [ 0.054]
Netherlands 0.0269 0.9674 - 0.0517 0.0573 0.9796 - 0.0344

[ 0.001] [ 0.000] [ 0.036] [ 0.127] [ 0.000] [ 0.192]
NZ 0.0070 0.9883 - 0.0356

[ 0.832] [ 0.000] [ 0.313]
Norway 0.0251 0.9646 - 0.0594

[ 0.475] [ 0.000] [ 0.527]
Singapore - 0.0080 0.9950 - 0.1298

[ 0.919] [ 0.000] [ 0.371]
Spain 0.1279 0.9345 - 0.2401

[ 0.060] [ 0.000] [ 0.026]
Sweden 0.0116 0.9494 - 0.1121 0.0564 0.9794 - 0.0815

[ 0.667] [ 0.000] [ 0.000] [ 0.000] [ 0.000] [ 0.000]
Switzerland 0.0172 0.9574 - 0.0491 0.0611 0.9829 - 0.0293

[ 0.007] [ 0.000] [ 0.051] [ 0.137] [ 0.000] [ 0.033]
UK 0.1112 0.9489 - 0.1146 0.0615 0.9796 - 0.0154

[ 0.000] [ 0.000] [ 0.315] [ 0.004] [ 0.000] [ 0.691]
USA 0.0127 0.9599 - 0.1568 0.0395 0.9755 - 0.1321

[ 0.494] [ 0.000] [ 0.000] [ 0.175] [ 0.000] [ 0.310]

Notes to Table 3: Values in bold denote 5% significance level.
The AGDCC Model: Qt = Ω + aa′ ◦ εt−1ε

′
t−1 + gg′ ◦ ηt−1η

′
t−1 + bb′ ◦Qt−1, where ◦ denotes the

Hadamard operator.



Table 4: Log-Likelihood, BIC and AIC of Asymmetric Generalized DCC (AGDCC) and nested models
with Multivariate Normal and Asymmetric Multivariate Laplace distributions.

Model Parameters MVN AML

Panel A (Log-Likelihood)

DCC 561+136+2 78,285.37 78,391.44
ADCC 561+136+3 78,310.61 78,490.62
GDCC 561+136+68 78,378.47 78,546.09
AGDCC 561+136+102 78,471.79 78,599.19

Panel B (BIC)

DCC 561+136+2 -5.60652 -5.61448
ADCC 561+136+3 -5.60803 -5.62154
GDCC 561+136+68 -5.58827 -5.60085
AGDCC 561+136+102 -5.58228 -5.59183

Panel C (AIC)

DCC 561+136+2 -5.82131 -5.88215
ADCC 561+136+3 -5.82312 -5.88959
GDCC 561+136+68 -5.82334 -5.89375
AGDCC 561+136+102 -5.82779 -5.89774

Notes to Table 4: The nested models are the scalar DCC, asymmetric scalar DCC, generalized DCC and
asymmetric generalized DCC. The likelihoods can be directly compared between the two distributions as they are
nested in the Generalized Hyperbolic Distribution (see Kotz et al.(2003) and Kozubowski et al.(2010)). The
Bayesian Information Coefficient (BIC) is calculated as (−2LL)/N +mloge(N)/N , and the Akaike Information
Coefficient (AIC) as (−2LL)/N + 2m/N where N is the number of observations and m the number of estimated
parameters. The ’Parameters’ column reports the estimated number of parameters as : ’AGDCC Intercept(lower
triangular)’ + ’GJR (1st Stage)’+’AGDCC (2nd Stage)’, respectively.

Table 5: Value at Risk Tests for Asymmetric Generalized DCC (AGDCC) Model with Multivariate
Normal and Asymmetric Multivariate Laplace distributions.

Model GJR-N - AGDCC-MVN GJR-N - AGDCC-AML

Test/Quantile 5% 1% 5% 1%

UC 0.3059 0.5749 0.4239 0.1610
FHS 0.5053 0.6487
IND 0.1124 0.0012 0.1398 0.8972
FHS 0.2390 0.8524
CC 0.1252 0.0022 0.2174 0.2495
FHS 0.4179 0.2784
TR 0.0387 0.2168 0.9999 0.9985

ES 0.5000 0.4640 0.4810 0.7670
FHS 0.5800 0.6790

Notes to Table 5: The table reports the insample p-values for the Unconditional (UC), Independence (IND) and
Conditional (CC) Value at Risk tests, and tests of Tail Risk (TR) and Expected shortfall (ES) for the 5% and 1%
quantiles under the 2 distributions. A Filtered Historical Simulation (FHS) is also displayed for each model/test
with the highest parametric p-value (in bold).
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Figure 1: Plots of the weekly average Equity volatilities across the 4 major regions from the
Asymmetric Generalized DCC model with Asymmetric Multivariate Laplace distribution
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